首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Biomimetic synthesis of theonellin isocyanide
【24h】

Biomimetic synthesis of theonellin isocyanide

机译:异氰酸化氢碱的仿生合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM.SOC. PERKIN TRANS. 1 1992 Biomimetic Synthesis of Theonellin lsocyanide Yoshiyasu lchikawa ,, Faculty of Education, Mie University, Jsu, Mie 514, Japan A marine sesquiterpene of the theonellin class has been synthesized for the first time. Direct amination of the theonelline carbon framework 2 in a biomimetic fashion, a crucial step, was achieved by employing a triflic acid-promoted Ritter-type reaction at low temperature (-78"C). Scheuer's laboratory reported the isolation and characteriz- ation of theonellin isocyanide 1 from a nudibranch, PhyIIidiu sp., from Sri Lanka.' The distinctive parts of this molecule, a bisabolene class sesquiterpene with a plane of symmetry in its structure, are an E,E conjugated diene system and a nitrogen substituent at C-3.' Theonellin isocyanide 1 appears to be biogeneticall y related to theonellin 2, theonellin formamide 4 and theonellin isothiocyanate 5 which were isolated from a sponge, Theonella 6.swinhoei by Nakamura.' It was reasoned that regiospecific protonation of theonelline 2 would produce a carbonium ion- like intermediate 3,which upon capture by an ambident cyanide nucleophile (Ritter reaction) would provide theonellin iso- cyanide 1 (Scheme l).3 Further transformation of 1 would 2 3 1 ~~ // 4 X=NHCHO 1 5 X=NCS Scheme 1 then yield theonellin formamide 4 and theonellin isothiocyanate Initially, for the synthesis of theonellin isocyanide 1, we chose 4-acetyl-l-methylcyclohex-l-ene 6 as the model compound and explored the Ritter reaction for the introduction of the nitrogen substituent (Scheme 2).' Reaction of 6 with concentrated sulfuric acid in acetonitrile at 0 "C followed by hydrolysis with aqueous sodium hydrogen carbonate provided a mixture of the amides 7 and 8 in a 7:3 ratio.We assumed that the stereochemistry of the major isomer was 7 with the nitrogen substituent axially orientated, the reaction mechanism of the Ritter reaction being thought to involve truns-antiparallel electrophilic addition of H+ and MeCN to the olefinic bond of 6 through a conformation where the acetyl group is equatorially orientated. This reaction path will give an intermediate A which is successively hydrolysed to yield the major isomer 7. A minor isomer 8 may be derived from the carbonium ion intermediate B which was attacked by MeCN from the less hindered side.* Present address: Department of Agriculture, Nagoya University, Chikasa, Nagoya, 464, Japan. / bsol; H Me-CEN A B + (mapr)7 R=Ac I9 R=CHO (minor) 8 R = Ac10 R=CHOI 11 R=NC 3 12 R=NC 3 11 12 Scheme 2 The stereochemistry of 8was confirmed by its conversion into the known 1-acetyl-4-isocyano-4-methylcyclohexane12 which has been derived by the degradation studies of theonellin isocyanide 1 by Scheuer.' The mixture of 7 and 8 upon treatment with triethyloxonium tetrafluoroborate followed by hydrolysis with acetic acid in aqueous tetrahydrofuran provided the corresponding amines. These amines, upon reaction with acetic formic anhydride, furnished a mixture of formamides 9 and 10.Dehydration of these formamides with tetrabromo- methane, triphenylphosphine and diisopropylethylamine in dichloromethane at -20 "C (modification of Ziehn's pro-cedure)7 afforded a mixture of the isocyanides 11 and 12, which was easily separated by silica-gel chromatography. The isocyanide 11 was independently prepared from pure 7 by identical procedures. The 'H NMR spectra of the isocyanide 12 derived from 8 showed 6-H (S,2.59, 1 H, qn, J 5) which was in good agreement with that reported by Scheuer (6, 2.59, 1 H, sept, J 5), and this result confirms the stereochemistry of 7 and 8. In addition, close study of the 500 MHz 'H NMR spectra support the conformational assignments of the isocyanides 11 and 12 6-H of the isocyanide 11 (6, 2.24, tt, J 13, 4) is axial, because of its large J1.6 value (13 Hz); if the ring is chair, the conformation must be as shown in Scheme 2.The 6-H signal for the isocyanide 12 (6, 2.59, quintet, J 5), was small, J1.6 (5 Hz) compared with that of 11 and is only compatible with an equatorial proton, thus bringing the acetyl group into an axial orientation. The chemical shift of the isocyanide 12 (6, 2.59) compared with that of the isomer 11 (6, 2.24) supports this assignment of 6-H stereochemistry. If we assume that the ring of 12is chair, the methyl group of 12 is now equatorial (see Scheme 2). The energetic cost of allowing the acetyl group to take up an axial conformation is reduced by the absence of 1,3-diaxial interactions at the methyl group.We next turned our attention to the preparation of theonellin 2. The allyl alcohol 13 was prepared by Delay and Ohlof's procedure from the cyclohexene 6 in two steps as a mixture of the 2 and E isomers (1 : 5).8 This allyl alcohol 13 was further transformed into the allyl sulfone 14 in 78 yield by conversion into the allyl bromide (phosphorus tribromide and pyridine in ether) followed by the reaction with sodium benzenesulfinate in dimethylformamide (DMF). Recrystallization provided the E allyl sulfone 14 in pure form. Construction of the diene moiety of theonelline 2 was accomplished in 88 overall yield by the following Julia trans-olefination procedures:' (i) treatment of 14 with butyllithium followed by isobutyraldehyde at -78 "C, (ii) acetylation of the resulting hydroxy sulfone with acetic anhydride and pyridine and (iii) treatment of this acetoxy sulfone with sodium amalgam (5) and sodium hydrogen phosphate in methanol." The product ratio of E:Z was ca.83: 17. This stereoisomeric mixture could not be separated at this stage and was used in the next reaction. 'q,'R 13 R=OH c14 R=SOPPh With theonelline 2 to hand, attention was next directed to its amination. Theonellin 2 was treated with conc. H2S04 in acetonitrile at 0 "C followed by aqueous NaHCO, to furnish 15 and 16 in 33 yield in the ratio 4.3: 1. The low yield of this step may be a result of the competitive reaction of the diene moiety with conc.H2S04. A more regiospecific reaction and milder conditions were sought. This was realized by treatment of theonelline2 with trifluoromethanesulfonicacid (triflic acid, 1.5 equiv.) and MeCN (8 equiv.) in CH2C12 at -78 "C for 2 h followed by hydrolysis with aqueous NaHCO, to yield a 65 : 35 mixture of 15 and 16 in 63 yield (60 conversion of the starting material). Use of a limited amount of MeCN was crucial for the selectivity of this reaction. Indeed, the reaction of 2 with triflic acid in a 2: 1 mixture of CH2C12 and MeCN gave a 93:7 mixture of 15:16 indicating that the trans addition mechanism predominates. Using a limited amount of MeCN may enforce the formation of the carbonium ion. This isomeric mixture was easily separated by silica gel chromatography to provide homogeneous 16.-. HNAc 2 HNAc 15 16 J. CHEM.SOC. PERKIN TRANS. 1 1992 A higher yielding and more practical approach from 14 to 16 was pursued. Reaction of 15 with triflic acid and MeCN in CH2C12 provided 17 and 18 in 98 combined yield in the ratio 51:49. The resulting allyl sulfone 18 was transformed into 16 in 98 yield through a similar Julia trans olefination procedure as previously described. HNAc HN.bsol;c 17 18 Treatment of 16 with Et30+BF4- followed by hydrolysis with AcOH in aqueous THF afforded the corresponding amine. This, upon treatment with AcOCHO, furnished theonellin formamide 4 as crystals in 88 overall yield from 16. Finally, the formamide 4 was smoothly converted into theonellin isocyanide 1in 89yield using Baldwin's procedure (trifluoromethanesulfonic anhydride and diisopropylethyl-amine at -78 "C for 3 min).' ' The yield for this reaction was low with a prolonged reaction time (20-30 min).HNCHO 4 Spectral data for compounds 1, 2 and 4 were in good agreement with those reported in the literature and those kindly provided by Professor P. J. Scheuer and Dr. H. Nakamura. The method developed here should be widely applicable to the elaboration of a wide variety of terpenes with nitrogen substituents. The one drawback of this sequence is the generally moderate selectivity observed during the Ritter reaction stage due to the carbonium ion intermediate. Efforts are presently underway to develop alternative and more efficient approaches to terpenes with nitrogen substituents.Experimental General Details.-M.p.s were determined on an oil bath apparatus and are uncorrected. IR spectra were recorded using a Shimadzu IR-420 IR spectrometer for chloroform solution unless otherwise stated. 'H NMR spectra were determined using a JEOL FX-200 spectrometer operating at 200 MHz unless otherwise stated. Other spectrometers used were JEOL EX 270 and JEOL JNM-GX 500. I3C NMR spectra were determined using the JEOL-90 instrument, operating at 22.50 MHz unless otherwise stated, the JEOL EX270 instrument operating at 67.80 MHz was also used. Dilute solution in deuteriochloroform were used throughout unless stated other- wise, with tetramethylsilane as the internal standard.All J values are in Hz. High-resolution mass spectra were recorded on a JMS-DX 705L instrument by S. Kitamura (Nagoya University). N,N-Dimethylformamide was dried over molecular sieves 4A. Pyridine was dried over potassium hydroxide. All reactions were carried out under argon. All organic solutions from work- up procedures were dried by brief exposure to anhydrous sodium sulfate. Column chromatography were performed on silica gel supplied by E. Merck (Art 7734) and Fuji Davison (BW-820 MH). Preparative TLC were made on plates prepared J. CHEM. SOC. PERKIN TRANS. 1 1992 with a 2 mm layer of silica gel PF254 obtained from E. Merck (Art 7747). 4-Acetamido-1-acetyl4methylcyclohexane7.-To a solution of conc.sulfuric acid (20 an3,0.38 mol) in acetonitrile (400cm3) cooled to 0 "C was added 4-acetyl-1-methylcyclohexene6 (20 cm3, 0.137 mol) dropwise. After being stirred for 3.5 h, the reaction mixture was poured into aqueous sodium hydrogen carbonate (100 g of sodium hydrogen carbonate and 500 cm3of water). The aqueous phase was extracted with ethyl acetate. The organic extracts were combined, dried and evaporated under reduced pressure to afford crude product (19.97 8). This was purified by recrystallization from ethyl acetate at -20 "C to afford the major product 7 as pure crystals (5.65 g). Further crystallization provided a mixture 7 and 8 as crystals (5.88 g). The combined yield was 43 (11.53 8); m.p. 122 "C (from ethyl acetate-hexane) (Found C, 66.9; H, 9.8; N, 7.1.CllH19N02 requires C, 66.97; H, 9.71; N, 7.10); v,(CHCl,)/cm-' 3400 (NH), 1700 (COMe) and 1660 (CON); SH(27O MHz; CDCl,) 1.38 (3 H, s, 3-Me), 1.94 (3 H, s, COMe) and 2.16 (3 H, s, 6-H). 1-Acetyl-4-formamithylcyclohexane 9 and 10.-To a solution of a mixture of 7 and 8 (587 mg, 2.98 mmol) dissolved in dichloromethane (12 cm3)was added sodium carbonate (2 g) followed by a solution of triethyloxonium tetrafluoroborate (ca. 1 mol dm-, in dichloromethane, 6 cm3).After being stirred at room temperature for 4 h, the reaction mixture was poured into water. The aqueous layer was extracted with dichloromethane ( x 2), and the combined extracts were dried and concentrated under reduced pressure. The resulting crude hinoether (0.69 g) was dissolved in a mixture of tetrahydrofuran (14 an3),water (1.5 cm3)and acetic acid (1.5 cm3)and the solution stored at room temperature overnight; it was then evaporated to remove tetrahydrofuran.Water (ca. 10 cm3)was added to the residue, and the solution was neutralized with sodium carbonate (4.0 g). The aqueous solution was extracted with dichloromethane. The combined extracts were dried and concentrated under reduced pressure to dord crude mine (0.41 g); which was immediately dissolved in dichloromethane (6 an3),and treated with acetic formic anhydride (1.1 an3).The solution was stirred at room temperature overnight, and then concentrated under reduced pressure. Chromatography of the residue on silica gel with ethyl acetatehexane (1 :3 followed by 3 :1) provided a mixture of the formamides 9 and 10(323 mg, 60).1-Acetyl4isocyano4methylcyclohexane 11 and 12.-A sol-ution of a mixture of the formamides 9 and 10 (285 mg, 1.45 mmol), tetrabromomethane (1.233 g, 3.7 mmol) and diisopro- pylethylamine (1.3 cm3, 7.48 mmol) dissolved in dichloro- methane (15 an3)was cooled to -20 "C. To this solution was added a solution of triphenylphosphine (918 mg, 3.5 mmol) in dichloromethane (ca. 2 cm') dropwise. After the mixture had been stirred at -20 "C for 55 min, the reaction was quenched by addition of water. The aqueous layer was extracted with ether, and the combined extracts were washed with 1 mol dm-' HC1, saturated aqueous sodium hydrogen carbonate and brine, dried and concentrated under reduced pressure to afford crude product (1.928 8).This was purified by silica gel chromatography with ether-hexane (1 :10 followed by 1 :3) to afford the isocyanides 12 (148 mg) and 11 (40 mg combined yield 72). 1 -Acetyl-4-isocyano-4-methylcyclohexane11. vmaX-(CHCl,)/cm-' 2080 (NC) and 1690 (CO); dH(200 MHz; CDCl,) 1.45(3 H, t, J 2,3-Me), 2.17 (3 H, s, COMe); (500 MHz; CDCl,) 1.4 (2 H, m), 1.45 (3 H, t), 1.77 (2 H, qd, J 13,4), 1.90 (2 H, br dd, J 13,4), 2.01 (2 H, br d, J 13), 2.17 (3 H, s) and 2.24 (1 H, tt, J 13, 4); 6d67.80 MHz, CDC1,) 23.8,27.7,29.9,37.4,49.9and 57.4 (t, J 5, 3-C), 154.8 (t, J 5, NC) and 210.3 (CO) (Found M+, 165.1161. CloH15N0 requires M, 165.1154). l-Acetyl4isocyano-4-methylcyclohexane12.v,(CHCl,)/ cm-'2080 (NC) and 1690 (CO) (lit.,' 2980, 2950, 2870, 2130, 1705, 1335 and 1135); 6amp;00 MHz; CDCl,) 1.40 (3 H, t, J 2, 3-Me), 2.16 (3 H, s, COMe) and 2.59 (1 H, qn, J 5, 6-H); (500 MHz; CDC13) 1.40 (3 H, t), 1.65 (2 H, m), 1.78 (2 H, tt, J 13,5), 1.8-2.0 (4 H), 2.16 (3 H, s), 2.59 (1 H, qn, J 5) @it.,' 300 MHz, CDCl,, 1.38 (3 H, s), 1.96-1.5 (unresolved), 2.15 (3 H, s), 2.59 (1 H, ~ept, J 5); 6d67.80 MHz, CDCIJ) 22.7,28.0,28.1,35.5,46.4, 57.3 (t, J 5,3-C), 153.9 (t,J4, NC) and 210.5 (CO) (Found M+, 165.1 165. CloH15N0 requires M,165.1 154). (E)-Ally1Sulphone 14.-To a solution of the allyl alcohol 13 (19.0 g., 0.1 14 mol) and pyridine (3 cm3)dissolved in ether (400 cm3)cooled to 0 "C was added phosphorus tribromide (11.5 an3,0.063 mol) dropwise. After being stirred at 0deg;C for 20 min, the reaction mixture was poured into water.The separated organic phase was successively washed with water, saturated aqueous sodium hydrogen carbonate and brine, dried and concentrated under reduced pressure to yield the allyl bromide (22.09 g,85). This allyl bromide was immediately dissolved in DMF (400cm3), and treated with sodium benzenmulfinate (30 g, 0.15 mol) at room temperature. The reaction mixture was heated at 70 "C for 2 h, and then poured into water (800 an'). The aqueous phase was extracted with ether (x3). The combined extracts were washed with water and brine, dried and concentrated under reduced pressure to provide the allyl sulfone (25.66 g, 78).Recrystallization from ether-hexane gave the pure (E)-ally1 sulfone 14 (17.51 g,5379, m.p. 84 "C (from ether- hexane) (Found C, 70.3; H,7.8; C1,H22S02 requires C, 70.31; H, 7.64); 6,(270 MHz; CDCl,) 1.26 (3 H, s, Me), 1.64 (3 H,s, Me), 3.82 (2 H, d, J8, CH2S02), 5.22 (1 H, t, J8, GCH), 5.35 (1 H, br s, C=CH), 7.4-8.0 (5 H, Ph). Theonelline 2.-To a solution of the allyl sulfone 14 (3.0 g, 10.34 mmol) dissolved in tetrahydrofuran (90cm3)cooled to -78 "C was added butyllithium (1.6 mol dm-, solution in hexane; 9.0 cm3,14.4 mmol). After the mixture had been stirred at -78 "C for 20 min, isobutyraldehyde (2.4 cm3,26.4 mmol) was introduced and stirring continued for a further 15 min; acetic anhydride (6 cm3)was then added. After being stirred for 5 min, the reaction mixture was warmed to room temperature and pyridine (18 cm3)was added to it.After being left overnight, the reaction mixture was poured into water and the aqueous layer separated; this was then extracted with ether. The combined extracts were washed with 1 mol dm-, HCl, saturated aqueous sodium hydrogen carbonate and brine, dried and concentrated under reduced pressure. The resulting residue was passed through a short column of silica gel with ether-hexane (1:1) as eluent to afford the acetoxy sulfone (4.53 g). This, dissolved in methanol (140 cm3),was treated with Na,HPO, (4.5 g) followed by sodium amalgam (15 g) at 0 "C. Additional sodium amalgam (24.99 g) was added until TLC analysis showed the absence of starting material.The reaction mixture was diluted with water (200 cm') and extracted with hexane. The combined extracts were washed with water and brine, dried and concentrated under reduced pressure. The resulting residue was passed through a short column of silica gel (ca. 12 g) with hexane as eluent to afford theonelline (1.84 g, 88). HPLC analysis of this product showed the trans-cisratio to be 83: 17. This mixture of theonelline 2 and its cis isomer were inseparable at this point and, accordingly, only major NMR signals corresponding to theonelline 2 are described, 6amp;00 MHz; CDCl,) 1.01 (6 H, d, J7, amp;Me), 1.65 (3 H, s, 3-Me), 1.73 (3 H, s, 7-Me), 2.35 (1 H, 11-H), 5.57 (1 H, dd, J 15,7,10-H), 5.39 (1 H, brs), 5.83 (1 H, d, J 10,8-H), 6.24 (1 H, ddd, J 15,10,1,9-H) lit.,2 1.02 (6 H, d, J6.6), 1.72 (3 H, d, J l), 2.34 (1 H, octet, J6.6), 5.54 (1 H, dd, J 15,6.6), 5.80 (1 H, br d, J 11) and 6.24 (1 H, ddq, J 15, 11, l); 6,(50.20 MHz, CDClJ 14.6 (14-C), 22.6 (11-Me), 23.5 (13-C), 27.8 (5-C), 30.6 (1-C or 4-C), 30.7 (1-C or 4-C), 31.4 (11-C), 43.1 (6-C), 120.8 (2-C), 123.3 (8-C or 9-C), 123.6 (8-C or 9-C), 133.5 (3-C), 139.8 (10-C) and 140.5 (7-C) (lit.,2 14.7, 22.7, 23.5, 28.0, 30.7, 30.8, 31.4, 43.2, 120.9, 123.4, 123.9, 133.6, 139.8 and 140.5).Theonellin acetamide 15 and l6.-T0 a solution of theo- nelline 2 (108 mg, 0.36 mmol) in a mixture of acetonitrile (0.20 cm3, 4.3 mmol) and dichloromethane (5 cm3) cooled to -78 "C was added trifluoromethanesulfonic acid (0.07 cm3, 0.79 mmol).After being stirred at -78 "C for 2 h, the reaction mixture was poured into saturated aqueous sodium hydrogen carbonate. The aqueous phase was separated and extracted with dichloromethane and the combined extracts were dried and concentrated under reduced pressure to afford a residue. HPLC analysis of this crude product revealed the ratio of compounds 15:16 to be 65:35. Purification by silica gel chromatography with ether-hexane (1 :50) followed by ethyl acetate-hexane (1:1) as eluent provided theonelline 2 (65 mg), and a mixture of 15and 16(53 mg, 63 yield based on theonelline used). A solution of theonelline 2 (73 mg, 0.36 mmol) in a mixture of acetonitrile (1 cm3) and dichloromethane (2 cm3) cooled to -78 "C was treated with trifluoromethanesulfonic acid (0.04 cm3, 0.45 mmol) for 3 h.The reaction mixture was poured into saturated aqueous sodium hydrogen carbonate and the aqueous phase separated and extracted with dichloromethane. The combined extracts were dried and concentrated under reduced pressure to afford a residue. HPLC analysis of this crude product revealed the ratio of compounds 15and 16 to be 93 :7. Purification by silica gel chromatography with ether- hexane (1 :50) followed by ethyl acetate-hexane (1 :1) as eluent provided theonelline 2 (12 mg, 16 recovered), and a mixture of compounds 15and 16 (44 mg, 73 yield based on theonellin used). Acetamides 17 and 18.-To a solution of acetonitrile (9 cm', 192 mmol) and trifluoromethanesulfonic acid (17.0 g, 192 mmol) in dichloromethane (260 cm3) cooled to -78 "C was added a solution of the allyl sulfone 14 (8.0 g, 27.6 mmol) in dichloromethane (40 cm3).After being stirred at -78 "C for 2 h, the reaction mixture was poured into aqueous sodium hydrogen carbonate. The aqueous layer was separated, and extracted with dichloromethane- and the organamp; phase was dried and concentrated under reduced pressure to afford a crude mixture of the allyl sulfone 14 and the acetamides 17 and 18. The product ratio of compounds 17 and 18was found to be 51 :49 by HPLC analysis. Purification by silica gel chromatography provided the allyl sulfone 14 (1.03 g), 18 and its isomer 17 (8.21 g). Yield based on consumed starting material was 98. Acetamide 18.M.p. 120 "C (from ethyl acetate-hexane) (Found: C, 65.35; H, 7.8; N, 4.0. ClgHz7NS03 requires C, 65.30; H, 7.79; N, 4.01); v,,,(CHC1,)/cm~' 3400 (NH), 1650 (CONH) and 1500 (CONH); 6H(200 MHz; CDC13) 1.21 (3 H, s, 3-Me), 1.35 (3 H, s, 7-Me), 1.91 (3 H, s, COMe), 3.81 (2 H, d, J 8, CH2S02), 5.21 (1 H, t, J8, WH), 5.29 (1 H, br s, WH) and 7.4-7.9 (5 H, Ph). Acetamide 17. M.p. 118 "C (from ethyl acetate-hexane) (Found: C, 65.2; H, 7.8; N, 4.0. CI9H2,NO3S requires C, 65.30; H, 7.79; N, 4.01); ~,,,(CHCl~)/crn-~ 3450 (NH), 1670 (CONH) and 1510 (CONH); 6H(200 MHz; CDCl3) 1.25 (3 H, S, 3-Me), 1.34 (3 H, s, 7-Me), 1.96 (3 H, s, COMe), 2.2-2.3 (2 H), 3.81(2H,d,J8,CH2SO2),5.21(1H,t,J8,~H),5.2(1H,brs, MH) and 7.4-7.9 (5 H, Ph).Theonellin acetamide 16.-The procedure described here was similar to that used for the theonellin 2. Thus, allyl sulfone (a 12:88 mixture of 17 and 18; 3.56 g, 10.2 mmol) in tetrahydrofuran (180 cm3) was treated with butyllithium (19.0 J. CHEM. SOC. PERKIN TRANS. I 1992 cm3, 25.3 mmol) at -78 "C to give, after 20 min at this temperature, a yellow precipitate. The reaction mixture was warmed to -20 "C, and stirring was continued for 20 min. The solution was recooled to -78 "C, and isobutyraldehyde (4.6 cm3, 50.7 mmol) was introduced. After 20 min at -78 "C, the reaction was quenched by addition of saturated aqueous ammonium chloride. The separated aqueous layer was ex- tracted with ethyl acetate and the combined extracts were dried, and concentrated under reduced pressure.The resulting residue was dissolved in a mixture of acetic anhydride (20 cm3) and pyridine (40 cm3). After the mixture had been stirred at room temperature overnight, the solvent was evaporated under reduced pressure. The resulting residue was passed through a short column of silica gel with ethyl acetate-hexane (2: 1) as eluent to afford crude acetoxy sulfone (7.02 g). This, in methanol (80 cm3), was treated with disodium hydrogen phosphate (3 g) followed by sodium amalgam (15.9 g) at 0 "C. Additional sodium amalgam (17.3 g) was added. The reaction mixture was diluted with water (200 cm3) and extracted with ether. Following work-up as described before, the resulting residue (3.37 g) was purified by silica gel chromatography (silica gel 100 g) with ethyl acetyl-hexane (1 :10 followed by 1:1) to give the following column fractions; theonellin acetamide derived from 17 (139 mg, oil), a 1 :1 mixture of 17 and 18(777 mg) and theonellin acetamide 16 (1.70 g).The total yield was 98 (2.62 g). Recrystallization from ethyl acetate-hexane provided an analytically pure crystalline sample of 16. Theonellin acetamide 16. M.p. 103 "C (from ether-hexane); v,,(CHCl,)/cm-' 3400 (NH), 1650 (CONH) and 1500 (CONH); 6,(200 MHz; CDC13) 1.01 (6 H, d, J7,12,15-Me), 1.39 (3 H, s, 3-Me), 1.72 (3 H, d, J 1, 7-Me), 1.92 (3 H, s, COMe), 2.33 (1 H, sept, J7,11-H), 5.26 (1 H, br s, 2-H), 5.58 (1 H, dd, J 15, 7, 10-H), 5.81 (1 H, d, J 11, 8-H) and 6.22 (1 H, ddd, J 15, 11, 1, 9-H) (Found: M', 263.2266. CI7H2,NO requires M, 263.2249).Theonellin formamide 4.-The procedure used was similar to that used for the production of 1 -acetyl-4-formamido-4- methylcyclohexane 9 and 10. Theonellin acetamide 16 (1.47 g, 5.59 mmol) in dichloromethane (80 cm3) was treated with triethyloxonium tetrafluoroborate (1 mol dm3 solution in dichloromethane, freshly prepared; 14 cm3) and sodium carbonate (5.0 g), and the reaction mixture was stirred at room temperature for 1.5 h. Work-up as described before gave the crude imino ether (1.6 g). This, together with acetic acid (6 cm3), water (6 cm3) and tetrahydrofuran (60 cm3) was stirred at room temperature overnight. Solvent was evaporated, and water was removed azeotropically with ethanol (x 3) to afford the amine (2.37 g).This, in dichloromethane (50 cm3), was treated with acetic formic anhydride (4 cm') for 40 min at room temperature. Solvent was removed under reduced pressure, and the resulting oil was passed through a short column of silica gel with ethyl acetate as eluent to afford the formamide 4 (1.46 g); this afforded crystals (877 mg) from ether-hexane. Purification of the residue from mother liquor by preparative TLC provided further formamide 4 (317 mg); total yield was 88 from theonellin acetamide 16. NMR analysis of 4 proved to be extremely difficult, because it exists as 1:1 mixture of two rotational isomers; m.p. 92 "C (from ether-hexane) (Found: C, 76.95; H, 10.9; N, 5.6.CI6H2,N requires C, 77.04; H,10.92; N, 5.62); V,,,,,(CHC~~)/C~-~ 1670 (NHCHO) (lit.,' 1685). Theonellin isocyanide 1.-A solution of theonellin formamide 4 (80 mg, 0.32 mmol) and diisopropylethyl amine (0.37 cm3, 2.13 mmol) dissolved in dichloromethane (6 cm3) was cooled to -78 "C, and triflic anhydride (0.10 cm', 0.60 mmol) was added dropwise. After being stirred at -78 "C for 3 min, the reaction mixture was poured into saturated aqueous sodium hydrogen carbonate. The aqueous layer was separated and extracted with J. CHEM. SOC. PERKIN TRANS. I 1992 ether and the combined extracts were washed with 1 mol dm-3 HCl, saturated aqueous sodium hydrogen carbonate and brine, dried and concentrated under reduced pressure. Purification of the resulting residue by silica gel chromatography using ether- hexane (1 :200 followed by 1 :25) as eluent provided theonellin isocyanide 1(66 mg, 89); v,,,(CHC13)/cm-' 2120 (NC), 1460, 1370 and 1120 (lit.,'; neat, 3040, 2970, 2950, 2880, 2130, 1470, 1385,1128,965); hH(200 MHz; CDC13) 1.01 (6 H, d, J7,l l-Me), 1.43 (3 H, br s, 3-Me), 1.72 (3 H, s, 7-Me), 2.35 (1 H, 6-H), 5.60 (1 H, dd, J 15,7, 10-H), 5.80 (1 H, d, J 10,8-H), 6.21 (1 H, dd, J 15, 10,9-H) {lit.,' 0.99 (d, J6.8), 1.42 (t, J2), 1.7 (br s), 2.33 (mult, J6.8, l), 5.58 (dd, J 15,6.8), 5.79 (d, J 10.8), 6.2 (dd, J 15,10.8,1)); ac(67.80 MHz, CDC13) 15.2, 22.5 (12, 15-C), 25.1, 26.4, 31.4, 38.2 (t, J 5), 44.8, 56.7, 123.4, 123.8, 138.6, 140.6 and 152.2 (br t, J4), {lit.,'; 15.1 (14-C), 22.4 (12, 15-C), 26.3 (1, 5-C), 31.5 (11-C), 38.1 (2, 4-C), 44.6 (6-C), 56.6 (t, coupled to I4N, 3-C), 123.3, 123.7 (8, 9-C), 138.4 (7-C), 140.5 (10-C) and 152.2 (coupled to I4N, 16-C); Data collected from the spectrum provided by Scheuer; 15.2,22.5, 25.1,26.4, 31.4, 38.2,44.7, 56.6, 123.4, 123.8, 138.6, 140.7 and 152.2) (Found M+, 231.1970.CI6H2$J requires M, 231.1987) (lit.,' HRMS: m/z 231.1975. Cak. for C16H25N; 231.1987). Acknowledgements I sincerely thank Prof. M. Isobe and am most indebted to the late Prof. T. Goto (Nagoya University) for their helpful discussions and experimental support. I thank Prof. P. J. Scheuer (University of Hawaii) for providing spectral data of 1, and Dr. H. Nakamura (Hokkaido University) for providing spectral data and offering helpful discussions relating to natural 2139 2 and 4.I also acknowledge my indebtedness to Dr. T. Kondo and M. Ueda (Nagoya University) for their ingenious 500 MHz 'H NMR measurement and helpful discussions. Finally, I am indebted to Prof. T. Fujisawa and Dr. M. Shimizu (Mie University) for permitting us to use the JEOL EX 270 instrument. References 1 N. K. Gulavita, E. D. de Silva, M. R. Hagadone, P. Karuso, P. J. Scheuer, G. D. Van Duyneand J. Clardy,J. Org. Chem., 1986,51,5136. 2 H. Nakamura, J. Kobayashi and Y.Ohizumi, Tetrahedron Lett., 1984,25,5401. 3 C. J. Fookes, M. J. Garson, J. K. MacLeod, B. W. Skelton and A. H. White, J. Chem. Soc., Perkin Trans. I, 1988, 1003; M. J. Gason, Natural Product Reports, 1989,6, 143. 4 B. J. Burreson, C. Christophersen and P. J. Scheuer, Tefrahedron, 1975,31,2018. 5 L. I. Krimen and D. J. Cota, Organic Reactions, John Wiley amp; Sons, Inc., 1969, vol. 17, p. 213. 6 C. W. Huffman, J. Org. Chem., 1958,23,727. 7 R. Appel, R. Kleinstuck and K. D. Ziehn, Angew. Chem., Znternat. Edn., 1971, 10, 132. 8 F. Delay and G. Ohloff, Helv. Chim. Acta., 1979,38,369. 9 P.J. Kocienski, B. Lythgoe and I. Waterhouse, J. Chem. Soc., Perkin Trans. I, 1980,1045. 10 B. M. Trost, H. C. Arndt and P. E. Strege and T. R. Verhoeven, Tetrahedron Lett., 1976,3477. 11 J. E. Baldwin and I. A. ONeil, Synlett., 1990,603. Paper 2/00692H Received 10th February 1992 Accepted 14th April 1992
机译:J. CHEM.SOC. PERKIN TRANS. 1 1992 Biomimetic Synthesis of Theonellin lsocyanide Yoshiyasu lchikawa ,, Faculty of Education, Mie University, Jsu, Mie 514, Japan 首次合成了theonellin类的海洋倍半萜烯。通过在低温(-78“C)下采用三氟甲磺酸促进的Ritter型反应,以仿生方式直接胺化theonelline碳框架2,这是一个关键步骤。Scheuer的实验室报告了从斯里兰卡的裸鳃动物PhyIIidiu sp.中分离和表征的theonellin isocyanide 1。该分子的独特部分是双没药烯类倍半萜烯,其结构具有对称平面,是E,E共轭二烯系统和C-3位的氮取代基。Theonellin isocyanide 1 似乎与 theonellin 2、theonellin 甲酰胺 4 和 theonellin isothiocyanate 5 具有生物遗传学关系,它们是由 Nakamura 从海绵 Theonella 6.swinhoei 中分离出来的。推测,theonelline 2的区域特异性质子化会产生碳离子样中间体3,在被双氰化物亲核试剂捕获(Ritter反应)后,该中间体将提供theonellin异氰化物1(方案l)。3 进一步转化 1 将 2 3 1 ~~ // 4 X=NHCHO 1 5 X=NCS 方案 1 然后得到 theonellin 甲酰胺 4 和 theonellin 异硫氰酸酯 最初,为了合成 theonellin isocyanide 1,我们选择了 4-乙酰基-l-甲基环己-l-烯 6 作为模型化合物,并探索了引入氮取代基的 Ritter 反应(方案 2)。在0“C下将浓硫酸与浓硫酸在乙腈中反应,然后用碳酸氢钠水溶液水解,得到酰胺7和8的混合物,比例为7:3。我们假设主要异构体的立体化学性质为7,氮取代基轴向取向,Ritter反应的反应机理被认为是通过乙酰基取向的构象,将H+和MeCN与6的烯烃键进行Truns-antiparallel亲电加成。该反应路径将产生中间体 A,该中间体 A 被连续水解以产生主要异构体 7。次要异构体8可能来源于碳离子中间体B,该中间体B受到MeCN从较少阻碍的一侧的攻击。 现住址:名古屋大学农业系,名古屋千笠,464,日本。/ \ H Me-CEN A B + (mapr)7 R=Ac I9 R=CHO (次要) 8 R = Ac10 R=CHOI 11 R=NC 3 12 R=NC 3 11 12 方案 2 8 的立体化学通过转化为已知的 1-乙酰基-4-异氰基-4-甲基环己烷 12 得到证实,该转化是通过 Scheuer 对 theonellin 异氰酸化物 1 的降解研究得出的。用四氟硼酸三乙基氧鎓处理后,用乙酸在四氢呋喃水溶液中水解7和8的混合物提供了相应的胺。这些胺在与乙酸甲酸酐反应时,提供了甲酰胺9和10的混合物,这些甲酰胺与四溴甲烷,三苯基膦和二异丙基乙胺在-20“C的二氯甲烷中脱水(Ziehn的改性)7得到异氰化物11和12的混合物,这些异氰化物很容易通过硅胶色谱法分离。异氰化物11由纯7通过相同的程序独立制备。从8衍生的异氰化物12的'H NMR谱图显示6-H(S,2.59,1 H,qn,J 5),与Scheuer报道的(6,2.59,1 H,sept,J 5)吻合良好,该结果证实了7和8的立体化学性质。此外,对500 MHz'H NMR谱图的深入研究支持异氰化物11(6,2.24,tt,J 13,4)的异氰化物11和12 6-H的构象分配是轴向的,因为它的J1.6值(13 Hz)较大;如果环是椅子,则构象必须如方案 2 所示。异氰化物12(6,2.59,五重奏,J 5)的6-H信号很小,J1.6(5 Hz)与11的信号相比,仅与赤道质子相容,从而使乙酰基进入轴向方向。异氰化物 12 (6, 2.59) 与异构体 11 (6, 2.24) 的化学位移支持这种 6-H 立体化学分配。如果我们假设 12 的环是椅子,那么 12 的甲基现在是赤道的(见方案 2)。由于甲基上没有 1,3-二轴相互作用,允许乙酰基采取轴向构象的能量成本降低。接下来,我们将注意力转向theonellin 2的制备。烯丙醇13由Delay和Ohlof程序分两步从环己烯6制备为2和E异构体(1:5)的混合物.8该烯丙醇13通过转化为烯丙基溴化物(三溴化磷和醚中的吡啶),然后与苯亚磺酸钠在二甲基甲酰胺(DMF)中反应,以78%的收率进一步转化为烯丙基砜14。重结晶得到纯形式的E烯丙基砜14。通过以下Julia反式烯烃化程序,以88%的总收率完成了theonelline 2的二烯部分的构建:'(i)用丁基锂处理14,然后在-78“C下用异丁醛处理,(ii)用乙酸酐和吡啶乙酰化所得羟基砜,(iii)用汞合金钠(5%)和磷酸氢钠在甲醇中的乙酰基处理该乙酰氧基砜。E:Z的乘积比约为83:17。该立体异构体混合物在此阶段无法分离,并用于下一个反应。'q,'R 13 R=OH c14 R=SOPPh 手头有 theonelline 2,接下来将注意力转移到其胺化上。Theonellin 2 用 conc 处理。H2S04在0“C的乙腈中,接着是NaHCO水溶液,以33%的收率以4.3:1的比例提供15和16。该步骤的低产率可能是二烯部分与浓度竞争反应的结果。分子式:H2S04.寻求区域特异性更强的反应和更温和的条件。这是通过在-78“C下用CH2C12中的三氟甲磺酸(三氟甲磺酸,1.5当量)和MeCN(8当量)处理theonelline2,然后用NaHCO水溶液水解,以65:35的15和16混合物(起始材料的60%转化率)实现的。使用有限量的MeCN对于该反应的选择性至关重要。事实上,在 CH2C12 和 MeCN 的 2:1 混合物中,2 与三氟甲磺酸的反应产生了 93:7 的 15:16 混合物,表明反式加成机理占主导地位。使用有限量的 MeCN 可以强制形成碳离子。这种异构体混合物很容易通过硅胶色谱法分离,以提供均匀的16.-。HNAc 2 HNAc 15 16 J. CHEM.SOC. PERKIN TRANS. 1 1992 从 14 到 16 追求更高产量和更实用的方法。15 与三氟甲磺酸和 MeCN 在 CH2C12 中的反应提供了 17 和 18,合收率为 98%,比例为 51:49。所得烯丙基砜18通过与前面描述的类似的Julia反式烯烃化程序以98%的收率转化为16。HNAc HN.\c 17 18 用 Et30+BF4- 处理 16,然后在 THF 水溶液中用 AcOH 水解得到相应的胺。在用 AcOCHO 处理后,将 theonellin 甲酰胺 4 作为晶体,从 16 的总收率为 88%。最后,使用Baldwin程序(三氟甲磺酸酐和二异丙基乙胺在-78“C下3分钟)以89%的收率顺利转化为甲酰胺4。'反应时间延长(20-30分钟),该反应的产率较低。HNCHO 4 化合物 1、2 和 4 的光谱数据与文献中报道的数据以及 P. J. Scheuer 教授和 H. Nakamura 博士提供的光谱数据非常吻合。这里开发的方法应广泛适用于各种含氮取代基的萜烯的制备。该序列的一个缺点是,由于碳离子中间体,在Ritter反应阶段观察到的选择性通常适中。目前正在努力开发具有氮取代基的萜烯的替代和更有效的方法。实验 一般细节.-M.p.s 是在油浴装置上测定的,未经校正。除非另有说明,否则使用岛津IR-420红外光谱仪记录氯仿溶液的红外光谱。'除非另有说明,否则使用工作频率为 200 MHz 的 JEOL FX-200 波谱仪确定 H NMR 波谱。其他使用的光谱仪是 JEOL EX 270 和 JEOL JNM-GX 500。I3C NMR 波谱是使用 JEOL-90 仪器确定的,工作频率为 22.50 MHz,除非另有说明,否则也使用工作频率为 67.80 MHz 的 JEOL EX270 仪器。除非另有说明,否则全程使用氘代氯仿稀溶液,以四甲基硅烷为内标。所有 J 值均以 Hz 为单位。 高分辨率质谱由 S. Kitamura(名古屋大学)在 JMS-DX 705L 仪器上记录。N,N-二甲基甲酰胺在分子筛4A上干燥。用氢氧化钾干燥吡啶。所有反应均在氩气下进行。通过短暂暴露于无水硫酸钠干燥后处理程序中的所有有机溶液。对 E. Merck (Art 7734) 和 Fuji Davison (BW-820 MH) 提供的硅胶进行柱层析。制备型TLC是在J. CHEM. SOC. PERKIN TRANS. 1 1992制备的平板上制备的,该平板带有从E.Merck获得的2 mm硅胶PF254层(Art 7747)。4-乙酰氨基-1-乙酰基4甲基环己烷7.-向稠硫酸(20an3,0.38mol)在乙腈(400cm3)中的溶液冷却至0“C,滴加4-乙酰基-1-甲基环己烯6(20cm3,0.137mol)。搅拌3.5小时后,将反应混合物倒入碳酸氢钠水溶液(100g碳酸氢钠和500cm3水)中。水相用乙酸乙酯萃取。将有机提取物合并,干燥,减压蒸发,得到粗产物(19.97 8)。这通过在-20“C下从乙酸乙酯重结晶纯化,得到主要产物7为纯晶体(5.65克)。进一步结晶得到混合物7和8作为晶体(5.88克)。综合收率为43%(11.53 8);m.p. 122“C(来自乙酸乙酯-己烷)(发现C,66.9;H, 9.8;N, 7.1.CllH19N02 需要 C, 66.97;H, 9.71;N, 7.10%);v,(CHCl,)/cm-' 3400 (NH), 1700 (COMe) 和 1660 (CON);SH(27O MHz;CDCl,) 1.38 (3 H, s, 3-Me), 1.94 (3 H, s, COMe) 和 2.16 (3 H, s, 6-H)。1-乙酰基-4-甲酰胺基环己烷9和10.-7和8(587mg,2.98 mmol)溶于二氯甲烷(12 cm3)中,加入碳酸钠(2 g),然后加入四氟硼酸三乙基氧鎓溶液(约1 mol dm-,在二氯甲烷中,6 cm3)。在室温下搅拌4小时后,将反应混合物倒入水中。水层用二氯甲烷(×2)萃取,合并的萃取物干燥,减压浓缩。将所得粗桧醚(0.69 g)溶于四氢呋喃(14 an3)、水(1.5 cm3)和乙酸(1.5 cm3)的混合物中,并将溶液在室温下储存过夜;然后蒸发除去四氢呋喃。向残留物中加入水(约10 cm 3),并用碳酸钠(4.0 g)中和溶液。水溶液用二氯甲烷萃取。将合并的提取物干燥,减压浓缩至原矿(0.41 g);立即溶于二氯甲烷(6 AN3),并用乙酸甲酸酐(1.1 AN3)处理。将溶液在室温下搅拌过夜,然后在减压下浓缩。硅胶上残留物与乙酸己烷乙酯(1 : 3 然后 3 : 1)的色谱法提供了甲酰胺 9 和 10 的混合物(323 mg,60%).1-乙酰基4异氰基4甲基环己烷 11 和 12.-甲酰胺 9 和 10 (285 mg, 1.45 mmol)、四溴甲烷 (1.233 g, 3.7 mmol) 和二异丙-甲酰乙胺 (1.3 cm3, 7.48 mmol)溶于二氯甲烷(15 an3)中,冷却至-20“C。向该溶液中滴加三苯基膦(918mg,3.5mmol)的二氯甲烷溶液(约2cm')。将混合物在-20“C下搅拌55分钟后,通过加水使反应淬灭。水层用乙醚萃取,合并的萃取液用1 mol dm-'HC1、饱和碳酸氢钠水溶液和盐水洗涤,减压干燥浓缩,得粗品(1.928 8)。通过硅胶色谱法用乙醚-己烷(1 : 10 然后 1 : 3)纯化,得到异氰化物 12 (148 mg) 和 11 (40 mg,总收率 72%)。1-乙酰基-4-异氰基-4-甲基环己烷11.vmaX-(CHCl,)/cm-' 2080 (NC) 和 1690 (CO);dH(200 MHz;CDCl,) 1.45(3 H, t, J 2,3-Me), 2.17 (3 H, s, COMe);(500兆赫;CDCl,) 1.4 (2 H, m), 1.45 (3 H, t), 1.77 (2 H, qd, J 13,4), 1.90 (2 H, br dd, J 13,4), 2.01 (2 H, br d, J 13), 2.17 (3 H, s) 和 2.24 (1 H, tt, J 13, 4);6d67.80 MHz,CDC1,) 23.8,27.7,29.9,37.4,49.9 和 57.4 (t, J 5, 3-C), 154.8 (t, J 5, NC) 和 210.3 (CO) (找到 M+, 165.1161.CloH15N0 需要 M, 165.1154)。l-乙酰基4异氰基-4-甲基环己烷12.v,(CHCl,)/ cm-'2080 (NC) and 1690 (CO) (lit.,' 2980, 2950, 2870, 2130, 1705, 1335 and 1135);6&00兆赫;CDCl,) 1.40 (3 H, t, J 2, 3-Me), 2.16 (3 H, s, COMe) 和 2.59 (1 H, qn, J 5, 6-H);(500兆赫;CDC13) 1.40 (3 H, t), 1.65 (2 H, m), 1.78 (2 H, tt, J 13,5), 1.8-2.0 (4 H), 2.16 (3 H, s), 2.59 (1 H, qn, J 5) @it.,' 300 MHz, CDCl,, 1.38 (3 H, s), 1.96-1.5 (未解析), 2.15 (3 H, s), 2.59 (1 H, ~ept, J 5)];6d67.80 MHz,CDCIJ)22.7,28.0,28.1,35.5,46.4,57.3(t,J 5,3-C),153.9(t,J4,NC)和210.5(CO)(M+,165.1 165。CloH15N0 需要 M,165.1 154)。(E)-烯丙基1砜14.-烯丙醇13(19.0克,0.1 14摩尔)和吡啶(3 cm3)溶于乙醚(400 cm3)冷却至0“C的溶液中,滴加三溴化磷(11.5 an3,0.063 mol)。在0°C搅拌20分钟后,将反应混合物倒入水中。分离出的有机相依次用水、饱和碳酸氢钠水溶液和盐水洗涤,干燥减压浓缩,得到烯丙基溴(22.09 g,85%)。将该烯丙基溴立即溶于DMF(400cm3)中,并在室温下用苯磺酸钠(30g,0.15mol)处理。将反应混合物在70“C下加热2小时,然后倒入水中(800 an')。水相用乙醚(x3)萃取。将合并的提取物用水和盐水洗涤,干燥并减压浓缩,得到烯丙基砜(25.66 g,78%)。由醚-己烷重结晶得到纯(E)-烯丙1砜14(17.51 g,5379,熔点84“C(来自乙醚-己烷)(发现C,70.3;H,7.8;C1,H22S02要求C,70.31;H, 7.64%);6,(270兆赫;CDCl,) 1.26 (3 H, s, Me), 1.64 (3 H,s, Me), 3.82 (2 H, d, J8, CH2S02), 5.22 (1 H, t, J8, GCH), 5.35 (1 H, br s, C=CH), 7.4-8.0 (5 H, Ph).Theonelline 2.-将烯丙基砜14(3.0 g,10.34 mmol)溶于四氢呋喃(90cm3)的溶液中冷却至-78“C,加入丁基锂(1.6 mol dm-,己烷溶液;9.0 cm3,14.4 mmol)。将混合物在-78“C下搅拌20分钟后,通入异丁醛(2.4cm3,26.4mmol)并继续搅拌15分钟;然后加入乙酸酐(6 cm3)。搅拌5分钟后,将反应混合物加热至室温,并向其中加入吡啶(18cm3)。放置过夜后,将反应混合物倒入水中,分离水层;然后用乙醚提取。合并的提取物用1 mol dm-、HCl、饱和碳酸氢钠水溶液和盐水洗涤,干燥,减压浓缩。将所得残留物通过以醚-己烷(1:1)为洗脱液的短硅胶柱,得到乙酰氧基砜(4.53g)。将其溶解在甲醇(140 cm 3)中,用Na,HPO(4.5 g)处理,然后在0“C下用钠汞合金(15 g)处理。将反应混合物用水(200cm')稀释并用己烷萃取。合并的提取物用水和盐水洗涤,干燥,减压浓缩。将所得残留物通过一小柱硅胶(ca.12 g),以己烷为洗脱液,得到茶碱(1.84 g,88%)。本品HPLC分析显示,反式比为83:17。在这一点上,theonelline 2及其顺式异构体的混合物是不可分割的,因此,仅描述了对应于theonelline 2的主要NMR信号,6&00 MHz;CDCl,) 1.01 (6 H, d, J7, &Me), 1.65 (3 H, s, 3-Me), 1.73 (3 H, s, 7-Me), 2.35 (1 H, 11-H), 5.57 (1 H, dd, J 15,7,10-H), 5.39 (1 H, brs), 5.83 (1 H, d, J 10,8-H), 6.24 (1 H, ddd, J 15,10,1,9-H) [lit.,2 1.02 (6 H, d, J6.6), 1.72 (3 H, d, J l), 2.34 (1 H, 八位组, J6.6), 5.54 (1 H, dd, J 15,6.6), 5.80 (1 H, br d, J 11) 和 6.24 (1 H, ddq, J 15, 11, l)];6,(50.20 MHz,CDClJ 14.6 (14-C)、22.6 (11-Me)、23.5 (13-C)、27.8 (5-C)、30.6(1-C 或 4-C)、30.7(1-C 或 4-C)、31.4 (11-C)、43.1 (6-C)、120.8 (2-C)、123.3(8-C 或 9-C)、123.6(8-C 或 9-C)、133.5 (3-C)、139.8 (10-C) 和 140.5 (7-C) (lit.,2 14.7、22.7、23.5、28.0、30.7、30.8、31.4、43.2、120.9、123.4、123.9、133.6、139.8和140.5)。将茶氨酸乙酰胺15和l6.-T0的溶液加入到乙腈(0.20 cm3,4.3 mmol)和二氯甲烷(5 cm3)的混合物中,冷却至-78“C,加入三氟甲磺酸(0.07 cm3,0.79 mmol)。在-78“C下搅拌2小时后,将反应混合物倒入饱和碳酸氢钠水溶液中。将水相分离并用二氯甲烷萃取,并将合并的提取物干燥并减压浓缩以得到残留物。该粗品的HPLC分析显示,化合物的比例为15:16,为65:35。通过硅胶色谱法纯化乙醚-己烷(1:50),然后乙酸乙酯-己烷(1:1)作为洗脱液,提供茶碱2(65mg)和15和16的混合物(53mg,63%产率基于所用的茶碱)。将茶碱2(73mg,0.36mmol)在乙腈(1cm3)和二氯甲烷(2cm3)的混合物中的溶液冷却至-78“C,用三氟甲磺酸(0.04cm3,0.45mmol)处理3 h,将反应混合物倒入饱和碳酸氢钠水溶液中,分离水相并用二氯甲烷萃取。将合并的提取物干燥并在减压下浓缩以产生残留物。该粗品的HPLC分析显示,化合物15和16的比例为93:7。用乙醚-己烷(1:50)进行硅胶色谱纯化,然后用乙酸乙酯-己烷(1:1)作为洗脱液,提供theonelline 2(12 mg,16%回收率)以及化合物15和16的混合物(44 mg,基于所用theonellin的73%收率)。乙酰胺17和18.-向乙腈(9cm',192mmol)和三氟甲磺酸(17.0g,192mmol)在二氯甲烷(260cm3)中的溶液中冷却至-78“C,加入烯丙基砜14(8.0g,27.6 mmol)在二氯甲烷(40 cm3)中。在-78“C下搅拌2小时后,将反应混合物倒入碳酸氢钠水溶液中。分离水层,并用二氯甲烷萃取,并将器官相干燥并在减压下浓缩,得到烯丙基砜14和乙酰胺17和18的粗混合物。HPLC分析发现化合物17和18的产物比为51 : 49。通过硅胶色谱法纯化得到烯丙基砜14(1.03克)、烯丙基砜18及其异构体17(8.21克)。基于消耗的起始材料的收率为98%。乙酰胺18.M.p. 120“C(来自乙酸乙酯-己烷)(发现:C,65.35;H, 7.8;N,4.0。ClgHz7NS03 需要 C, 65.30;H,7.79;N, 4.01%);v,,,(CHC1,)/cm~' 3400 (NH), 1650 (CONH) 和 1500 (CONH);6H(200 MHz;CDC13) 1.21 (3 H, s, 3-Me), 1.35 (3 H, s, 7-Me), 1.91 (3 H, s, COMe), 3.81 (2 H, d, J 8, CH2S02), 5.21 (1 H, t, J8, WH), 5.29 (1 H, br s, WH) 和 7.4-7.9 (5 H, Ph)。乙酰胺 17.M.p. 118“C(来自乙酸乙酯-己烷)(发现:C,65.2;H, 7.8;N,4.0。CI9H2,NO3S要求C,65.30;H,7.79;N, 4.01%);~,,,(CHCl~)/crn-~ 3450 (NH)、1670 (CONH) 和 1510 (CONH);6H(200 MHz;CDCl3)1.25(3 h,s,3-Me),1.34(3 h,s,7-Me),1.96(3 h,s,COMe),2.2-2.3(2 h),3.81(2H,d,J8,CH2SO2),5.21(1H,t,J8,~H),5.2(1H,brs,MH)和7.4-7.9(5 h,ph)。Theonellin 乙酰胺 16.-这里描述的程序类似于用于 theonellin 2 的程序。因此,烯丙基砜(17和18的12:88混合物;3.56 g,10.2 mmol)在四氢呋喃(180 cm3)中的溶液用丁基锂(19.0 J. CHEM. SOC. PERKIN TRANS.I 1992 cm3,25.3 mmol)在-78“C下,在此温度下20分钟后,得到黄色沉淀。将反应混合物升温至-20“C,并继续搅拌20分钟。将溶液再冷却至-78“C,并通入异丁醛(4.6cm3,50.7mmol)。在-78“C下20分钟后,通过加入饱和氯化铵水溶液使反应淬灭。分离出的水层用乙酸乙酯抽出,合并的提取物干燥,减压浓缩。将所得残留物溶解在乙酸酐(20 cm 3)和吡啶(40 cm3)的混合物中。将混合物在室温下搅拌过夜后,将溶剂在减压下蒸发。将所得残留物通过以乙酸乙酯-己烷(2:1)为洗脱液的短硅胶柱,得到粗乙酰氧基砜(7.02g)。在甲醇(80cm3)中,用磷酸氢二钠(3g)处理,然后在0“C下用汞合金钠(15.9g)处理。将反应混合物用水(200 cm3)稀释并用乙醚萃取。如前所述进行后处理后,所得残留物(3.37 g)用乙酰基己烷乙基己烷(1:10,然后是1:1)纯化硅胶色谱(硅胶100g),得到以下柱馏分;theonellin乙酰胺衍生自17(139mg,油),17和18(777mg)和theonellin乙酰胺16(1.70g)的1:1混合物。总收率为98%(2.62克)。乙酸乙酯-己烷重结晶得到的分析纯结晶样品为16。Theonellin 乙酰胺 16.M.p. 103“C(来自醚己烷);v,,(CHCl,)/cm-' 3400 (NH), 1650 (CONH) 和 1500 (CONH);6,(200 兆赫;CDC13) 1.01 (6 H, d, J7,12,15-Me), 1.39 (3 H, s, 3-Me), 1.72 (3 H, d, J 1, 7-Me), 1.92 (3 H, s, COMe), 2.33 (1 H, sept, J7,11-H), 5.26 (1 H, br s, 2-H), 5.58 (1 H, dd, J 15, 7, 10-H), 5.81 (1 H, d, J 11, 8-H)和6.22(1 H,ddd,J 15,11,1,9-H)(发现:M',263.2266。CI7H2,NO需要M,263.2249)。Theonellin甲酰胺4.-所使用的程序类似于用于生产1-乙酰基-4-甲酰胺基-4-甲基环己烷9和10的程序。用四氟硼酸三乙基氧铵(1 mol dm3溶液,新鲜制备;14 cm3)和碳酸钠(5.0 g)处理Theonellin乙酰胺16(1.47 g,5.59 mmol)的二氯甲烷溶液,并将反应混合物在室温下搅拌1.5 h。如前所述的后处理得到粗亚胺乙醚(1.6g)。将其与乙酸(6 cm3)、水(6 cm3)和四氢呋喃(60 cm3)一起在室温下搅拌过夜。蒸发溶剂,用乙醇(x 3)共沸除去水,得到胺(2.37g)。在二氯甲烷(50 cm3)中,在室温下用乙酸甲酸酐(4 cm')处理40分钟。减压除去溶剂,将所得油通过以乙酸乙酯为洗脱剂的硅胶短柱,得到甲酰胺4(1.46g);这提供了来自醚己烷的晶体(877毫克)。通过制备型TLC纯化母液中的残留物,进一步提供甲酰胺4(317mg);Theonellin 乙酰胺 16 的总收率为 88%。4的核磁共振分析被证明是极其困难的,因为它以两种旋转异构体的1:1混合物形式存在;m.p. 92“C(来自醚己烷)(发现:C,76.95;H, 10.9;N, 5.6.CI6H2,N 需要 C, 77.04;H,10.92;N, 5.62%);V,,,,,(CHC~~)/C~-~ 1670 (NHCHO) (lit.,' 1685).将茶碱异氰酸酯1.-A溶于二氯甲烷(6cm3)的茶碱甲酰胺4(80mg,0.32mmol)和二异丙基乙胺(0.37cm3,2.13mmol)的溶液冷却至-78“C,滴加三氟甲磺酸酐(0.10cm',0.60mmol)。在-78“C搅拌3分钟后,将反应混合物倒入饱和碳酸氢钠水溶液中。分离水层,用J. CHEM. SOC. PERKIN TRANS.I1992乙醚和合并的提取物分别用1 mol dm-3 HCl、饱和碳酸氢钠水溶液和盐水洗涤,减压干燥浓缩。使用乙醚-己烷(1:200,后接1:25)作为洗脱剂,通过硅胶色谱法纯化所得残留物,提供茶碱异氰化物1(66mg,89%);v,,,(CHC13)/cm-' 2120 (NC), 1460, 1370 和 1120 (lit.,'; neat, 3040, 2970, 2950, 2880, 2130, 1470, 1385,1128,965);hH(200 兆赫;CDC13) 1.01 (6 H, d, J7,l l-Me), 1.43 (3 H, br s, 3-Me), 1.72 (3 H, s, 7-Me), 2.35 (1 H, 6-H), 5.60 (1 H, dd, J 15,7, 10-H), 5.80 (1 H, d, J 10,8-H), 6.21 (1 H, dd, J 15, 10,9-H) {lit.,' 0.99 (d, J6.8), 1.42 (t, J2), 1.7 (br s), 2.33 (mult, J6.8, l), 5.58 (dd, J 15,6.8), 5.79 (d, J 10.8), 6.2 (dd, J 15,10.8,1));交流(67.80 MHz,CDC13) 15.2、22.5 (12、15-C)、25.1、26.4、31.4、38.2 (t, J 5)、44.8、56.7、123.4、123.8、138.6、140.6 和 152.2 (br t, J4), {lit.,'; 15.1 (14-C), 22.4 (12, 15-C), 26.3 (1, 5-C), 31.5 (11-C), 38.1 (2, 4-C), 44.6 (6-C), 56.6 (t, 耦合到 I4N, 3-C), 123.3、123.7 (8, 9-C)、138.4 (7-C)、140.5 (10-C) 和 152.2 (耦合到 I4N, 16-C);从 Scheuer 提供的频谱中收集的数据;15.2、22.5、25.1、26.4、31.4、38.2、44.7、56.6、123.4、123.8、138.6、140.7 和 152.2)(找到 M+,231.1970.CI6H2$J 需要 M,231.1987) (lit.,' HRMS: m/z 231.1975.哎呀。C16H25N;231.1987). 致谢 我衷心感谢 M. Isobe 教授,并非常感谢已故的 T. 教授。Goto(名古屋大学)的有益讨论和实验支持。我还要感谢 T. Kondo 博士和 M. Ueda(名古屋大学)提供的 1 光谱数据,以及 H. Nakamura 博士(北海道大学)提供的光谱数据,并提供了与自然 2139 2 和 4 相关的有益讨论。最后,我要感谢藤泽教授和清水博士(三重大学)允许我们使用JEOL EX 270仪器。参考文献 1 N. K. Gulavita, E. D. de Silva, M. R. Hagadone, P. Karuso, P. J. Scheuer, G. D. Van Duyneand J. Clardy,J. Org. Chem., 1986,51,5136.2 H. Nakamura, J. Kobayashi 和 Y.Ohizumi, Tetrahedron Lett., 1984,25,5401.3 C. J. Fookes, M. J. Garson, J. K. MacLeod, B. W. Skelton 和 A. H. White, J. Chem. Soc., Perkin 译.I, 1988, 1003;M. J. Gason,天然产物报告,1989,6,143。4 B. J. Burreson、C. Christophersen 和 P. J. Scheuer,Tefrahedron,1975,31,2018。5 L. I. Krimen 和 D. J. Cota,《有机反应》,John Wiley & Sons, Inc.,1969 年,第 17 卷,第 213 页。6 C. W. Huffman, J. Org. Chem., 1958,23,727.7 R. Appel、R. Kleinstuck 和 K. D. Ziehn, Angew.化学, Znternat.Edn., 1971, 10, 132.8 F. Delay 和 G. Ohloff,Helv。奇姆。Acta., 1979,38,369.9 P.J. Kocienski, B. Lythgoe and I. Waterhouse, J. Chem. Soc., Perkin Trans. I, 1980,1045.10 B.M.特罗斯特、H.C.阿恩特和P.E.斯特雷格和T.R.Verhoeven,四面体 Lett.,1976,3477。11 J.E.鲍德温和I.A.ONeil,Synlett.,1990,603。论文 2/00692H 收稿日期 1992年2月10日 录用日期 1992年4月14日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号