...
首页> 外文期刊>Evolutionary biology >Comparative Quantitative Genetics of the Pelvis in Four-Species of Rodents and the Conservation of Genetic Covariance and Correlation Structure
【24h】

Comparative Quantitative Genetics of the Pelvis in Four-Species of Rodents and the Conservation of Genetic Covariance and Correlation Structure

机译:4种啮齿动物骨盆的比较数量遗传学与遗传协方差和相关结构的守恒

获取原文
获取原文并翻译 | 示例

摘要

Quantitative genetics is a powerful tool for predicting phenotypic evolution on a microevolutionary scale. This predictive power primarily comes from the Lande equation (Delta(z) over bar = G beta), a multivariate expansion of the breeder's equation, where phenotypic change (Delta(z) over bar) is predicted from the genetic covariances (G) and selection (beta). Typically restricted to generational change, evolutionary biologists have proposed that quantitative genetics could bridge micro- and macroevolutionary patterns if predictions were expanded to longer timescales. While mathematically possible, making quantitative genetic predictions across generations or species is contentiously debated, principally in assuming long-term stability of the G-matrix. Here we tested stability at a macroevolutionary timescale by conducting full- and half-sib breeding programs in two species of sigmodontine rodents from South America, the leaf-eared mice Phyllotis vaccarum and P. darwini and estimated the G-matrices for eight pelvic traits. To expand our phylogenetic breadth, we incorporated two additional G-matrices measured for the same traits from Kohn Atchley's 1988 study of the murine rodents Mus musculus and Rattus norvegicus. Using a phylogenetic comparative framework and four separate metrics of matrix divergence or similarity, we found no significant association between evolutionary divergence among species G-matrices and time, supporting the assumption of stability for at least some structures. However, the phylogenetic sample size is necessarily small. We suggest that small fluctuations in covariance structure can occur rapidly, but underlying developmental regulation prevents significant divergence at macroevolutionary scales, analogous to an Ornstein-Uhlenbeck pattern. Expanded taxonomic sampling will be needed to test this suggestion.
机译:定量遗传学是在微观进化尺度上预测表型进化的有力工具。这种预测能力主要来自兰德方程(Delta(z) over bar = G beta),这是育种方程的多元展开,其中表型变化(Delta(z) over bar)是从遗传协方差(G)和选择(beta)预测的。进化生物学家通常仅限于代际变化,他们提出,如果将预测扩展到更长的时间尺度,数量遗传学可以弥合微观和宏观进化模式。虽然在数学上是可行的,但对世代或物种进行定量遗传预测是有争议的,主要是假设G矩阵的长期稳定性。在这里,我们通过对来自南美洲的两种啮齿动物,叶耳鼠Phyllotis vaccarum和P. darwini进行全同胞和半同胞育种计划,在宏观进化时间尺度上测试了稳定性,并估计了八个骨盆性状的G矩阵。为了扩大我们的系统发育广度,我们纳入了另外两个G矩阵,这些G矩阵来自Kohn&Atchley在1988年对鼠类啮齿动物Mus musculus和Rattus norvegicus的研究中测量的相同特征。使用系统发育比较框架和四个独立的矩阵差异或相似性指标,我们发现物种G矩阵之间的进化差异与时间之间没有显着关联,支持至少某些结构的稳定性假设。然而,系统发育样本量必然很小。我们认为,协方差结构的微小波动可以迅速发生,但潜在的发育调节阻止了宏观进化尺度上的显着分化,类似于 Ornstein-Uhlenbeck 模式。需要扩大分类抽样来检验这一建议。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号