首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Preparation of macrocyclic compounds by thermal dimerization of 1,10-phenanthroline derivatives
【24h】

Preparation of macrocyclic compounds by thermal dimerization of 1,10-phenanthroline derivatives

机译:1,10-菲咯啉衍生物热二聚化制备大环化合物

获取原文
获取外文期刊封面目录资料

摘要

214 J.C.S. Perkin IPreparation of Macrocyclic Compounds by Thermal Dimerization ofI ,lo-Phenanthroline Derivatives.By Shojiro Ogawa, Institute of industrial Science, University of Tokyo, Roppongi, Minato-ku, Tokyo, JapanAn efficient non-template synthesis of a new macrocycle. a conjugated tautomer of 1 ,I 4 :7,8-diethenotetrapyrido-2,1,6-cd:2',1',6'-gh :2",1",6"-jk:2" ',I " ',6" '-na I ,4,8,1 1 tetra-azacyclotetradecine (3). is described. The ther-mal behaviour of several disubstituted 1 ,I 0-phenanthrolines towards dimerization is studied by use of differentialthermal analysis and thermogravimetric analysis, and some spectroscopic properties of the macrocycles producedare described.AZAMACROCYCLIC systems have been intensively investi-gated in attempts to correlate their electronic propertiesand reactivities with those of polypyrrolic macrocyclessuch as porphins and corroles.Although a number ofmethods have been developed for the preparation ofazamacrocylic systems, non-template preparations offree macrocycles usually have the disadvantage that themethod gives only low yield of the desired pr0ducts.lWe have recently reported a synthesis of a conjugatedtautomer of a diethenodipyridohexa-azacyclotetradecineby condensing 2,9-diamino-1, 10-phenanthroline with a2,9-dihalogeno-l,lO-phenanthroline in the presence ofI 1 Ialkali in nitrobenzene, and its behaviour as a ligand.22,9-Diamino-1 ,lo-phenanthroline alone also gave acyclic dimer when heated without solvent. We describehere the thermal behaviour of several disubstituted1,lO-phenanthrolines, leading to the formation of a newmacrocycle.The study was conducted by use ofHevolution of ammonia. These needles were shown to bethe hexa-aza-macrocycle (1). The reaction was studiedby DTA and TGA.A thermogram of DAP shows a melting endotherm at292 "C, followed by exothermic macrocycle formationat 306 "C and a small endothermic peak at 326 "C. TheTGA curve consists of two continuous steps, whichmight be interpreted in terms of a two-step deamination-condensation. The weight loss in the range 290-330 "Ccorresponds to 1 mol of ammonia per mol of DAP.The thermogram for an equimolar mixture of DAP and2,9-dichloro-1, 10-phenanthroline (DCP) shows an endo-therm at 224 "C and a complex exotherm beginning at230 "C with a peak at 280 "C.The TGA curve shows nosubstantial weight decrease. This implies that cross-condensation between DAP and DCP rather than self-condensation of DAP occurs. When an equimolarmixture of DAP and DCP was heated at 300 "C, needlesseparated from the melt with slight evolution of gas.Analysis showed that the needles were the dihydro-chloride of the hexa-aza-macrocycle (2).The freebase (1) was obtained as a precipitate by treating theaqueous solution with alkali. The i.r. spectrum ofthe free base (1) shows bands at 2 780 and 900 cm-l,assigned to stretching and out-of-plane deformationThis salt (2) is moderately soluble in water.differential thermal analysis (DTA) , thermogravimetricanalysis (TGA) , and spectroscopy.When 2,9-diamino-l,lO-phenanthroline (DAP) washeated slightly above its m.p., the formation of needlecrystals was observed just after melting, with vigorous1 J.J. Christensen, D. J. Eathough, and R. M. Izatt, Chern.S. Ogawa, T. Yamaguchi, and N. Gotoh, J.C.S. Perkin I ,Rev., 1974, 74, 353.1974, 976.N-H vibrations, which disappear on N-deuteriation.The vNH value is much lower and the 8NH value muchhigher than those of porphyrins (near 3 310 cm-l andbetween 680 and 675 cm-l, respectively 3). This maybe explained in terms of strong intramolecular hydrogenbonding. The salt (2) shows a very intense N-Hstretching band at 2 780 cm-l; this high frequency in3 W. S . Caughey, J. 0. Alben, W. Y . Fujimoto, and J.L.York. J . Org. Chem., 1966, 31, 26311977 215comparison with pyridinium salts (2 325-2 500 cm-l)may be due to a contribution from the resonance struc-ture (27, strengthening the outer N-H bond. Thefact that the N-H out-of-plane bending band at 910cm-l is very weak supports this idea. The lH n.m.r.spectrum of the free base in trifluoroacetic acid in whichit is assumed that the compound is present as the dication(2) shows that the inner NH protons are abnormallydeshielded ( T -8.5); in other words these protons arevery acidic and the contribution of (2rsquo;) is important.Since the amine bridge structure (2rsquo;) is less effectivelyelectron-delocalized than imine bridge structure (1), ahypsochromic shift is expected in the U.V. spectrum ofthe salt relative to the free base (1); this is in factobserved (see Figure).The ease of cyclisation of DAP to the hexa-aza-macrocycle led us to examine the possibility of co-cyclisation of 2,9-dimethyl-l , 10-phenanthroline (DMP)and DCP to give a methine-bridged tetra-aza-macro-cycle.However, our attempts to condense DMPwith DCP in solution were unsuccessful. Nevertheless,a thermogram of anshows endothermsequimolar mixture of DMP and DCPat 118 and 193 ldquo;C and a distinct250 OC, and this was the case. The reaction gave a redproduct and its structure was confirmed as (3) byelemental analysis and spectral evidence.The elimination of hydrogen chloride in this reactionis in contrast to the reaction of DAP and DCP, whichshows little weight loss on the exothermic reaction.The mass spectrum of the product shows the molecularion at m/e 384 and also an intense doubly charged mole-cular ion at m/e 192.The IH n.m.r. spectrum could notbe determined owing to solubility problems.In marked contrast to the hexa-aza-macrocycle (l),which gives a yellow solution in chloroform, the tetra-aza-macrocycle (3) gives an intensely red solution. Theelectronic spectrum of (3) is .qualitatively similar tothat of (1) (see Figure). The bathochromic shift withrespect to the hexa-aza-macrocycle, might be due tomore effective electron delocalization in the former.In the i.r. spectrum of (3) the vNH band is too weak tobe observed. Bands at 1 280 and 960 cm-1 were assignedto N-H in-plane and out-of-plane deformation, respect-ively, on the basis of their disappearance on deuteriationeffected by treating (3) with D,SO, and then with K,-CO, in D,O.The tetra-aza-macrocycle (3) is stable inamp;)amp;amp;exotherm at 269 ldquo;C. The TGA curve shows weight lossat 45-120 ldquo;C corresponding to 0.5 mol of water perElectronic spectra of the hexa-aza-macrocycle ( 1) in chloroform,the tetra-aza-macrocycle (3) in methanol, and the hexa-aza-macrocycle dihydrochlonde (2) in watermol of DMP hemihydrate, and another weight loss at ca.250 ldquo;C. The second weight loss corresponded to 2 molof hydrogen chloride per mol each of DMP and DCP.This suggested than an equimolar mixture of DMP andDCP would give a macrocycle (3) on heating at ca.the dark, but the absorption spectrum changed signifi-cantly when the solution was exposed to light.Thephotochemistry of this system will be reported in a forth-coming paper.EXPERIMENTALThermal analysis was conducted by using a Thermoflex8021 instrument (Rigaku Denki) under nitrogen at aheating rate of 5 ldquo;C min-1. Sample size was in the range83.0-200 mg. Equimolar proportions of reactants weremixed thoroughly in a mortar. N.m.r. spectra weredetermined with a Hitachi R-20A instrument operating at60 MHz, with tetramethylsilane as internal reference. U.V.and visible spectra were measured with a Union GikenSM 401 spectrophotometer. 1.r. spectra were measuredwith a Hitachi-Perkin-Elmer 125 spectrophotometer.Mass spectra were obtained by direct insertion into theion source of a Hitachi RMU-61) instrument.2,9-Dichloro- and 2,g-diamino- 1,lO-phenanthroline wereprepared by published methods.2 2,9-Dimethyl-I , 10-phenanthroline hemihydrate was obtained commercially(Tokyo Kasei Kogyo Co., Tokyo), and was used withoutfurther purification.Dihydrochloride of 1,14 : 7,8-Diethenotetraf1yrid02,1,6-de :2rsquo;1rsquo;,6rsquo;-gh : 2rdquo;,1rdquo;,6rdquo;-kl : 2rdquo; rsquo;,lrdquo; rsquo;,6rdquo; rsquo;-na1,3,5,8,10,12-hexa-azacyczotetradecine (2)-2,9-Diamino- 1, lo-phenanthro-line (42 mg) and 2,9-dichloro-l, 10-phenanthroline (50 mg)L.J. Bellamy, lsquo; The Infra-red Spectra of Complex Mole-cules,rsquo; 2nd edn., Wiley, New York, 1958, p. 260216 J.C.S. Perkin Iwere mixed thoroughly in a mortar and heated in an atmos-phere of nitrogen. Yellow needles began to separate at230 ldquo;C.After solidification was completed, heating wascontinued a t 260 ldquo;C for 1 h. The product was washed withchloroform, giving yellow needles (77 mg, 83.7) (Found:C, 63.4; H, 3.6; N, 18.8. C,,H,,Cl,N, requires C, 62.8;H, 3.5; N, 18.3). The free base (l), identical with thesample already prepared,2 was obtained by dissolving thesalt (50 mg) in water (100 ml) and adding aqueous ammonia(d 0.88; 5 ml) in water (10 ml).Conjugated Tautomer of 1,14 : 7,8-Diethenotetrapyrido-2,1,6-cd : 2rsquo;,1rsquo;,6rsquo;-gh : 2rdquo;,1rdquo;,6rdquo;-jk : 2rdquo; rsquo;,1rdquo; rsquo;,6rdquo; rsquo;-na1,4,8,-1 ltetra-uzacyclotetradecine (3) .-A mixture of 2, g-dimethyl-1,lO-phenanthroline hemihydrate (83 mg) and 2,g-dichloro-1,lO-phenanthroline (70 mg) was heated to 260 ldquo;C in anatmosphere of nitrogen. After the vigorous evolution ofhydrogen chloride ceased, heating was continued at 260 ldquo;Cfor a further 4 h. The solidified mixture was washed withacetone, giving red crystals (101 mg, 93.6) (Found: C,80.85; H, 4.45; N, 14.75. C,,H,,N, requires C , 81.2;H, 4.2; N, 14.6).I thank Mr. K. Kataoka for experimental assistance andProfessors J. Kumanotani and S. Shiraishi for comments.6/542 Received, 22nd March, 19760 Copyright 1977 by The Chemical Societ
机译:214 J.C.S. Perkin IPreparation of Macrocyclic Compounds by Thermal Dimerization ofI ,lo-Phenanthroline Derivatives.By Shojiro Ogawa, Institute of Industrial Science, University of Tokyo, Roppongi, Minato-ku, Japan一种新型大循环的高效非模板合成.1,I 4 :7,8-diethenotetrapyrido-[2,1,6-cd:2',1',6'-gh :2“,1”,6“-jk:2” ',I “ ',6” '-na] [I ,4,8,1 1 ]四氮杂环十四烷的共轭互变异构体 (3)。被描述。利用差热分析和热重分析研究了几种二取代的1,I 0-菲罗啉的二聚化行为,并描述了所产生大环的一些光谱性质.氮杂大环系统已被深入研究,试图将其电子性质和反应性与聚吡咯大环(如卟啡肽和聚核素)的电子性质和反应性相关联。尽管已经开发了许多用于制备氮杂大环体系的方法,但游离大环的非模板制备通常具有该方法仅提供所需 pr0ducts 的低产率的缺点.l我们最近报道了通过在硝基苯中 I 1 Ialkali 存在下将 2,9-二氨基-1,10-菲罗啉与 a2,9-二卤代-l,lO-菲罗啉缩合合成二烯二吡啶己烷-氮杂环十四烷辛的共轭互变异构体, 22,9-二氨基-1,lo-菲罗啉单独使用时也产生无环二聚体。我们在这里描述了几种二取代的1,lO-菲罗啉的热行为,导致新大环的形成。该研究是通过使用氨的氢流进行。这些针被证明是六氮杂大环 (1)。通过DTA和TGA对反应进行了研究。DAP的热谱图显示,在292“C处有一个熔化的吸热,随后在306”C处形成放热大环,在326“C处有一个小的吸热峰。290-330“范围内的重量损失相当于每摩尔DAP含有1摩尔氨。DAP和2,9-二氯-1,10-菲咯啉(DCP)的等摩尔混合物的热谱图显示,在224“C处有内热,在230”C处有一个复杂的放热,在280“C处有一个峰值。这意味着 DAP 和 DCP 之间发生了交叉缩合,而不是 DAP 的自缩合。当DAP和DCP的等摩尔混合物在300“C下加热时,针头从熔体中分离出来,气体略有逸出。分析表明,针头是六氮杂大环的二盐酸盐(2)。游离碱(1)通过碱处理茶水溶液而获得沉淀。游离碱(1)的i.r.谱图显示2 780和900 cm-l处的能带,归因于拉伸和面外变形,该盐(2)中度溶于水。差热分析(DTA)、热重分析(TGA)和光谱学。当 2,9-二氨基-l,lO-菲咯啉 (DAP) 被加热到略高于其熔点时,在熔化后观察到针状晶体的形成,1 J.J. Christensen, D. J. Eathough, and R. M. Izatt, Chern.S.Ogawa, T. Yamaguchi, and N. Gotoh, J.C.S. Perkin I ,Rev., 1974, 74, 353.1974, 976.N-H 振动,在 N-氘化时消失.vNH 值远低于卟啉,8NH 值远高于卟啉(分别接近 3 310 cm-l 和 680 和 675 cm-l 之间 3).这也许可以用强分子内氢键来解释。盐(2)在2 780 cm-l处显示出非常强烈的N-H拉伸带;这种高频在3 W. S .考伊,J. 0。阿尔本,W.Y.藤本和 J.L.约克。J .Org. Chem., 1966, 31, 26311977 215与吡啶盐(2 325-2 500 cm-l)的比较可能是由于共振结构的贡献(27,加强了外NH键。910cm-l 处的 NH 面外弯曲带非常弱,这一事实支持了这一想法。三氟乙酸中游离碱的 lH n.m.r.谱图 [其中假设该化合物以dication(2)的形式存在]表明内部 NH 质子异常去屏蔽 ( T -8.5);换句话说,这些质子的酸性很强,(2')的贡献很重要。由于胺桥结构 (2') 的电子离域效率低于亚胺桥结构 (1),因此预计盐相对于游离碱 (1) 的 U.V. 光谱会出现变色偏移;这实际上是观察到的(见图)。DAP与六氮杂大环的环化难易程度使我们研究了2,9-二甲基-l,10-菲咯啉(DMP)和DCP共环化的可能性,从而产生亚甲基桥接的四氮杂大环。然而,我们试图将 DMP 与 DCP 浓缩在溶液中并未成功。然而,在118和193“C处显示DMP和DCP的吸热等摩尔混合物以及不同的250 OC,情况就是如此。反应得到红色产物,其结构被证实为(3)元素分析和光谱证据。该反应中氯化氢的消除与DAP和DCP的反应相反,DAP和DCP在放热反应中几乎没有重量损失。该产物的质谱图显示了m/e 384处的分子,以及m/e 192处的强双电荷分子离子。与六氮杂大环(l)在氯仿中产生黄色溶液形成鲜明对比,四氮杂大环(3)产生强烈的红色溶液。(3)的电子频谱与(1)的电子频谱在质量上相似(见图)。相对于六氮杂大环的深致色位移可能是由于前者中更有效的电子离域。在(3)的i.r.谱中,vNH波段太弱而无法观察到。1 280 和 960 cm-1 处的条带被归入 N-H 平面内和面外变形,根据它们在氘代时的消失[通过用 D,SO 处理 (3),然后用 K,-CO 处理 D,O]。四氮杂大环 (3) 在 269 “C 时稳定在 &)&&exotherm 中。TGA曲线显示,在45-120 “C时,对应于0.5 mol水的重量损失,相当于氯仿中的六氮杂-大环(1)、甲醇中的四氮杂-大环(3)和DMP半水合物的水摩尔中的六氮杂-大环二氢氯龙(2)的电子光谱,以及约250”C时的另一次失重。第二次失重相当于每摩尔 DMP 和 DCP 各 2 毫摩尔氯化氢。这表明,DMP和DCP的等摩尔混合物在黑暗中加热时会产生大环(3),但是当溶液暴露在光线下时,吸收光谱发生了显着变化。该系统的光化学将在即将发表的论文中报告。实验使用Thermoflex8021仪器(理学电机)在氮气下以5“C min-1的加热速率进行hermal分析。样本量在83.0-200 mg之间。将等摩尔比例的反应物在研钵中充分混合。N.M.R.(英语:N.M.R.)使用工作频率为60 MHz的Hitachi R-20A仪器测定光谱,以四甲基硅烷为内部参比。使用Union GikenSM 401分光光度计测量紫外光谱和可见光谱。用 Hitachi-Perkin-Elmer 125 分光光度计测量 1.r. 光谱。通过已发表的方法制备了2,9-二氯和2,g-二氨基-1,lO-菲罗啉.2,2,9-二甲基-I,10-菲咯啉半水合物已商业化获得(东京化成工业公司,东京),无需进一步纯化即可使用。1,14 : 7,8-二苯四氟基1yrid0[2,1,6-de :2'1',6'-gh : 2“,1”,6“-kl : 2” ',l“ ',6” '-na][1,3,5,8,10,12]-六-氮杂四烷基十四烷 (2)-2,9-二氨基-1,lo-菲线(42 mg)和2,9-二氯-l,10-菲咯啉(50 mg)L.J. Bellamy,“复杂分子的红外光谱”,第 2 版,Wiley,纽约,1958 年,第 260216 页 J.C.S. Perkin I在研钵中充分混合,并在氮气大气中加热。黄针在230“C处开始分离,凝固完成后,在260”C°C下继续加热1 h。用氯仿洗涤产物,得到黄色针状物(77 mg,83.7%)(Found:C,63.4;H,3.6;N,18.8。C,,H,,Cl,N,需要C,62.8;H,3.5;N,18.3%)。通过将盐(50mg)溶解在水(100ml)中并加入氨水(d 0.88;5毫升)在水(10毫升)中。1,14 : 7,8-二叔四哚烷基-[2,1,6-cd : 2',1',6'-gh : 2“,1”,6“-jk : 2” ',1“ ',6” '-na][1,4,8,-1 l]四-uzacyclotetradecine (3) .-2,g-二甲基-1,lO-菲咯啉半水合物(83 mg)和2,g-二氯-1,lO-菲咯啉(70 mg)的混合物在氮气气氛中加热至260“C。氯化氢的剧烈演化停止后,在260°C下继续加热4小时。凝固的混合物用丙酮洗涤,得到红色结晶(101mg,93.6%)(发现:C,80.85;H,4.45;N,14.75。C,,H,,N,需要 C,81.2;H,4.2;N,14.6%)。我感谢 K. Kataoka 先生的实验帮助,以及 J. Kumanotani 教授和 S. Shiraishi 教授的评论。[6/542 收稿日期:19760 年 3 月 22 日 版权所有 1977 The Chemical Societ

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号