首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Photochemistry of ethyl 2-cyano-1,2-dihydroquinoline-1-carboxylates (Reissert compounds): synthesis of 2-cyanomethylinodole-1-carboxylates
【24h】

Photochemistry of ethyl 2-cyano-1,2-dihydroquinoline-1-carboxylates (Reissert compounds): synthesis of 2-cyanomethylinodole-1-carboxylates

机译:2-氰基-1,2-二氢喹啉-1-羧酸乙酯(Reissert 化合物)的光化学:2-氰甲基琉哚-1-羧酸酯的合成

获取原文
获取外文期刊封面目录资料

摘要

1976 2587Photochemistry of Ethyl 2-Cyano-1.2-d i hydroquinol ine-I -carboxylates(Reissert Compounds) : Synthesis of 2-Cyanomethylindole-1 -carboxyl-atesBy Masatumi Ikeda," Saeko Matsugashita, and Yasumitsu Tamura, Faculty of Pharmaceutical Sciences,Osaka University, 133-1, Yamada-kami, Suita, Osaka, JapanIrradiation of ethyl 2-cyano-l,2-dihydroquinoline-l -carboxylates (Reissert compounds) gives ethyl N- o- (3-cyanoallenyl)phenylcarbamates, which are readily converted into ethyl 2-cyanomethylindole-1 -carboxylates bytreatment with alumina.IN recent years the photochemistry of 1,2-amp;hydronaph-thalenes and their heterocyclic analogues has beeninvestigated extensively. As noted previously,2g ir-radiation of ethyl 2-cyano-l,2-dihydroquinoline-1 -carb-oxylates (Reissert compounds) (1) gives allenic com-pounds (2) which can be transformed into ethyl 2-cyanomethylindole-l-carboxylates (3).Because theesters (3) are considered to be potential synthetic pre-cursors of 2-substituted indole derivatives otherwise avail-able only by multi-step proce~ses,~ we have investigatedthis photochemical reaction in some detail. We describehere the synthesis of several ethyl 2-cyanomethylindole-l-carboxylates (3) as well as a procedure for their large-scale synthesis.The starting Reissert compounds (1) were synthesisedfrom the corresponding quinolines essentially as describedby Popp and his co-workers.*For preparative purposes, irradiation of an etherealsolution of the cyano-ester (la) with a 350 W high-pressure mercury lamp through a glass filter at 0-5 "Cgave the most satisfactory results.The reaction wasconveniently followed by n.m.r. spectroscopy. Thephotochromic behaviour of the starting material (la)can also be used as indicator of the progress of the reac-tion. Thus, a dark brown colour was present until allthe starting material had been consumed, and at the endof the reaction a yellow solution was obtained. Asdescribed later, the initial photoproduct is the alleniccompound (2a). However, since it was difficultto isolate this material (2a) in pure state,? the pro-duct was converted directly into ethyl 2-cyanomethyl-indole-l-carboxylate (3a), either by treatment of thephotolysate with alumina (in large-scale runs) or bypreparative t.1.c.on alumina or silica gel (in small-scaleruns). In a typical experiment, indole-l-carboxylate(3a) was isolated in 83 overall yield from 2.0 g of (Ia).Although the reaction can also be satisfactorily performedby irradiation in a Pyrex tube in 100 mg-scale runs, pro-longed irradiation or large-scale experiments led to ant Compound (2a) was partially transformed into (3a) during$ Quinoline Reissert compounds show no i.r. cyano-absorption.6(a) R. C . Cookson, S. M. de B. Costa, and J. Hudec, Chem.Comm., 1969, 1272; (b) H. Kleinhuis, R. L. C. Wijting, and E.Havinga, Tetrahedrovz Letters, 1971, 255; (c) K. Salisbury, ibid.,Q. 737; ( d ) H. Heimgarter, H.-T. Hansen. and H. Schmid. Helv.work-up.c h i m . Aamp;, 1972, 55,-3005; (e) D.A. Seeley, J . Amer. Chem. SOC.,1972, 94, 4378.increase in the amount of polymeric material, presum-ably owing to decomposition of the allenic compoundformed, and a resulting decrease in the yield of (3a).That ether is the solvent to be preferred was indicated bythe observation that the reaction of (la) in cyclohexane,benzene, methylene chloride, or acetone in either glassor Pyrex was slower than that in ether and gave a com-plex mixture from which (3a) was isolated in lower yields.Temperature is a critical factor. For example, when asolution of (la) in ether was irradiated in a glass tubeat 20 "C for 15 h, most of the starting material was re-covered, with small amounts of impurities, in spite of thefact that the colour change was observed.That the initial photoproduct from irradiation of (la)in ether is the allene (2a) was suggested from the spec-tral data of the crude material obtained after evaporationof the solvent.The i.r. spectrum (CHC1,) showed in-tense absorption a t 3 420 (NH), 2 220 (EN),$ 1 950(C=C=C), and 1 720 cm-1 (GO), and the n.m.r. spectrumexhibits two doublets ( J 6.6 Hz) at 6 6.85 (1 H) and 5.62(1 H) attributable to two allenic protons. Treatment ofthe crude (2a) with alumina or silica gel gave (3a) in goodyields.The structure of (3a) was apparent from spectral com-parisons (see Experimental section) with ethyl indole-l-carboxylate and from some interconversions describedlater. The formation of (3a) from (2a) is considered toproceed by base- or acid-catalysed intramolecularcyclisation.7* (a) B.Singh, J . Amer. Chem. Soc., 1968, 90, 3893; 1969, 91,3670; (b) K. R. Huffman, M. Burger, W. A. Henderson, jun.,M. Joy, and E. F. Ullman, J . Org. Chem., 1969, 34, 2407; (c) A.Padwa and G. A. Lee, J.C.S. Chem. Comm., 1972, 795; J . Org.Chem., 1975, 40, 1142; ( d ) P. T. Izzo and A. S. Kende, Tetra-hedron Letters, 1966, 5731 ; (8) J. Kolc and R. s. Becker, J . Amer.Chem. SOC., 1969, 91, 6513; J . Chem. SOC. (B), 1972, 17; (f) B. SLukjanow, M. I. Knjazschanski, J. W. Rewinski, L. E. Niworozs-chkin, and W. I. Minikin, Tetrahedron Letters, 1973, 2007;(g) M. Ikeda, S. Matsugashita, and Y . Tamura, J.C.S. Chem.Comm., 1973, 922; ( h ) M. Ikeda, S. Matsugashita, F. Tabusa, H.Ishibashi, and Y .Tamura, J.C.S. Chem. Comm., 1974, 433;1975, 575; (i) M. Ikeda, S . Matsugashita, and Y . Tamura, Chem.and Pharm. Budl. (Japan), 1976, 24, 1400.For example, see W. Schindler, Helv. Chim. A d a , 1957, 40,2156.F. D. Popp, L. E. Katz, C. W. Klinowski, and J. M. Wefer,J . Org. Chem., 1968, 33, 4447.F. P. Popp, Adv. Heterocyclic Chem., 1965, 9, 1.S. Kasparek and R. A. Heacock, Canad. J . Chem., 1966,44,2805.7 M. C. Caserio, ' Selective Organic Transformations,' ed.B. S. Thygarayan, Wiley, London, 1970, vol. 1, p. 2722588 J.C.S. Perkin IApplication of the procedure to ethyl 6-methyl- (lb),7-methyl- (lc), and 6-methoxy- (Id) 2-cyano-1,Z-di-hydroquinoline-1-carboxylates gave the correspondingindole-l-carboxylates (3b-d) but in much lower yields(see Experimental section).Ethyl 2-cyano-3-methyl-1,2-dihydroquinoline-l-carboxylate (If), was stable underthese photolysis conditions. Irradiation of ethyl 2-cyano-l,2-dihydro-4-methylquinoline- 1 -carboxylat e (1 e)in ether followed by treatment with alumina gave twoation of an ethanolic solution of (la) in a glass tubeproduced the ethanol adduct (7) in 4 4 4 6 yield. Thisreaction was not temperature-dependent and irradiationseither at 2 or at 20 "C gave essentially the same results.The structure of (7) was assigned on the basis of spectraldata. The i.r. spectrum (CClk) showed absorption a t3 360 (NH), 2 210 ( E N ) , and 1740 cm-l (GO), and theU.V. spectrum exhibits absorptions at 223 and 284 nmsimilar to those of N- (o-methylphenyl) carbamate (236R'R'ICN IC02EtNH I c o p( 7 )products : the indole-l-carboxylate (3e) and ethylendo-l-cyano-1 , la,2,6b-tetrahydro-6b-methylcyclo-propbindole-2-carboxylate (2,3-homoindole) (4) in 34and 16 yields, respectively.2h In this case no photo-chromism was observed.The structure of (4) and themore detailed study on the photoisomerisation to (4) willbe reported in a subsequent paper.Indole-l-carboxylates (3) were converted into 2-cyano-methylindoles (6) by mild hydrolysis. Thus, althoughalkaline hydrolysis of (3a) with potassium hydroxide inrefluxing ethanol resulted in 2-methylindole (5), presum-ably via indole-acetic acid which is known to be readilydecarboxylated,s treatment of (3a) with potassium car-bonate in ethanol at room temperature gave 2-cyano-methylindole (6a) in quantitative yield.Similar treat-ment of (3e) gave 3-methylindole-2-acetonitrile (6b) in79 yield.In contrast to the photoreaction of (la) in ether, irradi-(6) a; R = Hb ; R = M eand 280 nm). Its n.m.r. spectrum reveals a doubledoublet centred at 6 7.71 (Hb), a doublet with smallsplitting a t 6 5.45 (H,), and a doublet at 6 5.30 (Ha) withJab 8 and Jbc 12 Hz. In addition, a broad NH peak at 88.28 and signals of two ethoxy-groups and aromatic pro-tons are observed. The cis-stereochemistry of thedouble bond was tentatively assigned from the couplingconstant ( J 12 Hz) of the two olefinic proton^.^ An ana-logous reaction is the photolysis of a 2,2-disubstitutedchromen in ethanol.2cRecently conjugated aza-polyene structures of type(8) have been proposed for the coloured species observedin the low temperature photolysis (at 77 K) of 1,2-dihydroquinolines.2e The same photochromic behaviourwas observed with (la-d) under the photolysis condi-8 W.Schindler, Helv. Chim. Ada, 1958, 41, 1441.P. Laszlo and P. von R. Schleyer, Bull. SOC. chim. Frawe,1964, 871976 2589tions (in either ether or ethanol) we employed. On thebasis of this observation and documented examples ofthe photolytic behaviour of 1 ,Z-dihydronaphthalenes,lwe previously suggested that the photoisomerisation(l) - ( 2 ) involves (8) as intermediate.2g However,our preliminary mechanistic study has shown that thisreaction is mechanistically different from that of thecarbocyclic system and the aza-polyene (8) is not aprecursor of the allene (3).The details will be reportedlater.EXPERIMENTALN.m.r. spectra were determined with a Hitachi R-22spectrometer (90 MHz ; tetramethylsilane as internal stand-ard). 1.r. spectra were recorded with a Hitachi EPI-G2spectrophotometer, U.V. spectra with a Hitachi 124 spectro-photometer, and mass spectra with a Hitachi RMU-6Dinstrument a t 70 eV. Irradiations were carried out withan Eikosha 350 W high-pressure mercury lamp. Merck PF,,,alumina was used for preparative layer chromatographyReissert Comfiounds ( la-f) .-Reissert compounds (1)were prepared from the corresponding quinolines accordingto the method of Popp and his co-~orkers.~ Ethyl 2-cyano-1,2-dihydroquinoline- l-carboxylate ( la) (27 ) had m.p.68-69" (from ethanol) (lit.,4 70-72") ; the 6-methyl deriva-tive (lb) (49) had m.p.120-121" (from ethanol) (Found:C, 69.3; H, 5.9; N, 11.5. Cl,Hl,N,O, requires C, 69.4; H,5.8; N, 11.6); the 7-methyl derivative (lc) (35) hadm.p.79-80" (from ethanol) (Found: C, 69.3; H, 5.8; N, 11.5);the 6-metlzoxy-derivative (Id) (46) had m.p. 87-88" (fromethanol) (Found: C, 65.0; H, 5.2; N, 10.85. C14Hl,N,0,requires C, 65.1 ; H, 5.5; N, 10.85) ; the 4-methyl deriva-tive (le) (59) had m.p. 80-81" (from ethanol) (Found:C, 69.4; H, 5 . 8 ; N, 11.6); the 3-methyl derivative (If)(32) had m.p. 81-82" from light petroleum (b.p. 60-80"C) (Found: C, 69.3; H, 5.8; N, 11.75).Irradiatioiz of the Cyano-ester (la).-(A) Isolation of theallene (2a) and its conversion into the indole- l-carboxylate (3a).A solution of ( l a ) (150 mg) in ether (20 ml) was irradiated in aPyrex tube a t 2 "C until the starting material had disappeared(10 h ; checked by n.m.r.spectroscopy). The ether was re-moved in vacuo to give an oil consisting essentially of theallene (2a) ; vmx. (CHC1,) 3 420, 2 220, 1 950, and 1 720 cm-l;8 (CDCl,) 7.0-7.65 (4 H, m, aromatic), 6.85 (1 H, d, J 6.6Hz, allenic), 5.62 (1 H, d, J 6.6 Hz, allenic), 4.18(2 H, q, J 7 Hz, CO,*CH,*CH,), and 1.22 (3H, t ,J 7 Hz, CO,CH,CH,). The crude (2a) (103 mg) was sub-jected to p.1.c. (benzene) t o give ethyl 2-cyanomethylindole-l-carboxylate (3a) (67), m.p.121" from light petroleum (b.p.60-80 "C) (Found: C, 68.2; H, 5.4; N, 12.3. Cl,H1,N,O2requires C, 68.4; H, 5.3; N, 12.3); vmax. (KCl) 2 250 and1725 cm-l; A,, (EtOH) 225, 253, 261, 281, and 291 nm(log~4.31,4.09,4.07, 3.50,and3.54); S(CDC1,) 8.1 (m, l H ,H-7), 7.1-7.6 (3 H, m, aromatic), 6.75br (1 H, s, H-3), 4.56(2 H, q, J 7 Hz, CO,*CH,CH,), 4.16br (2 H, s, CH,*CN),and 1.51 (3 H, t , J 7 Hz, CO,CH,*CH,); m / e 228 (M+).Use of silica gel (Merck GF,,,) and benzene as solvent gavethe similar result.(13) Preparative procedure. A solution of (la) (2 g) inether (300 ml) in an immersion apparatus (glass filter) was(p.1.c.) firradiated a t 2 "C until the starting material had dis-appeared (18 h). To the photolysate was added alumina(Woelm neutral) (2 g) and the mixture was stirred for 5 11a t room temperature.The alumina was filtered off andconcentration of the filtrate afforded (3a) (1.67 g, 83).A solution of (la) (100 mg) inethanol (14 ml) was irradiated in a glass tube at 2 "C untilthe starting material had disappeared (15 h ; checked byt.1.c.). The ethanol was evaporated off and the residuewas submitted to p.1.c. (benzene) to afford ethyl 0-(3-cyano-l-etJzoxyal1yl)phenylcarbama~~ (7) (55 mg, 46o/b), m.p. 73-74"from light petroleum (b.p. 60-80 "C) (Found: C, 65.5; H,6.7; N, 10.0. Cl,Hl,N,03 requires C, 65.7; H, 6.6; N,10.2) ; vmax. (CCl,) 3 360, 2 210, and 1 740 cm-l; 6 (CDC1,)8.28br (1 H, s, NH), 8.03 (1 H, d, J 8 Hz, aromatic), 6.9-7.5(3 H, m, aromatic), 6.71 (1 H, dd, Jbc 12.0, Jab8.0Hz, Hb),4.22 (2 H, q, 7 Hz, CO,*CH,*CH,), 3.60 (2 H, q, J 7 Hz, O-CH,.CH,), 1.17 (3 H, t , CO,*CH,*CH,), and 1.14 (3 H, t, OCH,*CH,); A,,,.(EtOH) 223 and 284 nm (log E 4.22 and 3.07);in/e 274 (M+). Irradiation of the same solution of (la) a t20 "C also gave the adduct (7) (44).Irradiation of the Cyano-esttw (lb).-(A) A solution of (lb)(300 mg) in ether (40 ml) was irradiated in a Pyrex tube a t2 "C for 10 h. The ether was evaporated off and the residuewas subjected to p.1.c. (benzene) to give the indole (3b) (20nig, lay0), m.p. 108-109" from light petroleum (b.p. 60-80 "C) (Found: C, 69.3; H, 5.9; N, 11.3. Cl,Hl,N,O, re-quires C, 69.4; H, 5.8; N, 11.6); vmx. (KC1) 2 250 and1 730cm-1; 6 (CDCl,) 7.93 (1 H, d, J 9 Hz, H-7), 7.29br (1 H,s,H-4),7.12(1H,dd, JgandgHz,H-6),6.64(lH,s,H-3),4.52 (2 H, q, J 7 Hz, CO,CH,*CH,), 4.12br (2 H, s, CH,.CN), 2.41 (3 H, s, CH,), and 1.50 (3 H, t , J 7 Hz, CO,*CH,*CH,); A,, (EtOH) 232, 256, 263sh, 286, 290, and 297 nm(log E 4.39, 4.14, 4.11, 3.53, 3.56, and 3.56) ; wt/e 242 (Mf).The remaining product consisted mainly of the startingmaterial and polymeric material.Prolonged irradiationresulted in an increase in the amount of polymeric material.(B) A solution of (lb) (150 mg) in ether (20 ml) was irra-diated in a glass tube a t 2 "C. Samples were removed every5 h and analysed by n.m.r. spectroscopy. The starting ma-terial was 5074 consumed after 15 h. Separation of themixture by p.1.c. (benzene) gave (3b) in poor yield.Irradiation of the Cyano-ester (lc) .-(A) A solution of (lc)(300 mg) in ether (40 ml) was irradiated in a Pyrex tube a t2 "C for 10 h and concentrated.The indole (3c) was isolatedby p.1.c. (benzene) in 17 yield (25 mg); m.p. 98-99"from light petroleum (b.p. 60-80 "C) (Found: C, 69.4; H,5.8; N, 11.5. Cl,Hl,N,O, requires C, 69.4; H, 5.8; N,11.6); vmx. (KC1) 2 250 and 1740 cm-l; 6 (CDCl,) 7.92br(1 H, s, H-7), 7.38 (1 H, d, J 8 Hz, H-4), 7.06br (1 H, d,C0,-CH,*CH,), 4.11br (2 H, s, CH,*CN), 2.49 ( 3 H, s, CH,),and 1.50 (3 H, t, J 7 Hz, CO,*CH,*CH,); A,,, (EtOH)227, 259, 263sh, 283sh, 288sh, and 294 nm (log E 4.15, 3.95,3.94, 3.20, 3.08, and 3.08); mle 242 (amp;I+).( B ) Irradiation of the same solution of (lc) in a glass tubeat 2 "C for 15 h gave a mixture of (lc) (major) and severalphotoproducts including the allene (2c).Irradiation of the Cyano-ester (Id) .-(A) A solution of (Id)(150 mg) in ether (20 ml) was irradiated in a Pyrex tube at2 "C for 10 h.The indole (3d) was isolated by p.1.c. (benzene)in 10 yield (15 mg) ; m.p. 114-1 15" from light petroleum(b.p. 60-80 "C) (Found: C, 64.9; H, 5.5; N, 10.8. C14-H14N,0, requires C, 65.1; H, 5 . 5 ; Y, 10.85); vmx. (KC1)(C) Iradiation in ethanol.5.45 (1 H, d, Jbc 12.0 Hz, HJ, 5.30 (1 H, d, Jab 8.0 Hz, Ha),J 8 Hz, H-5), 6.65 (1 H, S, H-3), 4.53 (2 H, 9, J 7 Hz2590 J.C.S. Perkin I2 250 and 1 720 cni-1; 6 (CDCl,) 7.95br (1 H, d, J 10 Hz,H-7), 6.96 (1 H, s, H-4), 6.9Obr (1 H, d, J 10 Hz, H-6), 6.68br(1 H, s, H-3), 4.53 (2 H, q, J 7 Hz, CO,*CH,CH,), 4.15br (2H, s, CH,*CN), 3.86 (3 H, s, OCH,), and 1.51 (3 H, t, J 7 Hz,CO,-CH,*CH,); Amax.(EtOH) 240, 261, 297, and 307 nm(log E 4.48, 4.23, 3.71, and 3.69); m/e 258 (amp;I+).(B) Irradiation of the same solution of (Id) in a glass tubea t 2 "C for 15 h and work-up gave (3d) in poor yield.Irradiation of the Cyano-ester (le) .-(A) A solution of (le)(300 mg) in ether (40 ml) was irradiated in a Pyrex tube at2 "C for 8 h and concentrated. The residue was submittedto p.1.c. (benzene) to give compounds (3e) and (4) in 32 and10 yields, respectively. The indole (3e) had m.p. 88-89'from light petroleum (b.p. 30-60 "C) (Found: C, 69.4; H,5.9; hi, 11.3. C,,H,,N,O, requires C, 69.4; H, 5.8; N,11.6); vm,JKC1)2250and1 715cm-l; 6(CDC13)8.1(1H,in, H-7), 7.1-7.5 (3 H, m, H-4, -5, and -6), 4.55 (2 H, q,J 7 Hz, CO,*CH,*CH,), 4.10 (2 H, s, CH,CN), 2.26 (3 H,s, CH,), and 1.51 (3H, t, J 7 Hz, CO,.CH,*CH,) ; A,,,.(EtOH)229, 263, 286, and 294 (log E 4.32, 4.06, 3.37, and 3.37) ; m/e242 (M+). The physical and spectral data of (4) will bedetailed in a subsequent paper.(B) Irradiation of the same solution of (le) in a glass tubea t 2 "C for 15 h and work-up as above gave (3e) and (4) in34 and 16 yields, respectively.2-Methylindole (5).-A mixture of the indole (3a) (350mg) in ethanol (10 ml) and 10 potassium hydroxide (10ml) was refluxed for 3 h and the solvent was evaporated offin vacuo. The residue was acidified (dil. HC1) and extractedwith chloroform. The dried extract was concentrated andthe residual solid was recrystallized from light petroleum(b.p. 60-80 "C) to give (5) in quantitative yield; m.p. 58-59" (1it.,lo 59").Indole-2-acetonitrile (6a) .-A suspension of the indole (3a)(190 mg) and potassium carbonate (190 rng) in methanol(15 ml) was stirred at room temperature for 1 h. The po-tassium carbonate was filtered off, the filtrate was concen-trated, and the residual solid was recrystallized from lightpetroleum (b.p. 80-100 "C) to give the nitrile (6a) (127mg, 98), m.p. 103-104" (lit.,, 96-98').3-Melhylindole-2-acetonitvile (fib) .-By using the sameprocedure as above, the n i t d e (Gb) was obtained from (3a)(100 mg) in 79 yield; m.p. 90-91" from Iight petroleum(b.p. 60-80 "C) (Found: C, 77.6; H, 5.9; N, 16.5.C,,H,,,N, requires C, 77.6; H, 5.9; N, 16.5); v,,,. (KCl)3 350 and 2 250 cm-l; 8 (CDC1,) 7.9-8.2br (1 H, s, NH),7.0-7.6 (4 H, m, aromatic), 3.77 (2 H, s, CH,*CN), and 2.23(3 H, s, CH,).6/1362 Received, 12th July, 1976110 W. Madelung, Ber., 1912, 45, 1128
机译:1976 2587222-2-氰基-1.2-d乙基氢喹啉-I-羧酸乙酯的光化学:2-氰甲基吲哚-1-羧基酯的合成作者:Masatumi Ikeda,“Saeko Matsugashita, and Yasumitsu Tamura, Pharmaceutical Sciences,Osaka University, 133-1, Yamada-kami, Suita, Osaka, Japan辐照2-氰基-l,2-二氢喹啉-l-羧酸乙酯(Reissert compounds)辐照得到N-[o-(3-氰基丙烯基)苯基]氨基甲酸乙酯,其容易转化为乙酯2-氰甲基吲哚-1-羧酸酯用氧化铝处理。近年来,1,2-&氢萘苯及其杂环类似物的光化学得到了广泛的研究。如前所述,2-氰基-l,2-二氢喹啉-1-羧氧酸盐乙酯(Reissert 化合物)(1)的2g辐照产生烯离子(2),可转化为2-氰甲基吲哚-l-羧酸乙酯(3)。因为酯(3)被认为是2-取代吲哚衍生物的潜在合成前体,否则只能通过多步过程~ses获得,~我们已经详细研究了这种光化学反应。我们在此描述了几种2-氰基甲基吲哚-L-羧酸乙酯的合成(3)以及它们的大规模合成过程。起始的Reissert化合物(1)是由相应的喹啉类化合物合成的,基本上如Popp及其同事所描述的那样。*出于制备目的,用 350 W 高压汞灯通过玻璃滤光片在 0-5 “Cgave 下照射氰基酯 (la) 的空灵溶液,结果最令人满意。该反应之后方便地进行了n.m.r.光谱分析。起始材料(la)的光致变色行为也可以作为反应进展的指标。因此,在消耗完所有起始材料之前,存在深棕色,并且在反应结束时获得黄色溶液。如后所述,最初的光产物是烯酸化合物(2a)。然而,由于很难在纯态下分离这种材料(2a),?通过用氧化铝处理光解物(大规模运行)或通过制备氧化铝或硅胶(小规模运行)将前导管直接转化为 2-氰甲基吲哚-L-羧酸乙酯 (3A)。在典型的实验中,从2.0 g (Ia)中分离出吲哚-l-羧酸酯(3a)的总产率为83%。虽然该反应也可以通过在100 mg规模的耐热玻璃管中辐照来令人满意地进行,但长时间的辐照或大规模实验导致蚂蚁化合物(2a)在$喹啉Reissert化合物期间部分转化为(3a)氰基吸收.6(a) R. C.Cookson, S. M. de B. Costa, and J. Hudec, Chem.Comm., 1969, 1272;(b) H. Kleinhuis, R. L. C. Wijting, and E.Havinga, Tetrahedrovz Letters, 1971, 255;(c) K. Salisbury,同上,Q. 737;( d ) H.海姆加特,H.-T.汉森。和 H. Schmid。Helv.work-up.c h i m .A&, 1972, 55,-3005;(e) D.A. Seeley, J.Amer. Chem. SOC.,1972, 94, 4378.聚合物材料量的增加,可能是由于形成的烯丙化合物的分解,以及导致(3a)收率的降低。醚是优选的溶剂,通过观察观察到(la)在玻璃或耐热玻璃中的环己烷、苯、二氯甲烷或丙酮的反应比在乙醚中的反应慢,并得到复合混合物,从中分离(3a)以较低的产率。温度是一个关键因素。例如,当(la)在20“C的玻璃管中照射15小时时,尽管观察到颜色变化,但大部分起始材料被重新覆盖,并含有少量杂质。从溶剂蒸发后获得的粗品的光谱数据中可以看出,(la)在乙醚中照射的初始光产物是烯丙烯(2a)。红外光谱(CHC1,)在6 6.85 (1 H)和5.62(1 H)处表现出两个亚烯质子的张力吸收( 2 220 (EN)、$ 1 950(C=C=C)和1 720 cm-1 (GO),而n.m.r.谱在6 6.85 (1 H)和5.62(1 H)处表现出两个双峰(J 6.6 Hz)。用氧化铝或硅胶处理粗品(2a)得到(3a)的良好收率。(3a)的结构通过与吲哚-l-羧酸乙酯的光谱比较(见实验部分)和后面描述的一些相互转化中很明显。(3a)与(2a)的形成被认为是通过碱或酸催化的分子内环化进行的.7* (a) B.Singh, J .美国化学学会, 1968, 90, 3893;1969, 91,3670;(b) K. R. Huffman, M. Burger, W. A. Henderson, jun.,M. Joy, and E. F. Ullman, J.Org. Chem., 1969, 34, 2407;(c) A.Padwa和G.A.Lee, J.C.S. Chem. Comm., 1972, 795;J .Org.Chem., 1975, 40, 1142;( d ) P. T. Izzo 和 A. S. Kende, Tetra-hedron Letters, 1966, 5731 ;(8) J. Kolc 和 R. s. Becker, J .Amer.Chem. SOC., 1969, 91, 6513;J .Chem. SOC. (B), 1972, 17;(f) B. SLukjanow, M. I. Knjazschanski, J. W. Rewinski, L. E. Niworozs-chkin, and W. I. Minikin, Tetrahedron Letters, 1973, 2007;(g) M. Ikeda, S. Matsugashita, and Y .田村, J.C.S. Chem.Comm., 1973, 922;( h ) M. Ikeda, S. Matsugashita, F. Tabusa, H.Ishibashi, and Y .田村, J.C.S. Chem. Comm., 1974, 433;1975, 575;(i) 池田先生Matsugashita和Y.田村化学和制药布德尔(日本), 1976, 24, 1400.例如,参见W. Schindler, Helv.奇姆。A d a , 1957, 40,2156.F. D. Popp, L. E. Katz, C. W. Klinowski, and J. M. Wefer,J .Org. Chem., 1968, 33, 4447.F. P. Popp, Adv. Heterocyclic Chem., 1965, 9, 1.S. Kasparek 和 R. A. Heacock, Canad. J .Chem., 1966,44,2805.7 M. C. Caserio, ' Selective Organic Transformations', ed.B. S. Thygarayan, Wiley, London, 1970, vol. 1, p.2722588 J.C.S. Perkin将该程序应用于6-甲基-(lb)、7-甲基-(lc)和6-甲氧基-(Id)乙基-1,Z-二氢喹啉-1-羧酸酯,得到相应的吲哚-l-羧酸酯(3b-d),但产率要低得多(参见实验部分)。2-氰基-3-甲基-1,2-二氢喹啉-l-羧酸乙酯(If)在这些光解条件下是稳定的。将乙基-2-氰基-l,2-二氢-4-甲基喹啉-1-羧酸e(1e)在乙醚中辐照,然后用氧化铝处理,得到(la)的乙醇溶液在玻璃管中的二次反应,以4 4 4 6%的产率产生乙醇加合物(7)。该反应与温度无关,在 2 或 20 “C 下照射得出的结果基本相同。(7)的结构是在光谱数据的基础上分配的。红外光谱(CClk)的吸收率为t3 360(NH)、2 210(E N)和1740 cm-l(GO),以及U.V.光谱在223和284 nm处表现出与N-(邻甲基苯基)氨基甲酸酯(236R'R'ICN IC02EtNH I c o p( 7 )产物相似的吸收:吲哚-l-羧酸酯(3e)和乙基-l-氰基-1,la,2,6b-四氢-6b-甲基环丙[b]吲哚-2-羧酸酯(2,3-高吲哚)(4)的收率分别为34%和16%。(4)的结构和(4)光异构化的更详细研究将在后续论文中报道。吲哚-l-羧酸盐 (3) 通过温和水解转化为 2-氰基甲基吲哚 (6)。因此,尽管(3a)与氢氧化钾回流乙醇的碱性水解导致2-甲基吲哚(5),推测是通过已知容易脱羧的吲哚-%乙酸,在室温下用碳酸钾在乙醇中的乙醇处理(3a)得到2-氰基甲基吲哚(6a)。类似的(3e)处理得到3-甲基吲哚-2-乙腈(6b)的收率为79%。与(la)在乙醚中的光反应相反,辐照-(6)a;R = 血红蛋白 ;R = M e和 280 nm)。其n.m.r.谱显示,双峰中心为6 7.71(Hb),小分裂的双峰为6 5.45(H,),双峰为6 5.30(Ha),Jab 8和Jbc为12 Hz。此外,在88.28处观察到宽NH峰以及两个乙氧基和芳香族质子的信号。双键的顺式立体化学初步由两个烯烃质子的耦合常数(J 12 Hz)分配^.^ 同源反应是2,2-二取代铬在乙醇中的光解.2c最近针对在1,2-二氢喹啉的低温光解(77 K)中观察到的有色物质提出了(8)型共轭的氮杂-多烯结构.2e在光解条件-8 W.Schindler下观察到相同的光致变色行为, 赫尔夫。奇姆。Ada, 1958, 41, 1441.P. Laszlo 和 P. von R. Schleyer, Bull.SOC. chim.Frawe,1964,871976 2589tions(在乙醚或乙醇中)。基于这一观察和记录在案的1,Z-二氢萘的光解行为实例,lwe先前提出光异构化[(l) - (2)]涉及(8)作为中间体.2g然而,我们的初步机理研究表明,该反应在机理上与碳环系统不同,氮杂-多烯(8)不是丙烯(3)的前体。详情将在稍后公布。EXPERIMENTALN.m.r.光谱用日立R-22光谱仪(90 MHz;四甲基硅烷作为内部标准)测定。使用日立 EPI-G2 分光光度计记录 1.r. 光谱,使用 Hitachi 124 分光光度计记录紫外光谱,使用 Hitachi RMU-6Dinstrument a t 70 eV 记录质谱。使用Eikosha 350 W高压汞灯进行照射。Merck PF,,,氧化铝用于制备层层析Reissert Comfiounds ( la-f) .-Reissert compounds (1)由相应的喹啉类化合物(1)根据Popp及其co-~orkers的方法制备~2-氰基-1,2-二氢喹啉-l-羧酸乙酯(la)(27%)具有熔点68-69“(来自乙醇)(lit.,4,70-72”);6-甲基衍生物(lb)(49%)的分子量为120-121“(来自乙醇)(发现:C,69.3;H, 5.9;N,11.5。Cl,Hl,N,O,需要C,69.4;H,5.8;N, 11.6%);7-甲基衍生物(LC)(35%)hadm.p.79-80“(来自乙醇)(发现:C,69.3;H, 5.8;N, 11.5%);6-甲基三氧基衍生物(Id)(46%)的熔点为87-88“(来自乙醇)(发现值:C,65.0;H, 5.2;N,10.85。C14Hl,N,0,需要C,65.1;H, 5.5;N, 10.85%) ;4-甲基衍生物(LE)(59%)的熔点为80-81“(来自乙醇)(发现:C,69.4;H, 5 .8 ;N, 11.6%);3-甲基衍生物(If)(32%)的熔点为81-82“ [来自轻质石油(b.p. 60-80”C)](发现:C,69.3;H, 5.8;N, 11.75%)。氰基酯(la)-(A)的辐照烯(2a)的分离及其转化为吲哚-l-羧酸酯(3a)。将(l a)(150 mg)的乙醚(20 ml)溶液在耐热玻璃管a t 2“C中照射,直到起始物质消失(10小时;通过N.M.R.SPECTROSCOPY检查)。乙醚在真空中重新移动,得到主要由烯丙烯组成的油(2a);(CHC1,) 3 420、2 220、1 950 和 1 720 cm-l;8 (CDCl,) 7.0-7.65 (4 H, m, 芳香族), 6.85 (1 H, d, J 6.6Hz, allenic), 5.62 (1 H, d, J 6.6 Hz, allenic), 4.18(2 H, q, J 7 Hz, CO,*CH,*CH,), 和 1.22 (3H, t ,J 7 Hz, CO,CH,CH,).将粗品(2a)(103mg)分液至p.1.c。(苯)得到2-氰甲基吲哚-L-羧酸乙酯(3a)(67%),m.p.121“ [来自轻石油(b.p.60-80”C)](发现:C,68.2;H, 5.4;N,12.3。Cl,H1,N,O2需要C,68.4;H, 5.3;N, 12.3%);最大值。(KCl) 2 250 和 1725 cm-l;A,, (EtOH) 225、253、261、281 和 291 nm(log~4.31、4.09、4.07、3.50 和 3.54);S(CDC1,) 8.1 (m, l H ,H-7), 7.1-7.6 (3 H, m, 芳香族), 6.75br (1 H, s, H-3), 4.56 (2 H, q, J 7 Hz, CO,*CH,CH,), 4.16br (2 H, s, CH,*CN) 和 1.51 (3 H, t , J 7 Hz, CO,CH,*CH,);m / e 228(M+)。使用硅胶(Merck GF,,,)和苯作为溶剂得到了类似的结果。(13)制备程序。在浸泡装置(玻璃过滤器)中(p.1.c.)用(p.1.c.)辐照t 2“C的(la)(2g)醚(300ml)溶液,直到起始材料消失(18小时)。向光解产物中加入氧化铝(Woelm中性)(2克),并将混合物搅拌5 11a t室温。滤去氧化铝,滤液浓度为(3a)(1.67克,83%)。将(la)(100mg)乙醇(14ml)溶液在2“C的玻璃管中照射,直到起始物质消失(15小时;检查byt.1.c.)。蒸发乙醇,将残留物提交到p.1.c。(苯)得到乙基0-(3-氰基-l-etJzoxyal1yl)苯基氨基甲酸~~ (7) (55 mg, 46o/b), 熔点 73-74“[来自轻质石油 (b.p. 60-80 ”C)] (发现: C, 65.5;H,6.7;N,10.0。Cl,Hl,N,03 需要 C, 65.7;H, 6.6;N,10.2%);最大值。(CCl,) 3 360、2 210 和 1 740 cm-l;6 (CDC1,)8.28br (1 H, s, NH), 8.03 (1 H, d, J 8 Hz, 芳香族), 6.9-7.5(3 H, m, 芳香族), 6.71 (1 H, dd, Jbc 12.0, Jab8.0Hz, Hb),4.22 (2 H, q, 7 Hz, CO,*CH,*CH,), 3.60 (2 H, q, J 7 Hz, O-CH,.CH,)、1.17 (3 H, t, CO,*CH,*CH,) 和 1.14 (3 H, t, OCH,*CH,);一个。(EtOH) 223 和 284 nm(对数 E 4.22 和 3.07);in/e 274 (M+)。辐照相同的溶液(la)t20“C也得到加合物(7)(44%)。辐照氰基-esttw(lb).-(A)在乙醚(40ml)中的溶液(lb)(300mg)在耐热玻璃管t2“C中辐照10小时。乙醚被蒸发掉,残余物被置于p.1.c。(苯)得到吲哚(3b)(20nig,lay0),熔点108-109“ [来自轻质石油(b.p. 60-80”C)](发现:C,69.3;H, 5.9;N,11.3。Cl,Hl,N,O,要求C,69.4;H, 5.8;N, 11.6%);(KC1)2 250和1 730cm-1;6 (CDCl,) 7.93 (1 H, d, J 9 Hz, H-7), 7.29br (1 H,s,H-4),7.12(1H,dd, JgandgHz,H-6),6.64(lH,s,H-3),4.52 (2 H, q, J 7 Hz, CO,CH,*CH,), 4.12br (2 H, s, CH,.CN)、2.41 (3 H, s, CH,) 和 1.50 (3 H, t , J 7 Hz, CO,*CH,*CH,);A,, (EtOH) 232、256、263sh、286、290 和 297 nm(log E 4.39、4.14、4.11、3.53、3.56 和 3.56);重量/e 242 (Mf)。其余产品主要由起始材料和聚合物材料组成。长时间的照射导致聚合物材料的量增加。(B)将(lb)(150mg)的乙醚(20ml)溶液在玻璃管a t 2“C中浸泡,每5小时取出样品,并通过n.m.r.光谱分析。起始马为5074,15小时后消耗。通过p.1.c.分离它们(苯)得(3b)收率低。将(lc)的氰基酯(lc)-(A)在乙醚(40ml)中的溶液在耐热玻璃管at2“C中辐照10小时并浓缩。吲哚(3c)通过p.1.c分离。(苯)收率为17%(25mg);m.p. 98-99“[来自轻质石油(b.p. 60-80”C)](发现:C,69.4;H,5.8;N,11.5。Cl,Hl,N,O,需要C,69.4;H, 5.8;N,11.6%);vmx. (KC1) 2 250 和 1740 cm-l;6 (CDCl,) 7.92br(1 H, s, H-7), 7.38 (1 H, d, J 8 Hz, H-4), 7.06br (1 H, d,C0,-CH,*CH,), 4.11br (2 H, s, CH,*CN), 2.49 ( 3 H, s, CH,),和 1.50 (3 H, t, J 7 Hz, CO,*CH,*CH,);A,,, (EtOH)227、259、263sh、283sh、288sh 和 294 nm(对数 E 4.15、3.95、3.94、3.20、3.08 和 3.08);mle 242 (&I+)。(B)在2“C的玻璃管中照射相同的(lc)溶液15小时,得到(lc)(主要)和包括丙烯(2c)在内的几种光产物的混合物。辐照氰基酯(Id).-(A)在乙醚(20ml)中的溶液在耐热玻璃管中在2“C下辐照10小时,吲哚(3d)通过p.1.c分离。(苯)收率为10%(15mg);m.p. 114-1 15“ [来自轻质石油(b.p. 60-80 ”C)] (发现: C, 64.9;H, 5.5;N,10.8。C14-H14N,0,需要C,65.1;H, 5 .5 ;Y, 10.85%);5.45 (1 H, d, Jbc 12.0 Hz, HJ, 5.30 (1 H, d, Jab 8.0 Hz, Ha),J 8 Hz, H-5), 6.65 (1 H, S, H-3), 4.53 (2 H, 9, J 7 Hz2590 J.C.S. Perkin I2 250 和 1 720 cni-1; 6 (CDCl,) 7.95br (1 H, d, J 10 Hz,H-7), 6.96 (1 H, s, H-4), 6.9Obr (1 H, d, J 10 Hz, H-6), 6.68br(1 H, s, H-3), 4.53 (2 H, q, J 7 Hz, CO,*CH,CH,), 4.15br (2H, s, CH,*CN), 3.86 (3 H, s, OCH,), 和 1.51 (3 H, t, J 7 Hz,CO,-CH,*CH,);最大值。(EtOH) 240、261、297 和 307 nm(log E 4.48、4.23、3.71 和 3.69);m/e 258 (&I+)。(B)在玻璃管t 2“C中照射相同的(Id)溶液15小时,后处理得到(3d),收率很差。氰基酯(le)的辐照。-(A)将(le)(300mg)的乙醚(40ml)溶液在2“C的耐热玻璃管中照射8小时并浓缩。残留物已提交至p.1.c。(苯)得到化合物(3e)和(4),产率分别为32%和10%。吲哚(3e)的熔点为88-89'[来自轻质石油(b.p.30-60“C)](发现:C,69.4;H,5.9;嗨,11.3。C,,H,,N,O,需要C,69.4;H, 5.8;N,11.6%);vm,JKC1)2250和1 715cm-l;6(CDC13)8.1(1H,in,H-7),7.1-7.5(3 H,m,H-4,-5和-6),4.55(2 H,q,J 7 Hz,CO,*CH,*CH,),4.10(2 H,s,CH,CN),2.26(3 H,s,CH,)和1.51(3H,t,J 7 Hz,CO,。CH,*CH,) ;一个。(EtOH)229、263、286和294(对数E 4.32、4.06、3.37和3.37);米/E242 (M+)。(4)的物理和光谱数据将在后续论文中详细介绍。(B)将相同的(le)溶液在玻璃管t 2“C中照射15小时,并如上所述进行处理,分别得到34%和16%的产率.2-甲基吲哚(5).-吲哚(3a)(350mg)在乙醇(10ml)和10%氢氧化钾(10ml)中的混合物回流3小时,并将溶剂真空蒸发。将残留物酸化(dil.HC1)并用氯仿萃取。将干燥的提取物浓缩,残余固体用轻质石油(b.p.60-80“C)重结晶,得到(5)定量收率;MP 58-59“ (1it.,lo 59”)。将吲哚-2-乙腈(6a).-吲哚(3a)(190mg)和碳酸钾(190rng)在甲醇(15ml)中的悬浮液在室温下搅拌1小时。滤去碳酸钾,浓缩滤液,残余固体从轻石油(b.p.80-100“C)重结晶,得到腈(6a)(127mg,98%),熔点103-104”(lit.,,96-98').-使用与上述相同的步骤,从(3a)(100mg)中获得n-t d e(Gb),收率为79%;m.p. 90-91“ [摘自 Iight petroleum(b.p. 60-80 ”C)] (Found: C, 77.6;H, 5.9;N,16.5.C,,H,,,N,需要C,77.6;H, 5.9;N, 16.5%);v,,,.(KCl)3 350 和 2 250 cm-l;8 (CDC1,) 7.9-8.2br (1 h, s, NH),7.0-7.6 (4 h, m, 芳香族), 3.77 (2 h, s, CH,*CN) 和 2.23 (3 h, s, CH,)。[6/1362 收稿日期,7月12日,1976110 W. Madelung, Ber., 1912, 45, 1128

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号