首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Cyclisation of arylpropiolyl chloro-oxalyl anhydrides: the chemistry of aryl(chloro)methylenetetrahydrofuran-2,4,5-triones and theX-ray crystal structure of a 3,4-methylenedioxybenzylidene representative
【24h】

Cyclisation of arylpropiolyl chloro-oxalyl anhydrides: the chemistry of aryl(chloro)methylenetetrahydrofuran-2,4,5-triones and theX-ray crystal structure of a 3,4-methylenedioxybenzylidene representative

机译:芳基丙炔基氯草酰酸酐的环化反应:芳基(氯)亚甲基四氢呋喃-2,4,5-三酮的化学性质和代表3,4-亚甲二氧基苯亚甲基的X射线晶体结构

获取原文
获取外文期刊封面目录资料

摘要

138 J.C.S. Perkin ICyclisation of Arylpropiolyl Chloro-oxalyl Anhydrides : the Chemistry ofAryl (chloro)methylenetetrahydrof uran-2,4,5-triones and the X-rayCrystal Structure of a 3,4- M et hylened ioxybenzyl idene RepresentativeBy Michael J. Begley, Leslie Crombie,' Roger G. Havard, and Derek P. Reynolds, Department of Chemistry,3.4-Methylenedioxyphenylpropiolic acid and oxalyl chloride form a mixed anhydride which cyclises to give a red.water-sensitive aryl (chloro) methylenetetrahydrofuran-2.4.5-trione : its mixed Z,E-geometry has been investigatedby single crystal X-ray methods. Arylpropiolic acids with substituents providing sufficient electron release undergothe cyclisation, but in other cases arylnaphthalenedicarboxylic anhydrides and arylpropiolyl chlorides are formed.The mechanism of the cyclisation is considered, and some reactions of the trione are described.The University of Nottingham, Nottingham NG7 2RD, and University College, Cardiff CF1 3NRTREATMENT of a suspension of 3,4-methylenedioxy- red crystals of a new compound, C,,H,C10,, are formed.phenylpropiolic acid (1) in benzene with oxalyl chloride In this paper the chemistry and structure of the com-gives little of the expected propiolyl chloride: instead, pound are discussed, and the scope and mechanism of th1977 139reaction considered.1 The following paper deals withthe thermal rearrangement which it undergoes.ArcAr CO-R0 0 I0 0A r v C 0 2 RC02H( 9 )(6)A r0H(13 1A r = 3.4-(CH202)C6H3The red compound showed n.m.r. signals for threearomatic and two methylenedioxy protons, and hadv,, 1 869, 1 838, 1 788, and 1 723 cm-l, accommodatingan oxo-anhydride structure (2) or (3) which might beformed by cyclisation of a mixed anhydride (4).Structure (2) was shown to be correct by basic hydro-lysis to 3,4-methylenedioxybenzoylpyruvic acid (5 ;R = H; enolised).The latter could be degradedthermally to 3rsquo;,4rsquo;-methylenedioxyacetophenone (6) withloss of CO and CO,, or, by further treatment with base,to (6) and oxalic acid. Alcohols reacted with (2) togive the esters ( 5 ; R = Me or Et), and the latter wasresynthesised by Claisen condensation between (6) anddiethyl oxalate.ZE-Isomerism is possible for the vinylogous acidchloride structure (2), and the stereochemistry wasexamined by X-ray methods.The compound formedorthorhombic crystals, space-group Pbca, with unit celldimensions a = 7.95, b = 23.78, and c = 11.93 A,containing 8 molecules in the unit cell (one molecule perasymmetric unit). The structure was solved by theheavy-atom technique (664 reflections) and refined byblock-diagonal least-squares methods. Two views ofthe structure arrived at, which has Z-geometry, areshown in Figure 1, and Figure 2 shows the crystallo-graphic numbering.However, a difference map calculated after apparentconvergence (R 0.077) revealed an additional peak inthe neighbourhood of the ring oxygen atom 0(5)together with a lsquo;holersquo; at the oxygen atom of thecarbonyl 0(4). This was interpreted as indicating thepresence of a limited amount of E-isomer which had co-crystallised with the Z-.The two isomers are super-imposable in a space-filling sense, except for the carbonylFIGURE 1 (Z)-a-Chloro-3,4-methylenedioxybenzylidene-tetrahydrofuran-2,4,6-trione0161a4FIGURE 2 Crystallographic numbering schemeoxygen 0(4) which has to be moved between O(4) andO(7) with interchange between O(5) and C(11) (Figure 2).Refinement was therefore continued with an lsquo;extrarsquo;Preliminary account, L. Crombie, R. Havard, and D. P.Reynolds, J.C.S. Chem. Comm., 1973.266140 J.C.S. Perkin Iatom, 0(7), attached to 0 ( 5 ) , and the occupationfractions of O(4) and O(7) were allowed to vary. Re-finement converged to R 0.056 (anisotropic temperaturefactors were used).The occupation fractions of O(4)and O(7) had a sum of unity within one standarddeviation, thus confirming the model of co-crystallisedstereoisomers. Bond-length and -angle calculationsshowed no contact distances to O(7) less than 3.0 A, thesum of the van der Waals radii: this indicates that thecrystal structure of the 2-isomer contains enough spaceFIGURE 3 Molecular packing; view perpendicular to the caxisto accommodate the additional atom Q(7) of the E-isomer without distortion of the close-packing of themolecules. The crystal structure thus consists of the2-isomer shown in Figure 1 with 17 amp; 5 of E-isomerin the lattice.Whether the observed isomer ratio in the crystal isrepresentative of the total reaction product is uncertain.It is also uncertain whether the mixture reflects kineticor thermodynamic control, though the latter seemsprobable (2 h reflux in benzene).Proton n.m.r. does notadequately differentiate between the 2- and E-isomers,there being insufficient perturbation to alter the chemicalshifts of the aromatic protons, and a lH solution studyof the isomerisation could not be undertaken.0FIGURE 4 Bond length (A) ; e.s.d.s 0.01 unless otherwiseindicated in parenthesesThe arrangement of molecules in the unit cell isshown in Figure 3 which confirms the availability ofspace within the crystal structure to accommodate theadditional atom of the E-isomer without distortion.Bond lengths and angles are displayed in Figures 4and 5; these adopt expected values if allowance is madefor the larger uncertainties in those positions which arefractionally occupied. The benzene ring is planarwithin 0.03 A (x2 13.93) as are also both the five-membered rings, with x2 = 1.03 for the cyclic acetalring and x2 = 3.77 for the trione ring.As expected, thebenzene and acetal rings are coplanar: however, thecentral section of the molecule C(l),C(2) ,C(9) is dis-torted out of conjugation, presumably to avoid closecontact of O(3) and C(3). The torsion angle about theC(l)-C(2) bond is 33", and, surprisingly, the C(l)-C(9)double bond has a torsion angle of 11". The resultingtwist in the molecule allows the 0(3)-C(3) contactdistance to expand to 2.41 A and the Cl-0(6) contactdistance is 2.89 A. Short intermolecular carbon 10(3)-C(12'), 2.99 A; 0(4)-C(8'), 3.00 A; O(6)-C(lO'),2.84 A; Q(6)-C(ll'), 2.95 A; 0(7)-C(8'), 2.99 A.Treatment of the red trione (2) in ethyl acetate withan excess of water led to the acid (5; R = H), but with1 mol.equiv. of water the tetraone, C,,H,O, (7) couldbe isolated in 70 yield. The mass spectrum (Scheme 1)contacts were observed as follows: 0(3)-C(9'), 2.93 K ;Cl 0FIGURE 5 Bond angles { O ) ; e.s.d.s 1" unless otherwiseindicated in parenthesessupported the structure, and U.V. data A,, (CHC1,)250 ( E 7510), 292 (6820), 332 (6180), and 408 nm(13 300) suggested that it is largely enolised, as in (8)1977 141in this solvent. Treatment of (8) with water or sodiumhydroxide solution gave the acid (5; R = H), and( 7 ) C,, H 60Jt1 +c@0 qL OSCHEME 1treatment with ethanol gave the ester (5; R = Et), bycleavage of the anhydride and decarboxylation of (9;R = Et).Addition of an excess of ethanol to the red trione (2)itself, in the absence of organic diluent, resulted in anexothermic reaction with evolution of carbon dioxide.If, after effervescence had ceased, water was added, theester (5; R = Et) was obtained.However, if themixture was set aside, two further products, (10) and( l l ) , could be isolated from the acidic solution. Then.m.r. spectrum of (10) showed signals for three ethylgroups (two equivalent), a methylene singlet, and themethylene singlet and three aromatic protons of themethylenedioxyphenyl group. Comparison of U.V.datashowed a chromophore closely similar to that of 3,4-methylenedioxyacetophenone, but substantially differentfrom models for the 4-monoacetal chromophore, e.g. thelignan asarinin. Assignment of structure (10) is alsosupported by the mass spectral data (Scheme 2).The n.m.r. spectrum of the second product showedsignals for two ethyl groups, an olefinic proton, and themethylenedioxyphenyl group: this led to the enol etherstructure (1 1). Its stereochemistry was explored asfollows. Treatment of (5; R r= Et) with diazomethanein the presence of a catalytic quantity of boron tri-fluoride gave (12), showing T 3.16 for the olefinic 3-proton. On treatment with trifluoroacetic acid, thisisomer underwent stereomutation to give (13), T 3.82;the upfield shift suggests that the methoxycarbonylgroup is in this case trans to the olefinic proton.2 Thisgeometry was confirmed when a 21 enhancement ofthe H-3 signal was observed on irradiation at T 6.18L.H. Jackman and S. Sternhell, 'Applications of NylearMagnetic Resonance Spectroscopy in Organic Chemistry, 2ndedn., Pergamon, Oxford, 1969.(OMe). Since H-3 in (11) resonates at 3.88 thecompound is the E-isomer. L4ssignment of the 2-alkoxy-structures (11)-(13) as opposed to the 4- (14) issupported by U.V. data. Since an alkoxy-group pro-duces a shift of ca. 30 nm when substituted in thep-position of an =-unsaturated k e t ~ n e , ~ the principalabsorption of (14) would be expected to be at longerwavelength than that of 3,4-me t h ylenediox ycinnamicester (15).Compounds (1 1)-( 13) absorb a t shorterwavelengths (though longer than that of 3',4'-methylene-dioxyacetophenone) .N.m.r. data show that, in the solvents examined, noneof the compounds of type (5) actually exhibits reson-ances attributable to the dioxo-form: all appear entirelyenolised, with the chelated proton signal near 7 -5.Since the U.V. spectra show maxima at longer wave-lengths than that of the corresponding cinnamic acid(15), the predominant tautomer appears to be (16).Following this examination of the chemistry of thered trione (2), the reactions of a series of substitutedarylpropiolic acids with oxalyl chloride were studied,to assess the scope of the synthesis. The results aresummarised in Table 1: yields refer to the amounts ofpure compounds isolated by crystallisation or distillation.noq!I M+ 3 3 8m*207.8J I +0 O E t+on+J T o2 9 3 .7 - 0L Obsol;m*154.0 /SCHEME 2In the cases (a)-(d), the i.r. spectra of the crudeproducts showed absorptions at 2 200 cm-l assigned toA. I. Scott, ' Interpretation of the Ultraviolet Spectra ofNatural Products,' Pergamon, Oxford, 1964142 J.C.S. Perkin IC Z stretching of the corresponding acid chlorides (18),which are minor products. For case (a) quantitativei.r. estimation showed the presence of 92 of thetrione (19) and 8 of the acid chloride (18) ; amounts for(b)-(d) are expected to be similar. The ratio of (19)to (18) remained unchanged on prolonged refluxing, andboth pure compounds were unchanged by refluxing withoxalyl chloride in benzene: the two are produced incompeting pathways, neither being an intermediate inthe formation of the other.TABLE 1Reaction of arylpropiolic acids (17) with oxalyl chlorideProduct isolated ()R1a Hb HC Hd He OMef Hh Hg HRa Ra--J O*CHg*OOMe OMeOMe OMeH OMeH HH MeH HH c1R4 lsquo; (19) (18) (20)rsquo;H 75OMe 70H 76H 73H 41 6H 44 16H 41 40H 36 62(17) X = O H(18) X = C l(20)All the triones (19) exhibit deep red solutions showingstrong absorption (E 12000-~00oO) in the 420-480nm region, and their i.r. spectra are very similar in thecarbonyl region.The mass spectral fragmentationpatterns all follow that summarised in Scheme 3.*Arylnaphthdenes (ZO), all identical with authenticspecimens: were important products in reactions(e)-(h). These arise from the corresponding acetylenicacid anhydrides5 which, along with the acid chlorides,are well known products from oxalyl chloride andcarboxylic acids6 However in none of these reactionsdid a red colour develop, indicative of trione formation,with the exception of (e), and here no trione was isolated.* This contrasts with the mass spectrum of the thermal re-arrangement products (following paper), which fragment by directdecomposition of M+ to ArCGO.Minor peaks corresponding tothe latter were observed even under conditions of strict exclusionof moisture to avoid contamination by (8): this tends to implysome isomerisation in the mass spectrometer.Formation of the triones must involve nucleophilicdisplacement by C-2 of the acetylene in the mixedCI n l :Arolsquo;N - 2 8 M-44 -coy*ArRbase peakSCHEME 3anhydride see (21).In the transition state for thecyclisation the aromatic ring is envisaged as beingorthogonal to the forming trione ring. Overlap of thearomatic orbitals with the shaded orbitals of the re-hybridising acetylene (Figure 6) implies that theelectronic effect of substituents in the aromatic ring is ofcardinal importance in stabilising the developing positivecharge at C-3; carbonyl overlap with the unshadedorbitals has little influence. Thus only examples(a)-(d) in Table 1, all of which possess a $-alkoxy-group gave chlorotriones. When suitable electronrelease is not available, i.e.(e)-(h), the reaction takesanother course leading to arylnaphthalenes and acidFIGURE 6chlorides. Other aspects of the mechanism are dis-cussed with the mechanism of the thermal rearrange-ment of the chloro-triones in the following paper.(a) F. G. Baddar, J . Chem. SOC., 1947,224; (b) F. G. Baddarand L. S. El-Assal, ibid., 1848, 1267; (c) 1961, 1844; ( d ) F. G.Baddar, L. S. El-Assal, and N. A. Doss, ibid., 1956, 465; (e) 1969,1027; (f) F. G. Baddar. G. E. M. Moussa, and M. T. Omar, J .Chem. SOC. ( C ) , 1968, 110.J. Cleyand J. F. Arens, Rec. Trav. chim., 1959,78, 929.R. Adams and L. H. Ulich, J . Amer. Chem. Soc., 1920, 42,6991977 143EXPERIMENTALa-Chloro-3,4-methylenedioxybenzylidenetetrahydro fuian-2,4,5-trione (2) .-Oxalyl chloride (10 g, 80 mmol) was addedto a finely ground suspension of 3,4-methylenedioxyphenyl-propiolic acid (5.7 g, 30 mmol) in anhydrous benzene(10 cm3).The mixture was refluxed for 2 h. Benzeneand the excess of oxalyl chloride were removed underreduced pressure, and the residue crystallised from an-hydrous benzene to give the tetrahydrofurantrione (2) (6.2 g,75), red plates, m.p. 170-172' (decomp.) (Found: C,requires C, 51.3; H, 1.8; C1, 12.65; M , 279.977),vmx (CHCl,) 1869, 1838, 1788, and 1723 cm-l, Lx274sh (E 7 020), 288 (8 200), 364 ( 5 300), 425sh (8 700), and473 nm (13 000), T (CD,),CO 2.45 (1 H, dd, J5.6 8, J z S s2 Hz, arom. H-6), 2.70 (1 H , d, J2.6 2 Hz, arom. H-2), 2.95(1 H , d, J 5 .6 8 Hz, arom. H-5), and 3.78 (2 H, s, CH,O,).Reactions of the Trione (2) with Water and Alcohols.-(a) With aqueous sodium hydroxide. The trione (2) (0.5 g)was shaken with aqueous sodium hydroxide (5; 10 cm3).When the red colour had been discharged (a few minutes),the solution was acidified with hydrochloric acid. Theprecipitate, on crystallisation from aqueous ethanol, gavepale yellow crystals of 3,4-methylenedioxybenzoyl~yruvic acid(16; R = H) (348 mg, 83), m.p. 197-199' (decomp.)(Found: C, 55.7; H, 3.35; M+, 236. CllH8O6 requiresC, 56.0; H, 3.4; M , 236), v,, (mull) 3 200-2 400(carboxylic acid), 1730 and 1723 (carbonyl), and 1633cm-l (enolic P-diketone), vmx. (EtOH) 352 (E 15 000),306infl (8 loo), and 244 nm (7 300), T (CD,),SO -1.0551.3; H, 1.8; c1, 12.6; M+, 279.977. Cl2H5C1O6(2 H , s ) , 2.23 (1 H, dd, J5.6 8, J 2 .6 2 Hz, H-6), 2.45 (1 H ,d, J 2 , 6 2 Hz, H-2), 2.92 (1 H, d, J 8 Hz, H-5), 2.93 (1 H, S,olefinic), and 3.78 (2 H , s, CH,O,). An ethanolic solutiongave a red colour with iron(II1) chloride.(b) With a n excess of water. The trione (2) (533 mg)was refluxed with ethyl acetate (10 cm3) and water (1 cm3)for 1.5 h. Evaporation, and crystallisation from aqueousethanol, yielded 3,4-methylenedioxybenzoylpyruvic acid(16; R = H) (236 mg, 54), m.p. 196-198' (decomp.).(c) With 1 mol. equiv. of water. A solution of water inethyl acetate (19.976 g 1F; 3 cm3) was added to a hotsolution of the trione (2) (932 mg) in anhydrous ethylacetate ( 7 cm3).On cooling the solution deposited yellowneedles of a-hydroxy- 3,4-methylenedioxybenzylidenetetrahydro-furan-2,4,5-trione (8) (621 mg, 71), m.p. 179' (decomp.),not raised by crystallisation (ethyl acetate) (Found: C,54.7: H, 2.45; M+, 262. Cl2H6O, requires C, 54.95; H,2.3: M, 262), vmaL (CHCI,) 1 850, 1 780, and 1 695 cm-1,Amx. (CHCl,) 250 (E 7 510), 292 (6 820), 332 (6 180), and408 nm (13 300), T (CD,),CO 2.15 (1 H , dd, J5,6 8, J2.62 Hz, arom. H-6), 2.43 (1 H, d, J2.6 2 Hz, arom. H-2), 2.97(1 H, d, J5,6 8 Hz, arom. H-5), and 3.81 (2 H, s, CH,O,).The trione (2) (710 mg) inanhydrous chloroform (300 cm3) was treated with ethanol(500 mg) and kept for 60 h. The solution was evaporatedand the residue crystallised from aqueous ethanol to giveethyl 3,4-methyZenedioxybenzoyl~yruvate (16; R = Et) (5 11mg, 65) as pale yellow microcrystals, m.p.70-71'(Found: C, 59.0; H, 4.5; M+, 264. Cl3Hl2O6 requires(chelated OH), 1 758, 1 738, and 1 045 cm-1, A,,, (EtOH)248 (E 6 640), 309 (7 890), and 360 nm (14 700), T (CCl,)-4.7br (1 H, s, chelated OH), 2.43 (1 H, dd, J5.6 8, J2,6olefinic), 3.20 (1 H, d, J5,6 8 Hz, H-5), 3.95 (2 H, s, CH202),(d) With a n excess of ethanol.C, 59.1; H, 4.55; M, 264), vmax (CCl,) 3 200-2 5002 Hz, H-6), 2-62 (1 H, d, 1 2 . 6 2 Hz, H-2), 3.16 (1 H , S,5.68 (2 H, q, J 7 Hz), and 8.60 (3 H , t, J 7 Hz). Anethanolic solution gave a red colour with iron(II1) chloride.Prior to evaporation the mixture was analysed by g.1.c.(column 5 f t by t in of 10 squalane on Celite) in order todetermine whether ethyl chloride was a product.Sensi-tivity was adequate to detect a less than 1 yo yield, but nonewas observed.A solution of ethanolin chloroform (45.9 g 1-1; 0.85 cm3) was added to the trione(2) (237 mg) in anhydrous chloroform (100 cmS). After60 h g.1.c. showed no ethyl chloride. Evaporation andcrystallisation from anhydrous ethyl acetate gave a-hydroxy-3,4-methylenedioxybenzylidenetetrahydrofuran-2,4,5-trione (8) (79 mg, 36), m.p. 178-179' (decomp.).(f) With ethanol in the absence of a n inert solvent. (i) Withquenching after a short period. Anhydrous ethanol (0.6cm3) was added in one portion to the trione (2). After aninduction period (minutes) an exothermic reaction began,and the red compound dissolved with effervescence.Assoon as dissolution was complete, water (10 cm3) was added.The precipitated oil solidified ; crystallisation from aqueousethanol gave ethyl 3,4-methylenedioxybenzoylpyruvate(16; R = Et) (154 mg, 80), m.p. 71-72'.Anhydrous ethanol (10 cm3)was added to the trione (2), and the resulting solution keptfor 24 h. The mixture was separated by p.1.c. on silicawith benzene-ethyl acetate (7 : 1) as eluant. Three bandsformed and were extracted with ethyl acetate. That ofhighest RF gave the enol ethyl ether of ethyl 3,4-methylene-dioxybenzoylpyruvate (1 1) (69 mg), needles (benzene), m.p.128-130" (Found: C, 61.7; H, 5.5; M+, 292. C15H1,06requires C, 61.65; H, 5.5; M , 292), vmx. (CHCl,) 1735(a@-unsaturated ester), 1 655 (aryl and ap-unsaturatedketone), 1 604, and 1 582 cm-1, (EtOH) 238 (E 13 400),280 (11 800), and 322 nm (12 050), T (CDCl,) 2.50 (1 H, dd,(e) With 1 mol.equiv. of ethanol.(ii) Over a prolonged period.J5.6 8, J2.6 2 Hz, H-6), 2.59 (1 H , d, J2,6 2 Hz, H-2), 3.20(1 H, d, J5.6 8 Hz, H-5), 4.01 (2 H , S, CH202), 3.88 (1 H, S,olefinic), 5.68 (2 H , q, J 7 Hz), 5.97 (2 H, q, J 7 Hz), 8.58(3 H , t, J 7 Hz), and 8.70 (3 H , t , J 7 Hz). The band ofintermediate Rp gave the diethyZ acetal of ethyZ 3,4-methyZene-dioxybenzoylpyruvate (10) (715 mg), blades, m.p. 89-90'(aqueous ethanol) (Found: C, 60.7; H, 6.6; M+, 338.C,,H,,O, requires C, 60.35; H , 6.55 ; M , 338), vmx. (mull)1750 (ester) and 1660 cm-1 (aryl ketone), (EtOH)231 (E 17 800), 275 (7 050), and 310 nm (8 320), T (CDCl,)2.43 (1 H, dd, J5.6 8, J2.6 2 Hz, H-6), 2.58 (1 H, d, J2.6 2 Hz,H-2), 3.17 (1 H, d, J5.6 8 Hz, H-5), 3.96 (2 H, S, CH,O,),6.38 (2 H, s, CH,), 5.75 (2 H, q, J 7 Hz), 8.73 (3 H, t,J 7 Hz), 6.45 (4 H , q, J 7 Hz), and 8.81 (6 H, t, J 7 Hz).The band of lowest RF gave ethyl 3,4-methylenedioxy-benzoylpyruvate (16; R = Et) (242 mg), m.p.70-72'(from ethanol).Reactions of a-Hydroxy- 3,4-methylenedioxybenzylidsnetetra-hydrofuran-2,4,5-trione (8) with Water and Alcohols.-(a) With aqueous sodium hydroxide. Aqueous sodiumhydroxide ( 5 ; 2 cm3) was added to the hydroxy-trione(8) (92 mg). When effervescence had ceased the solutionwas acidified. The precipitate crystallised from aqueousethanol to give 3,4-methylenedioxybenzoylpyruvic acid(16; R = H) (69 mg, 84), m.p.197-198' (decomp.).(b) With water. The hydroxy-trione (8) (169 mg), water(0.5 cm3), and ethyl acetate (4 cm3) were refluxed for 1 h.Evaporation and crystallisation from aqueous ethanolyielded 3,4-methylenedioxybenzoylpyruvic acid ( 16; R =H) (135 mg, 88), m.p. 197-198'144 J.C.S. Perkin I(c) With ethanol. The hydroxy-trione (9) (202 mg) waswarmed with ethanol (0.5 cm3) until effervescence hadceased and dissolution had taken place. On cooling, ethyl3,4-methylenedioxybenzoylpyruvate ( 165 mg, 8 1 ) crystal-lised; m.p. 71-72'.Enol Methyl Ethers of Ethyl 3,4-MethyZenedioxybenzoyl-pyruvate. -Ethyl 3,4-met hylenedioxybenzo ylpyruvate (2 64mg, 1 mmol) in ether (10 cm3) was treated with boron tri-fluoride-ether (0.06 cm3, 0.05 mmol) and an excess ofethereal diazomethane.After 20 h the solution waswashed with aqueous sodium hydrogen carbonate, thenwater, dried (MgSO,), and evaporated. The predominantproduct (12) was separated from contaminating E-isomerand starting material (both of lower R p ) by p.1.c. on silica,with benzene-ethyl acetate (9 : 1) as eluant. Moleculardistillation (60 "C; 0.1 mmHg) gave the (2)-enol methylether of ethyl 3,4-methylenedioxybenzoyl~yruvate ( 12) (143mg) as an oil (Found: C, 60.55; H, 5.0; M+, 278.Camp;amp;6 requires C, 60.54; H, 5.05 ; M , 278), vmaK (CHCl,)1 725 (ap-unsaturated ester), 1 656 (aryl, ap-unsaturatedketone), 1620sh, 1608, and 1590 cm-l, Amx. (EtOH) 239(z 13 300), 281 (10 SOO), and 324 nm (11 300), 7 (CDC1,)2.50 ( I H, dd, J 5 .6 8, J 2 . 6 2 Hz, H-6), 2.63 (1 H, d, J2.6 2 Hz,H-2),'3.22 (1 H, d, J 5 , 6 8 Hz, H-5), 4.0 (2 H, S , CHZO,),3.16 (1 H, s, olefinic), 6.23 (3 H, s, OCH,), 5.70 (2 H, q,J 7 Hz), and 8.65 (3 H, t, J 7 Hz).Trifluoroacetic acid (0.5 cm3) was added to a solution ofthe Z-isomer (12) (140 mg) in chloroform (5 cm3). After10 min, the solution was evaporated, and the residuecrystallised from benzene-hexane to give needles of theE-isomer (13) (96 mg), m.p. 132-133' (Found: C, 59.9;H, 5.2; Mf, 278), v,,, (CHC1,) 1733 (aP-unsaturatedester),. 1 656 (aryl, aP-unsaturated ketone), 1 605, and1583 cm-l, Lx. (EtOH) 238 (E 13 600), 281 (11 400), and323 nm (12 loo), T (CDC1,) 2.49 (1 H, dd, J5,6 8, J2,6 2 Hz,H-6), 3.99 (2 H, s, CH202), 3.82 (1 H, s, olefinic), 6.18 (3 H,s, OCH,), 5.67 (2 H, q, J 7 Hz), and 8.70 (3 H, t, J 7 Hz).A 10 solution in CDCl, was degassed by five freeze-pump-thaw cycles, and tetramethylsilane was added forfield frequency locking.With irradiation a t T 6.17 (OMe)the olefinic signal at T 3.82 showed 21 greater integratedintensity than observed with the irradiating field offset to7 6.5.Arylpropiolic A cids.-The acids (1 7 s - c ) and (1 7f) wereprepared from the corresponding cinnamic acids, byesterification followed by bromination and dehydrobromin-ation. The cinnamic acids were made by Doebner con-densation. The acids (17d) and (17g and h) were preparedfrom the appropriately substituted benzoic acids by theWittig method.'Reactions of Oxalyl Chloride with Arylpropiolic Acids.-The arylpropiolic acid in anhydrous benzene was refluxedwith an excess of oxalyl chloride (2-3 mol.equiv.) and,after evaporation, the crude product was purified (seebelow). Products and their solutions are moisture sensitive ;exposure to the atmosphere was kept to a minimum, and allthe solvents were anhydrous.In reactions with the acids (17a-d) crystallisationgave coloured aryl(chloro)methylenetetrahydrofuran~2,4,5-triones (19a-d). With (17f and g) the crude product wasa yellow solid suspended in an oil. The solid was filteredoff and washed with a little benzene to give the naphthalene-' G. Markl, Chsm. Bey., 1961, 94, 3005; s. T. D. Gough andS.Tripett, J. Chem. SOC., 1962, 2333.H-6), 2.60 ( 1 H, d, J2.6 2 Hz, H-2), 3.18 ( 1 H, d, J 5 , g 8 Hz,dicarboxylic anhydride (20f or g). Evaporation of thefiltrate and distillation gave the arylpropiolyl chloride(18f or g). For (lh), sublimation at 55 'C and 0.2 mmHggave the acid chloride (18h) and crystallisation of theinvolatile residue afforded the naphthalenedicarboxylicanhydride (20h).Unlike reactions with (17f and g), with (17e) the reactionmixture developed a red colour but no aryl(ch1oro)-methylenetetrahydrofurantrione (1 9e) was isolated. Sub-limation (75 "C and 0.1 mmHg) of the crude productyielded the acid chloride (18e), and crystallisation of theinvolatile residue gave the naphthalene (1 9e).The naphthalenedicarboxylic anhydrides (20e-h) wereidentical (mixed m.p.and i.r. spectrum) with authenticsamples .4 The arylpropiolyl chlorides ( 18e-h) wereidentical (i.r. spectrum) with samples prepared by theaction of thionyl chloride on the corresponding acids.Products and yields are summarised in Table 1. Propertiesof compounds (18)-(20) are given in Table 2..For the reaction involving 3,4-methylenedioxyphenyl-propiolic acid (17a), the ratio of (19a) to (18a) was estimatedfrom the absorbances of the i.r. bands at 2 200 and 1 790cm-1, by using a calibration graph.Crystallographic Analysis of a-Chloro-3,4-methylenedioxy-benzylidenetetrahydro furan-2,4,5-trione (2) .-Suitable speci-mens of the trione were grown from ethyl acetate solution.Oscillation and Weisenberg photographs were taken aboutthe a axis to establish approximate unit cell dimensionsand space group.For intensity measurement, a crystal ofdimensions ca. 0.6 x 0.3 x 0.05 mm was mounted,aboutthe a axis on a Hilger and Watts linear diffractometer.Unit-cell dimensions were refined on the diffractometer.With Mo-K, radiation, intensity data were collected on thelevels 0-7kl by the moving-crystal stationary-counter scanmethod. Each reflection was measured twice and themean taken in data reduction. Reflections with a mean netcount 31s were considered unobserved, leaving 664observed reflections which were used in the subsequentrefinement. No absorption corrections were made. Datareduction and subsequent crystallographic calculations wereperformed by using the National Research Council (Ottawa)programs of Ahmed, Hall, Pippy, and Saunders.Atomicscattering factors were taken from ref. 8.Crystal data. C12H,C106, M = 280.6. Orthorhombic,a = 7.95 f 0.02, b = 23.87 f 0.04, c = 11.93 f 0.02 A,U = 2 255.4 Hi3, 2 = 8, D, = 1.65 g cm-,, F(000) = 1 136.Space group Pbca uniquely from systematic absences.Mo-K, radiation, h = 0.710 69 A, p(Mo-K,) = 3.67 cm-l.Structure solution and refinement. The atomic co-ordinates of the chlorine atom were found from a Pattersonsynthesis using the observed intensity data, sharpened by1/Lp corrections. A three-dimensional Fourier summationphased on the chlorine atom enabled a further 9 atoms to belocated. After a structure-factor calculation with the newmodel, a second Fourier synthesis revealed the positions ofall the non-hydrogen atoms.Initially five cycles of block-diagonal least-squaresrefinement of atomic positions and isotropic temperaturefactors were carried out with all the data and unit weight.After the fifth cycle the value of the agreement factor R was0.15.Analysis of the agreement between F, and F,,indicated a slight rescaling of the data between the reciprocallattice levels 0-7kl. A weighting scheme was also adopted* ' International Tables for X-Ray Crystallography,' vol. 111,Kynoch Press, Birmingham, 19621977 145of the form w = 1 for IFo 30.0 and w = (30.0/lF01)2 forlFol 30.0. Two further cycles of refinement were thencarried out, after which the atomic temperature factorswere allowed to vary anisotropically.Three more cyclesreduced the value of R to 0.077.A difference synthesis was then calculated whose mainfeature was the presence of a peak within bonding distanceTABLE 2(a) Data for triones (19)Reflux Cryst.R2 R3 R4 time solvent Form M.p. ("C)(19b) OMe OMe OMe 2 h PhH Orange 162- 154needles (decornp.)(19c) OMe OMe H 2.5h PhMe Brown. 158-160needles (decornp.)(19d) OMe H H 10min PhH- Orange 138-139C6H14 needles (decornp.)Found (yo) Required (yo)r-- bsol; -7 C H C1 Formula C H C1(19b) 51.4 3.5 10.65 C,,HllC1O, 51.45 3.4 10.9 1;s) 53.95 2.75 13.2 C,,H,ClO, 54.1 2.6 13.3Xmax.(CHC1,)/nm (4(19b) 298 (7 710), 464 (12 500)(19c) 293 (8 030), 381 (5 880), 430 (9 600), 477 (15 100)(19d) 264sh (6 410), 287 (8 930), 422 (19 900).434sh (17 700)v,,./cm'-l (carbonyl region)(19b) 1 870, 1 830, 1 786, 1 723(19c) 1 870, 1 845, 1 786, 1 720(19d) 1861, 1788, 17257 (CDJWI(19b)52.65 3.15 11.65 C13H,C106 52.6 3.05 11.95z 2.78 (2 H, s, H-2 and -6), 6.08 (3 H, s, 4-0Me), and 6.13(6 H, s, 3- and 5-OMe)(1) T 2.34 (1 H, dd. J 5 . 6 8, J2.6 2 Hz, H-6). 2.51 (1 H, d,Jz.6 2 Hz, H-2), 2.82 (1 H, d, J5.6 8 Hz, H-5), 6.00 (3 H,s, OMe), and 6.14 (3 H, s, OMe)z cu. 2.05 and cu. 2.85 (4 H, AB, multiplet, symmetricalabout z 2.47, H-2, -3, -4, and -6), and 6.03 (3 H, s, OMe)(19d)(b) Data for arylnaphthalenes and arylpropiolyl chloridesRL R3 Products M.p. or b.p. ("C) Lit. m.p. ("C) Ref.91-93 93-94 4c247-249 254-246 4aOMe H (184OMe H (20e)H Me (18f) 80 a t 0.2 mmHgH H (18g) 46 at 0.1 mmHgH C1 (18h) 65-67 68-69 4sH C1 266-267 266-267 4eH Me (20f) 272-273 268-269 4dH H 258-259 255-256 4bof O(5).This corresponded to the presence of a minoramount of the E-isomer of the trione which had co-crystallised. In confirmation the difference map alsoshowed a large depression in the neighbourhood of O(4).The difference map also revealed the approximate positionsof all the hydrogen atoms. The additional atom wasdesignated O(7) and included in the structure factorcalculation. The temperature factor for O(4) reverted tobeing isotropic and O(4) and O(7) were included in thecalculations with isotropic temperature factors, and theiroccupation fractions were also refined.Five further cyclesof least-squares refinement were carried out to allow therefined occupation fractions of these two atoms to settledown, which reduced R to 0.065. The positions of thehydrogen atoms were calculated accurately from bondlength and angle considerations and found to correspondapproximately to their peaks in the difference map. Threefinal rounds of least-squares refinement, including thehydrogen atoms but without refinement, and allowing O(4)and O(7) to vibrate anisotropically, reduced the agreementfactor R to 0.056 after a total of 18 cycles, the largestparameter shifts being of the order 0.40, indicating that therefinement had converged. The accuracy of the structurewas confirmed by computing a final difference map whichshowed no peaks or depressions 0.3 eA-3. Final atomicco-ordinates are listed in Table 3 together with theirTABLE 3Fractional atomic co-ordinates with e.s.d.s in parenthesesxla0.594 8(4)0.321 4(10)0.270 5( 11)0.360 4(8)0.411 2(15)0.562 9( 10)0.681 4(9)0.525 l(10)0.469 9(10)0.501 l(11)0.451 9(13)0.381 2(13)0.352 2(12)0.398 7( 12)0.249 l(17)0.527 6(10)0.440 2( 10)0.473 4( 12)0.602 3(11)0.641 7(52)0.5660.4670.3830.3140.118Y lb0.375 O( 1)0.515 6(3)0.530 9(3)0.272 8(3)0.156 O(5)0.194 4(3)0.257 3(3)0.350 3(4)0.391 4(4)0.382 4(4)0.422 O(4)0.470 4(4)0.478 7(4)0.442 l(4)0.554 4(5)0.292 7(4)0.260 3(4)0.250 O(5)0.156 5(15)0.3440.4150.4510.5950.5610.201 7(4)standard deviations. Temperature factorszlc-0.024 l(2)0.398 l(6)0.206 3(6)0.285 3(6)0.215 7(9)0.078 5(6)0.102 5(7)0.181 O(6)0.298 2(7)0.376 3(8)0.336 7(7)0.223 5(7)0.144 4(7)0.320 2(9)0.116 4(7)0.205 5(7)0.174 7(8)0.038 3(7)0.052 l(29)0.3260.4650.0560.3270.340-0.045 4(5)and observedand calculated structure factors are listed in SupplementaryPublication No. SUP 21879 (16 pp., 1 microfiche).t Thefinal values for the occupation fractions of O(4) and O(7)were 0.85(2) and 0.19(2), respectively. These add up tounity, within one standard deviation, and were taken toindicate the presence of 17 f 5 of the minor E-isomer co-crystallised with the major 2-isomer of the trione (2).We acknowledge the support of the S.R.C.6/S63 Received, 6th May, 19763t For details of Supplementary Publications see Notice toAuthors No. 7 in J.C.S. Perkin I, 1975, Index issue
机译:138 J.C.S. Perkin 芳基丙炔基氯草酰酸酐的化学反应:芳基(氯)亚甲基四氢铀-2,4,5-三酮的化学和 3,4-M 等氢化异氧苄基亚甲基的 X 射线晶体结构代表Michael J. Begley、Leslie Crombie,' Roger G. Havard 和 Derek P. Reynolds,化学系,3.4-亚甲基二氧苯基丙炔酸和草酰氯形成混合酸酐,环化生成红色水敏芳基(氯)亚甲基四氢呋喃-2。4.5-三酮:采用单晶X射线方法研究了其混合Z,E几何形状。具有提供足够电子释放的取代基的芳基丙炔酸经历环化反应,但在其他情况下会形成芳基萘二甲酸酐和芳基丙炔酰氯。考虑了环化的机理,并描述了三酮的一些反应。诺丁汉大学,诺丁汉 NG7 2RD 和卡迪夫大学学院 CF1 3NR 对新化合物 C,,H,C10,的 3,4-亚甲二氧基-红色晶体的悬浮液进行处理.苯基丙炔酸 (1) 在苯与草酰氯中 在本文中,com-的化学和结构几乎没有给出预期的丙炔酰氯:取而代之的是,讨论了磅, 以及 th1977 139 反应的范围和机理.1 以下论文涉及它所经历的热重排.ArcAr CO-R0 0 I0 0A r v C 0 2 RC02H( 9 )(6)A r0H(13 1A r = 3.4-(CH202)C6H3红色化合物对三个芳香族质子和两个亚甲基二氧基质子以及HADV、1 869、1 838、1 788和1 723 cm-l显示出n.m.r.信号,这些结构可能由混合酸酐环化形成(4)。通过碱性水解为3,4-亚甲基二氧苯甲酰基丙酮酸,结构(2)被证明是正确的(5;R = H;烯醇化)。后者可以热降解为3',4'-亚甲基二氧基苯乙酮(6),而CO和CO,或者通过进一步碱处理,降解为(6)和草酸。醇与(2)反应得到酯(5;R = Me 或 Et),后者通过 (6) 和草酸二乙酯之间的 Claisen 缩合重新合成。乙烯基酰氯结构可能存在 ZE-异构化 (2),并通过 X 射线方法检查了立体化学。该化合物形成正交晶体,空间群Pbca,晶胞尺寸为a=7.95,b=23.78,c=11.93A,晶胞中含有8个分子(一个分子过对称单元)。采用重原子技术(664次反射)和精细的比块对角最小二乘法求解了该结构。图1显示了具有Z几何形状的结构的两个视图,图2显示了晶体图形编号。然而,在表象收敛后计算的差分图(R 0.077)显示,在环氧原子[0(5)]附近有一个额外的峰,在羰基的氧原子处有一个“空穴”[0(4)]。这被解释为表明存在有限量的E-异构体,这些E-异构体与Z-共结晶。这两种异构体在空间填充意义上是超级不可抗的,除了羰基图1-a-氯-3,4-亚甲二氧亚苄基-四氢呋喃-2,4,6-三酮0161a4图2晶体编号方案氧[0(4)]必须在O(4)和O(7)之间移动,并在O(5)和C(11)之间互换(图2)。因此,继续细化了“额外”初步帐户,L. Crombie, R. Havard, and D. P.Reynolds, J.C.S. Chem. Comm., 1973.266140 J.C.S. Perkin Iatom, 0(7),附在0(5)上,并且O(4)和O(7)的职业分数被允许变化。再细化收敛到R 0.056(使用各向异性温度因子)。O(4)和O(7)的占有分数在一个标准差内具有统一之和,从而证实了共结晶立体异构体的模型。键长和键角计算表明,与O(7)的接触距离不小于3.0 A,范德华半径之和:这表明2-异构体的晶体结构包含足够的空间图3分子堆积;垂直于caxis的视图以容纳E异构体的附加原子Q(7),而不会扭曲分子的紧密堆积。因此,晶体结构由图1所示的2-异构体和17%和5%的E-异构体组成。晶体中观察到的异构体比例是否代表总反应产物是不确定的。也不确定混合物是否反映了动力学或热力学控制,尽管后者似乎是可能的(在苯中回流 2 小时)。质子n.m.r.不能充分区分2-异构体和E-异构体,没有足够的扰动来改变芳香族质子的化学位移,并且无法对异构化进行lH溶液研究.0图4键长(A);e.s.d.s 0.01,除非括号中另有说明晶胞中分子的排列如图3所示,这证实了晶体结构内空间的可用性,以容纳E异构体的额外原子而不会变形。粘合长度和角度如图 4 和图 5 所示;如果考虑到那些被部分占用的职位中较大的不确定性,则采用预期值。苯环在0.03 A(x2 13.93)以内是平面的,五元环也是如此,环缩环x2 = 1.03,三酮环x2 = 3.77。正如预期的那样,苯和缩醛环是共面的:然而,分子的中心部分 [C(l),C(2) ,C(9)] 因共轭而扭曲,可能是为了避免 O(3) 和 C(3) 的紧密接触。C(l)-C(2) 键的扭转角为 33“,令人惊讶的是,C(l)-C(9)双键的扭转角为 11”。分子中产生的扭曲使0(3)-C(3)接触距离扩大到2.41 A,Cl-0(6)接触距离为2.89 A。 短分子间碳10(3)-C(12'),2.99 A;0(4)-C(8'), 3.00 安;O(6)-C(lO'),2.84 A;Q(6)-C(ll'), 2.95 安;0(7)-C(8'), 2.99 A.用过量的水在乙酸乙酯中处理红色三酮(2)导致酸(5;R = H),但具有 1 mol.equiv。水中的四酮C,,H,O,(7)可以以70%的收率分离出来。质谱图(方案1)触点观察如下:0(3)-C(9'),2.93 K;Cl 0图5 键角 { O ) ;e.s.d.s 1“,除非括号中另有说明,支持该结构,并且 U.V. 数据 [A,, (CHC1,)250 ( E 7510), 292 (6820), 332 (6180), 和 408 nm(13 300)] 表明它在很大程度上被醇化,如 (8)1977 141 在这种溶剂中。用水或氢氧化钠溶液处理(8)得到酸(5;R = H),和( 7 ) C,, H 60Jt1 +c@0 qL OSCHEME 1 用乙醇处理得到酯 (5;R = Et),酸酐的裂解和(9;R = Et)。在没有有机稀释剂的情况下,向红色三酮(2)本身添加过量的乙醇会导致放热反应并放出二氧化碳。如果在泡腾停止后,加水,则酯(5;R = Et) 得到。然而,如果将其放在一边,则可以从酸性溶液中分离出另外两种产物(10)和(l l)。然后.m.r.(10)的光谱显示了三个乙基(两个当量)、一个亚甲基单线态、亚甲基单线态和三个亚甲基二氧苯基芳香质子的信号。UV数据的比较显示,发色团与3,4-亚甲二氧基苯乙酮的发色团非常相似,但与4-单缩醛发色团的模型(例如木脂素沙里宁)有很大不同。质谱数据(方案2)也支持结构(10)的分配。第二产物的 n.m.r. 光谱显示了两个乙基、烯烃质子和亚甲基二氧苯基的信号:这导致了烯醇醚结构 (1 1)。其立体化学探索如下。(5;R r= Et)与重氮甲烷在催化量的三氟化硼的存在下得到(12),对烯烃3-质子的T 3.16。在用三氟乙酸处理时,该异构体发生立体突变,得到(13),T 3.82;上场位移表明,在这种情况下,甲氧羰基是反式的,是烯烃质子的.2 当在T 6.18L.H.的照射下观察到H-3信号增强21%时,这种几何形状得到了证实。 Jackman和S. Sternhell,“NylearMagnetic Resonance Spectroscopy在有机化学中的应用,2ndedn.,Pergamon,Oxford,1969。(OMe)。由于 (11) 中的 H-3 在 3.88 处共振,因此该化合物是 E-异构体。与4-(14)相反,2-烷氧基结构(11)-(13)的L4符号得到了UV数据的支持。由于烷氧基在=-不饱和k e t ~ n e , ~的p位被取代时会产生约30 nm的位移,因此(14)的主吸收应比3,4-me t h ylenediox ycinnamicester的波长更长(15)。N.m.r.数据显示,在所研究的溶剂中,没有(5)类化合物实际上表现出可归因于二氧代形式的共振:所有化合物都显示完全烯酸化,螯合质子信号接近7 -5。 主要的互变异构体似乎是 (16)。在对三酮(2)的化学性质进行研究之后,研究了一系列取代的达林基丙炔酸与草酰氯的反应,以评估合成的范围。结果总结在表1中:产率是指通过结晶或蒸馏分离的纯化合物的量。I M+ 3 3 8m*207.8J I +0 O E t+on+J T o2 9 3 .7 - 0L O\m*154.0 /方案 2在(a)-(d)情况下,原油产品的红外光谱显示,在分配给A的2 200 cm-l处有吸收。I. Scott,“天然产物紫外光谱的解释”,佩加蒙,牛津,1964142 J.C.S. Perkin IC Z 拉伸相应的酰氯 (18),它们是次要产物。对于情况(a)定量i.r.估计显示存在92%的苯三酮(19)和8%的酰氯(18);(b)-(d)的金额预计相似。(19)与(18)的比例在长时间回流时保持不变,两种纯化合物在苯中与草酰氯回流时保持不变:两者是相互竞争的途径产生的,都不是形成另一个的中间体。表1芳基丙炔酸(17)与草酰氯的反应分离产物(%)R1a Hb HC Hd He OMef Hh Hg HRa Ra--J O*CHg*OOMe OMeOMe OMeH OMeH OMeH HH MeH HH c1R4 ' (19) (18) (20)'H 75OMe 70H 76H 73H 41 6H 44 16H 41 40H 36 62(17) X = O H(18) X = C l(20)所有三酮(19)在420-480nm区域表现出深红色溶液,显示出强烈的吸收(E 12000-~00oO), 它们的 IR 光谱在羰基区域非常相似。质谱碎裂模式均遵循方案3中总结的*芳基萘(ZO),均与真实标本相同:是反应(e)-(h)中的重要产物。这些来自相应的乙炔酸酐5,它与酰氯一起,是草酰氯和羧酸的众所周知的产物6然而,在这些反应中,没有一个反应产生红色,表明三酮的形成,除了(e),这里没有分离出三酮。 通过M+直接分解为ArCGO的片段。即使在严格排除水分以避免污染的条件下,也观察到与后者相对应的微小峰(8):这往往意味着质谱仪中的一些异构化。三酮的形成必须涉及混合CI n l :Ar%o'N - 2 8 M-44 -coy*ArRbase peakSCHEME 3酸酐中乙炔的C-2的亲核置换[见(21)]。在环化的过渡态中,芳环被设想为与形成的三酮环正交。芳香族轨道与再杂交乙炔的阴影轨道重叠(图6)意味着芳香族环中取代基的电子效应对于稳定C-3处产生的正电荷至关重要;羰基与无阴影轨道重叠影响不大。因此,只有表1中的实施例(a)-(d),其均具有$-烷氧基,给出了氯三酮。当没有合适的电子释放时,即(e)-(h),反应采取另一条路线,导致芳基萘和酸图6氯化物。该机理的其他方面在下文中讨论了氯-三酮的热重排机理。(a) F.G.巴达尔,J.化学学报, 1947,224;(b) F. G. Baddarand L. S. El-Assal, 同上, 1848, 1267;(c) 1961年、1844年;( d ) F. G.Baddar, L. S. El-Assal, and N. A. Doss, 同上, 1956, 465;(e) 1969,1027;(f) F.G.巴达尔。G. E. M. Moussa, and M. T. Omar, J .Chem. SOC. ( C ) , 1968, 110.J. Cleyand J. F.Arens, Rec. Trav. chim., 1959,78, 929.R. Adams 和 L. H. Ulich, J .Amer. Chem. Soc., 1920, 42,6991977 143实验将a-氯-3,4-亚甲基二氧亚苄基四氢fuian-2,4,5-三酮(2).-草酰氯(10 g,80 mmol)加入到3,4-亚甲二氧苯基丙炔酸(5.7 g,30 mmol)的无水苯(10 cm3)的细磨悬浮液中。将混合物回流2小时。减压除去苯和过量的草酰氯,残渣从无水苯中结晶,得到四氢呋喃三酮(2)(6.2 g,75%),红板,熔点170-172'(分解。(找到:C,需要 C,51.3;H, 1.8;C1,12.65%;M,279.977),vmx(CHCl,)1869,1838,1788和1723 cm-l,Lx274sh(E 7 020),288(8 200),364(5 300),425sh(8 700)和473 nm(13 000),T [(CD,),CO] 2.45(1 H,dd,J5.6 8,J z S s2 Hz,arom。H-6)、2.70(1 H、d、J2.6 2 Hz、arom。H-2), 2.95(1 H , d, J 5 .6 8 Hz, arom.H-5)和3.78(2 H,s,CH,O,)。三酮(2)与水和醇的反应.-(a)与氢氧化钠水溶液。将三酮(2)(0.5g)用氢氧化钠水溶液(5%;10cm3)振荡。当红色排出(几分钟)后,溶液用盐酸酸化。沉淀,由乙醇水溶液结晶,呈淡黄色晶体,为3,4-亚甲二氧基苯甲酰~注酸(16;R = H) (348 mg, 83%), m.p. 197-199' (分解)(发现: C, 55.7;H, 3.35%;M+,第236页。CllH8O6 要求C,56.0;H, 3.4%;M,236),v,,(mull)3 200-2 400(羧酸),1730和1723(羰基),以及1633cm-l(烯醇对二酮),vmx。(EtOH) 352 (E 15 000),306infl (8 loo) 和 244 nm (7 300), T [(CD,),SO] -1.0551.3;H, 1.8;C1,12.6%;M+,279.977。Cl2H5C1O6(2 H,s),2.23(1 H,dd,J5.6 8,J 2.6 2 Hz,H-6),2.45(1 H,d,J 2,6 2 Hz,H-2),2.92(1 H,d,J 8 Hz,H-5),2.93(1 H,S,烯烃)和3.78(2 H,s,CH,O,)。乙醇溶液用氯化铁(II1)呈红色。(b) 含有 n 过量的水。将三酮(2)(533mg)用乙酸乙酯(10cm3)和水(1cm3)回流1.5小时。蒸发和结晶得到3,4-亚甲二氧基苯甲酰丙酮酸(16;R = H) (236 mg, 54%), m.p. 196-198' (分解)。(c) 用 1 mol. 当量的水。将乙酸乙酯水溶液(19.976g 1F;3cm3)加入到三酮(2)(932mg)在无水乙酸乙酯(7cm3)中的热溶液中。冷却后,溶液沉积了a-羟基-3,4-亚甲二氧亚苄基四氢呋喃-2,4,5-三酮(8)(621mg,71%)的黄针,熔点179'(分解),不因结晶(乙酸乙酯)而升高(发现:C,54.7:H,2.45;M+,第262页。Cl2H6O,需要C,54.95;H,2.3%: M, 262), vmaL (CHCI,) 1 850, 1 780, and 1 695 cm-1,Amx.(CHCl,) 250 (E 7 510), 292 (6 820), 332 (6 180), 和 408 nm (13 300), T [(CD,),CO] 2.15 (1 H , dd, J5,6 8, J2.62 Hz, arom.H-6)、2.43(1 H、d、J2.6 2 Hz、arom。H-2), 2.97(1 H, d, J5,6 8 Hz, arom.H-5)和3.81(2 H,s,CH,O,)。将三酮(2)(710mg)无水氯仿(300cm3)用乙醇(500mg)处理并保存60小时。蒸发溶液,残余物由乙醇水溶液结晶,得到3,4-甲基Zenedioxy苯甲酰~丙酮酸乙酯(16;R = Et) (5 11mg, 65%) 为淡黄色微晶,熔点70-71'(发现:C,59.0;H, 4.5%;M+,第264页。Cl3Hl2O6需要(螯合OH), 1 758, 1 738, 和 1 045 cm-1, A,,, (EtOH)248 (E 6 640), 309 (7 890), 和 360 nm (14 700), T (CCl,)-4.7br (1 H, s, 螯合 OH), 2.43 (1 H, dd, J5.6 8, J2,6烯烃), 3.20 (1 H, d, J5,6 8 Hz, H-5), 3.95 (2 H, s, CH202),(d) 含有n过量的乙醇。C, 59.1;H, 4.55%;M, 264), vmax (CCl,) 3 200-2 5002 Hz, H-6), 2-62 (1 H, d, 1 2 . 6 2 Hz, H-2), 3.16 (1 H , S,5.68 (2 H, q, J 7 Hz) 和 8.60 (3 H , t, J 7 Hz)。用氯化铁(II1)的乙醇溶液呈红色。在蒸发之前,通过g.1.c对混合物进行分析。(Celite 上 10% 角鲨烷的 5 f t by t in 列)以确定氯乙烷是否为产物。Sensi-tivity 足以检测到小于 1 年的产量,但没有观察到任何产量。将乙醇氯仿溶液(45.9 g 1-1;0.85 cm3)加入到无水氯仿(100 cmS)的三酮(2)(237 mg)中。之后60 h g.1.c.未显示氯乙烷。从无水乙酸乙酯蒸发结晶得到a-羟基-3,4-亚甲二氧基亚苄基四氢呋喃-2,4,5-三酮(8)(79mg,36%),熔点178-179'(分解)。(f) 在没有惰性溶剂的情况下用乙醇。(i) 短时间内熄灭。将无水乙醇(0.6cm3)分一杯羹加入到三酮(2)中。诱导期(分钟)后开始放热反应,红色化合物起泡溶解。一旦溶解完全,加入水(10 cm3)。沉淀的油凝固;乙醇水溶液结晶得到3,4-亚甲基二氧基苯甲酰丙酮酸乙酯(16;R = Et) (154 mg, 80%), m.p. 71-72'.将无水乙醇(10 cm 3)加入到三酮(2)中,并将所得溶液保存24小时。混合物用p.1.c.分离。在二氧化硅上用苯乙酸乙酯(7:1)作为洗脱剂。形成三个条带,并用乙酸乙酯萃取。最高的RF得到3,4-亚甲基-二氧苯甲酰丙酮酸乙酯(1 1)(69 mg),针头(苯),熔点128-130“(发现:C,61.7;H, 5.5%;M+,第292页。C15H1,06要求C,61.65;H, 5.5%;M,292),vmx。(CHCl,) 1735(a@-不饱和酯)、1 655(芳基和ap-不饱和酮)、1 604和1 582 cm-1、(EtOH)238(E 13 400)、280(11 800)和322 nm(12 050)、T(CDCl,)2.50(1 H,dd,(e)与1 mol.equiv.当量的乙醇。ii) 在很长一段时间内。J5.6 8,J2.6 2 Hz,H-6),2.59(1 H,d,J2,6 2 Hz,H-2),3.20(1 H,d,J5.6 8 Hz,H-5),4.01(2 H,S,CH202),3.88(1 H,S,烯烃),5.68(2 H,q,J 7 Hz),5.97(2 H,q,J 7 Hz),8.58(3 H,t,J 7 Hz)和8.70(3 H,J 7 Hz),和8.70(3 H,J 7 Hz,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 H,3 t , J 7 赫兹)。中间Rp的条带给出ethyZ 3,4-methyZene-dioxybenzoylpyruvate (10) (715 mg),叶片,m的diethyZ缩醛。p. 89-90'(乙醇水溶液)(发现:C,60.7;H, 6.6%;M+,338.C,,H,,O,需要C,60.35;H , 6.55% ;M,338),vmx。(mull)1750 (酯)和 1660 cm-1 (芳基酮), (EtOH)231 (E 17 800), 275 (7 050), 和 310 nm (8 320), T (CDCl,)2.43 (1 H, dd, J5.6 8, J2.6 2 Hz, H-6), 2.58 (1 H, d, J2.6 2 Hz,H-2), 3.17 (1 H, d, J5.6 8 Hz, H-5), 3.96 (2 H, S, CH,O,),6.38 (2 H, s,CH),5.75(2 H,q,J 7 Hz),8.73(3 H,t,J 7 Hz),6.45(4 H,q,J 7 Hz)和8.81(6 H,t,J 7 Hz)。最低RF带得到3,4-亚甲二氧基苯甲酰丙酮酸乙酯(16;R = Et) (242 mg), m.p.70-72'(来自乙醇)。a-羟基-3,4-亚甲二氧基苄基四氢呋喃-2,4,5-三酮(8)与水和醇反应。将氢氧化钠水溶液(5%;2cm3)加入到羟基三酮(8)(92mg)中。当泡腾停止时,溶液被酸化。沉淀从乙醇水溶液中结晶得到3,4-亚甲二氧苯甲酰基丙酮酸(16;R = H) (69 mg, 84%), m.p.197-198' (分解)。(b) 用水。将羟基三酮(8)(169 mg)、水(0.5 cm3)和乙酸乙酯(4 cm3)回流1 h,从乙醇水溶液中蒸发结晶得到3,4-亚甲二氧苯甲酰丙酮酸(16;R =H) (135 mg, 88%), m.p. 197-198'144 J.C.S. Perkin I(c) 含乙醇。羟基三酮 (9) (202 mg) 用乙醇 (0.5 cm3) 加热至泡腾停止并发生溶解。冷却时,3,4-亚甲基二氧基苯甲酰丙酮酸乙酯(165mg,8 1%)结晶;MP 71-72'。3,4-甲基苯二氧基苯甲酰丙酮酸乙酯的烯醇甲醚。-乙基3,4-甲基羟二氧基苯甲酸酯(2 64mg,1 mmol)的乙醚(10 cm3)用三氟化硼醚(0.06 cm3,0.05 mmol)和过量的二氮甲烷处理。20小时后,用碳酸氢钠水溶液洗涤溶液,然后加水,干燥(MgSO),蒸发。通过p.1.c将主要产物(12)与污染的E-异构体和起始材料(两者的R p均较低)分离。在二氧化硅上,以苯-乙酸乙酯(9:1)为洗脱剂。分子蒸馏(60“C;0.1 mmHg)得到3,4-亚甲二氧基苯甲酰~丙酮酸乙酯(12)(143mg)的(2)-烯醇甲醚,为油(Found: C, 60.55;H, 5.0%;M+, 278.C&&6 需要 C, 60.54;H, 5.05% ;M,278),vmaK(CHCl,)1 725(ap-不饱和酯),1 656(芳基,ap-不饱和酮),1620sh,1608和1590 cm-l,Amx。(EtOH) 239(z 13 300), 281 (10 SOO), 和 324 nm (11 300), 7 (CDC1,)2.50 ( I H, dd, J 5 .6 8, J 2 . 6 2 Hz, H-6), 2.63 (1 H, d, J2.6 2 Hz,H-2),'3.22 (1 H, d, J 5 , 6 8 Hz, H-5), 4.0 (2 H, S , CHZO,),3.16 (1 H, s, 烯烃)、6.23 (3 H, s, OCH)、5.70 (2 H, q,J 7 Hz) 和 8.65 (3 H, t, J 7 Hz)。将三氟乙酸(0.5 cm3)加入到Z-异构体(12)(140 mg)的氯仿(5 cm3)溶液中。10分钟后,蒸发溶液,并将残留物从苯-己烷中结晶,得到针状E异构体(13)(96mg),熔点。132-133' (发现: C, 59.9;H, 5.2%;Mf, 278), v,,, (CHC1,) 1733 (aP-不饱和酯),.1 656 (芳基, aP-不饱和酮), 1 605, 和 1583 cm-l, Lx. (EtOH) 238 (E 13 600), 281 (11 400), 和 323 nm (12 loo), T (CDC1,) 2.49 (1 H, dd, J5,6 8, J2,6 2 Hz,H-6), 3.99 (2 H, s, CH202), 3.82 (1 H, s, 烯烃), 6.18 (3 H,s, OCH,), 5.67 (2 H, q, J 7 Hz), 和 8.70(3 H、t、J 7 Hz)。将10%的CDCl溶液通过五次冻融循环脱气,并加入四甲基硅烷进行现场频率锁定。在辐照t T 6.17 (OMe)下,T 3.82处的烯烃信号比辐照场偏移时的积分强度高21 6.5.芳基丙炔A cids.-由相应的肉桂酸制备(1 7 s - c)和(1 7f)酸,然后进行酯化,然后进行溴化和脱氢溴化。肉桂酸是通过Doebner缩合制得的。草酰氯与芳基丙炔酸的反应,将无水苯中的芳基丙炔酸用过量的草酰氯(2-3mol.当量)回流,蒸发后纯化粗品(见下文)。产品及其溶液对湿度敏感;暴露在大气中保持在最低限度,所有溶剂都是无水的。在与酸(17a-d)反应中结晶得到有色芳基(氯)亚甲基四氢呋喃~2,4,5-三酮(19a-d)。当(17f和g)时,粗产物是悬浮在油中的黄色固体。将固体过滤掉并用少许苯洗涤,得到萘-' G. Markl, Chsm. Bey., 1961, 94, 3005;s. T. D. Gough 和 S.Tripett, J. Chem. SOC., 1962, 2333.H-6), 2.60 ( 1 H, d, J2.6 2 Hz, H-2), 3.18 ( 1 H, d, J 5 , g 8 Hz,二羧酸酐 (20f 或 g)。滤液蒸发,蒸馏得芳基丙炔酰氯(18f或g)。对于(lh),在55'C和0.2 mmHg下升华得到酰氯(18h)和不挥发性残基的结晶得到萘二甲酸酐(20h)。与(17f和g)的反应不同,与(17e)的反应混合物呈红色,但未分离出芳基(ch1oro)-亚甲基四氢呋喃三酮(1 9e)。粗产物升华(75“C和0.1mmHg)得到酰氯(18e),不挥发性残留物结晶得到萘(1 9e)。萘二甲酸酐(20e-h)与真实样品相同(混合m.p.和i.r.谱).4芳基丙炔酰氯(18e-h)与通过氯化亚砜作用在相应酸上作用制备的样品相同(i.r.谱)。表1总结了产品和产量。化合物(18)-(20)的性质见表2..对于涉及3,4-亚甲二氧苯基丙炔酸(17a)的反应,(19a)与(18a)的比率是根据i.r.的吸光度估计的。2 200 和 1 790cm-1 处的波段,使用校准图。a-氯-3,4-亚甲基二氧基-亚苄基四氢呋喃-2,4,5-三酮的晶体学分析 (2).-从乙酸乙酯溶液中生长出合适的三酮样品。围绕a轴拍摄振荡和Weisenberg照片,以建立近似的晶胞尺寸和空间群。为了进行强度测量,在希尔格和瓦特线性衍射仪上安装了大约 0.6 x 0.3 x 0.05 mm 尺寸的晶体,大约是 a 轴。在衍射仪上细化晶胞尺寸。使用Mo-K,通过动晶稳态计数器扫描方法收集0-7kl水平的辐射和强度数据。每次反射测量两次,并在数据缩减中取平均值。平均净计数 30.0。然后又进行了两个细化循环,之后允许原子温度因子各向异性变化。再循环3次,R值降低到0.077.然后计算差异合成,其主要特征是在键合距离内存在一个峰表2(a)三酮的数据 (19)回流Cryst.R2 R3 R4时间溶剂形式M.p.(“C)(19b)OMe OMe OMe 2 h PhH Orange 162- 154needles (decornp.)(19c) OMe OMe H 2.5h PhMe 棕色。158-160针(decornp.)(19d) OMe H H 10min PhH- Orange 138-139C6H14 针 (decornp.)找到 (yo) 必需 (yo)r-- \ -7 C H C1 式 C H C1(19b) 51.4 3.5 10.65 C,,HllC1O, 51.45 3.4 10.9 1;s) 53.95 2.75 13.2 C,,H,ClO, 54.1 2.6 13.3Xmax.(CHC1,)/nm (4(19b) 298 (7 710), 464 (12 500)(19c) 293 (8 030), 381 (5 880), 430 (9 600), 477 (15 100)(19d) 264sh (6 410), 287 (8 930), 422 (19 900).434sh (17 700)v,,./cm'-l (羰基区)(19b) 1 870, 1 830, 1 786, 1 723(19c) 1 870, 1 845, 1 786, 1 720(19d) 1861, 1788, 17257 [(CDJWI(19b)52.65 3.15 11.65 C13H,C106 52.6 3.05 11.95z 2.78 (2 H, s, H-2 和 -6), 6.08 (3 H, s, 4-0Me), 和 6.13(6 H, s, 3- 和 5-OMe)(1%) T 2.34 (1 H, dd. J 5 . 6 8, J2.6 2 Hz, H-6). 2.51 (1 H, d,Jz.6 2 Hz, H-2)、2.82 (1 H, d, J5.6 8 Hz, H-5)、6.00 (3 H,s, OMe) 和 6.14 (3 H, s, OMe)z cu. 2.05 和 cu. 2.85 (4 H, AB, multiplet, symmetricalabout z 2.47, H-2, -3, -4, and -6), and 6.03 (3 H, s, OMe)(19d)(b) 芳基萘和芳基丙炔酰氯RL R3 产品数据 M.p. 或 [b.p.] (“C) Lit. m.p. (”C) Ref.91-93 93-94 4c247-249 254-246 4aOMe H (184OMe H (20e)H Me (18f) [80 at 0.2 mmHg]H H (18g) [46 at 0.1 mmHg]H C1 (18h) 65-67 68-69 4sH C1 266-267 266-267 4eH Me (20f) 272-273 268-269 4dH H 258-259 255-256 4bof O(5).这对应于共结晶的三酮的少量E-异构体的存在。在确认中,差异图还显示了O(4)附近有一个大凹陷。差分图还揭示了所有氢原子的大致位置。附加原子被命名为O(7)并包含在结构因子计算中。O(4)的温度因子恢复为各向同性,O(4)和O(7)的温度因子被纳入各向同性温度因子的计算中,并对其占据分数进行了细化。又进行了5次最小二乘细化循环,使这两个原子的精制占据分数稳定下来,将R降低到0.065。根据键长和角度的考虑,精确计算了氢原子的位置,发现氢原子在差值图中与氢原子的峰值近似对应。最后三轮最小二乘细化,包括氢原子但未细化,并允许O(4)和O(7)各向异性振动,在总共18个循环后,一致性因子R降低到0.056,最大参数偏移量级为0.40,表明细化已经收敛。通过计算最终的差异图证实了结构的准确性,该图显示没有峰值或凹陷>0.3 eA-3。最终原子坐标与表3一起列在表3中,括号中带有e.s.d.s的分数原子坐标xla0.594 8(4)0.321 4(10)0.270 5( 11)0.360 4(8)0.411 2(15)0.562 9( 10)0.681 4(9)0.525 l(10)0.469 9(10)0.501 l(11)0.451 9(13)0.381 2(13)0.352 2(12)0.398 7( 12)0.249 l(17)0.527 6(10)0.440 2( 10)0.473 4( 12)0.602 3(11)0.641 7(52)0.5660. 4670.3830.3140.118Y lb0.375 O( 1)0.515 6(3)0.530 9(3)0.272 8(3)0.156 O(5)0.194 4(3)0.257 3(3)0.350 3(4)0.391 4(4)0.382 4(4)0.422 O(4)0.470 4(4)0.478 7(4)0.442 l(4)0.554 4(5)0.292 7(4)0.260 3(4)0.250 O(5)0.156 5(15)0.3440.4150.4510.5950.5610.201 7(4)标准差。温度系数zlc-0.024 l(2)0.398 l(6)0.206 3(6)0.285 3(6)0.215 7(9)0.078 5(6)0.102 5(7)0.181 O(6)0.298 2(7)0.376 3(8)0.336 7(7)0.223 5(7)0.144 4(7)0.320 2(9)0.116 4(7)0.205 5(7)0.174 7(8)0.038 3(7)0.052 l(29)0.3260.4650.0560.3270.340-0.045 4(5)和观察和计算的结构因子列在补充出版物中。SUP 21879 (16 页,1 张缩微胶片).t O(4) 和 O(7) 占用分数的最终值分别为 0.85(2) 和 0.19(2)。这些加起来在一个标准差内,表明存在 17 f 5% 的次要 E 异构体与三酮的主要 2-异构体共结晶 (2)。我们感谢 S.R.C.[6/S63 Received, 6th May, 19763t 有关补充出版物的详细信息,请参阅J.C.S. Perkin I, 1975, Index issue to Authors No. 7

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号