首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthetic approaches to the thiathromboxanes. Part 1. Preparation of functionalised dihydrothiopyrans
【24h】

Synthetic approaches to the thiathromboxanes. Part 1. Preparation of functionalised dihydrothiopyrans

机译:硫甲酮的合成方法。第 1 部分。官能化二氢硫代吡喃的制备

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1988 Synthetic Approaches to the Thiathromboxanes. Part I.Preparation of Functional ised Dihydrothiopyrans Kevin R. Lawson, Brian P. McDonald, Owen S. Mills, Robert W. Steele, James K. Sutherland * and Trevor J. Wear Chemistry Department, The Victoria University of Manchester, Manchester M 13 9PL Andrew Brewster and Peter R. Marsham I.C.I. Pharmaceuticals Division, Mereside, Alderle y Park, Macclesfield, Cheshire SK 10 4TG A hetero- Diels-Alder reaction between diethyl thioxomalonate and derivatives of hexa-3,5-dienoic acid yields 5,6,6-trisubstituted 5,6-dihydro-2H-thiopyrans. The hydrolysis and decarboxylation of these compounds has been investigated. The iodo-lactonisation of these compounds has given a variety of products. Efficient routes have been developed to 4-formyl-3a,7a-dihydro-4H-thiopyrano4,3-~furan-2(3H)-one dimethyl acetal and the related malonic ester. The prostacyclins and complementary thromboxanes (1) have generated much interest both as models for the preparation of drugs and because of their important biological properties.Carba- and thia-analogues of thromboxane A, have attracted attention because of their greater stability to hydrolysis compared with the bicyclo3.1.1 system of thromboxane. We set out to develop a route to the thia- and dithia-thromboxane A, analogues. The broad strategy of the approach is similar to that Corey developed for the prostaglandins and required a functionalised intermediate to which the two side chains could be attached and which allowed the four-membered ring to be introduced at a late stage.A compound which might fulfill these requirements was the lactone (2) which became the initial target. At the inception of this work it was known that oxomalonate could act as a dienophile in Diels-Alder reactions3 In addition n (1) (2) (3) X = H,OAc (4) X = H,OH (5) x = 0 the original demonstration by Middleton that hexafluoro- thioacetone is a reactive dienophile was followed by the use of presumably the 1,3-interaction of this group with the sulphur lone pair is energetically less than that with the syn-clinal ethoxycarbonyl ethyl group (Figure 1). No directly comparable structure seems to have been reported so Table 1 lists selected geometric features for the dihydrothiopyran ring.Recently the structure of a dihydro- thiopyranoxide has appeared;g in comparison the ring in the oxide, which also adopts the half-chair conformation, is less planar and the bond corresponding to S-C(l) seems to be lengthened. With the regiochemistry of addition firmly established the reaction was carried out with a number of relevant dienes. Ethyl and methyl hexa-3,5-dienoates were treated with P4S and diethyl oxomalonate in boiling THF to give the adducts (6) and (7) in 6amp;70 yield. The ethyl ester (6) showed I,,,. 219 nm (E 1800) and 6, 5.83 (1 H, ddt, J 10.5, 4.5,and 2 Hz), 5.72 (1 H, dm, J 10.5 Hz), 3.41 (1 H, m), 3.13 (1 H, dq, J 18 and 2 Hz), 2.95 (lH,ddt,J18,4.5,andlHz),2.49(1H,dd,J16and8.5Hz),and 2.38 (1 H, dd, J 16 and 5.5 Hz) in addition to the ester signals. Hexa-3,5-dienoic acid gave an unsatisfactory yield (24) of the C02R' CO, R1 I C = cis T =trans thioben~ophenone,~methyl cyanodithioformate,' dithioe~ters,~ and a-acyl dithioesters in such a role.Vyas and Hay' showed that the regiochemistry of thioxo addition to unsymmetrical dienes was the reverse of that with the 0x0 group. In the light of these results we investigated the generation of thioxomalonate in situ from oxomalonate and P,S,, and its trapping by dienes.? In the first experiment 1-acetoxybutadiene reacted to give the adduct (3) which could be hydrolysed to the alcohol (4) and then oxidized to the ketone (5). Spectroscopic data were in accord with these structures but to put the matter beyond doubt the structure of the acetate was determined by X-ray crystallography.The dihydrothiopyran ring of (3) adopts a half- chair conformation with the acetoxy group pseudo-axial; t Thioxomalonate has also been generated by the reaction of dibromomalonate with KS(CS)OEt (J. L. Herrman,G. R. Kieczykowski, and R. H. Schlessinger, Tetrahedron Lett., 1973, 2433). 664 J. CHEM. SOC. PERKlN TRANS. I 1988 c4 Table 1. -7-D C(3) (34) C(5)S C(1) C(2)C(6) (39) C(5) C amp;Cll* c111 Figure 1. Compound (3) Bond lengths A-B B-C C-D 1.810(3) 1.519(5) 1.486(6) 1.309(7) 1.478( 8) 1.802(5) 1.531(5) 1.536(4) 1.459(4) 3C8 -Bond angles ABC BCD 111.8(2) 114.8(3) 125.4(4) 126.9(4) 113.1(3) 96.7(2) 106.7(2) 110.3(2) 105.1(3) Torsion angles ABCD 47 -13 1 -23 47 -60 180 63 -74 The atoms C(l), C(6), 0(1), 0(2), C(7) are co-planar within 0.001 A, C(1), C(9), 0(3), 0(4), C(10) within 0.009 A, and C(2), 0(5), 0(6), C(12), C(13) within 0.015 A adduct (8)and since we were unable to hydrolyse selectively the triesters (6) or (7) to this acid in good yield other routes were developed. The acetate of hexa-3,5-dien-l-ol gave the adduct (17) in good yield.In an attempt to remove the acetoxy group with NaOEt-EtOH the monoesters (19) were obtained as a cisltrans mixture. Since the triester (6) is inert to these conditions the intermediacy of the lactone (20) is likely, followed by cleavage to the mixed carbonate and thence to (18) and diethyl carbonate.Acid-catalysed transesterification gave the alcohol (18) which was oxidized to the acid (8).The alcohol (18) could be converted into the corresponding aldehyde by Swern oxidation." The most satisfactory route to the monoacid (8) utilised 2,2,2-trichloroethyl hexa-3,Sdienoate which gave the adduct (9) in good yield; reduction with Zn-AcOH then generated the acid (8). When oxomalonate was replaced by butyl glyoxalate* addition to ethyl hexa-3,5-dienoate occurred in poor yield to give a 4:1 mixture of trans- and cis-isomers (12). In the major isomer 2-H resonated at 6 3.46 (J3.8 Hz) and in the minor at 3.82 (J 4.5 Hz). On alkaline hydrolysis a 4: 1 mixture of the dicarboxylic acids (13) was obtained with 2-H in the major isomer at 6 3.54 (J3.5 Hz) and in the minor at 6 3.88 (14.5 Hz).On treatment with Ac,O the acids were converted into the anhydrides (16) which, on hydrolysis, gave the original mixture of acids. The major anhydride isomer showed 2-H as a doublet * Since then a number of methods for the generation of thioaldehydes have been developed but we have not applied them. (See G. W. Kirby and A. W. Lochhead, J. Chem. Soc., Chem, Commun., 1983,423; J. E. Baldwin and R. C. G. Lopez, Tetrahedron, 1983, 39, 1487). at 6 4.08 (J 11 Hz) suggesting a trans-ring junction. On this basis, both acids and esters with 2-H at 6 ca. 3.8 were assigned cis stereochemistry. In conjunction with the E-stereochemistryt of ethyl hexa-3,5-dienoate these results suggest that the em transition state is favoured for these hetero Diels-Alder reactions.Hydrolysis of the triesters (6)and (7) with an excess of base gave the tricarboxylic acid (11) which on decarboxylation gave a 3:l mixture of trans and cis-acids (13). Hydrolysis of the triesters (6) and (7) with 2 equivalents of base gave the dicarboxylic acid (10) in good yield. Decarboxylation of (10) yielded a 4: 1 mixture of the trans- and cis-half esters (14). The stereochemical assignments were confirmed by n.0.e. difference spectroscopy. A 2D-COSY spectrum established that the 6 3.51 signal was coupled to one of two hydrogens at 6 2.97 and gave a 20 n.O.e., while the 6 3.83 signal coupled to one at 6 3.10, gave an 8 enhancement. Our initial efforts to prepare the unsaturated y-lactone (33)concentrated on the preparation of the iodo lactone (24).Reaction of the triester (6)with I,-MeCN l1 gave a mixture of products from which the tetrahydrothiophene (21) was isolated in ca. 25 yield. Its 'H n.m.r. spectrum was in accord with this structure, which was confirmed by reaction with diazabicy- clo5.4.0undec-5-ene (DBU) in PhMe to give the unsaturated lactone (23) and with K,CO,-MeOH giving the hydroxy acid 1-This was established by 'H n.m.r. and contrasts with a,P-unsaturated esters and acids where the Z-isomer predominates (K. Beelitz, G. Hohne, and K. Praefcke, 2,Naturforsch., 1978, 33, 417). This may be due to the very low concentration of cisoid-diene likely to be present.J. CHEM. SOC. PERKIN TRANS. I 1988 0OYF 'HChemical shifts and apparent J H -A H-B H -C H-D H-F 8 6.5 (H-El 3.37 -5.25 -3.85 -2.65 (21) R = Et 3.37X = COzEt 9 6(22) R = X = H 3.50 -3.77 -1.5 5.30 -3.85 -2.97 3.50 4 YO1 ---20 6.3 5.45 5.64 -3.77 -9 2.59 (23) IS 5.35 10 14 3.16 -l3 3,94 -5.24 -7 3.34 -2.82(24) 14' 43.00 0 2 4 (25) X = COZH 3.74 -4.70 -5.25 -5 t3.501 = CHZCOZH Y=H (26) X = CO,H 3.60 -4.97 -4.82 -*' 3.90 -2.85 Z =H '4 4 118*2.50Y -CHZCOZH 2.98 4.5 -0 7.53.65 -4.98 -4.77 -3.70 -2.60 -0 IY = CH,C02H 1.3'4 12' 3.402.50 a Resonances for alkyl groups of esters are not indicated. Assignments were made using extensive decoupling experiments conversion of (6)into the tetrahydrothiophene (21) it was unchanged, suggesting that the lactone (24) is not an intermediate in the formation of (21).The dramatic difference in the rates and products of these two iodolactonisations must be Et intimately connected with solvent effects. If, as seems likely, Et reaction in the two-phase system occurs in the CH,Cl, phase, then the carboxylate ion would be more nucleophilic than the (28) (30) hydrated ion in the aqueous phase and could effect the reaction (28). On warming under vacuum the acid (28) was converted as shown in the Scheme. Two types of charge-transfer into the lactone (23). Reaction of the monoacid (8) with KI,- complexes between I, and the thiopyrans are likely involving NaHC03-H,012 also gave the lactone (21) in an improved the alkene and sulphur centres,', the latter being present at 67 yield.These iodolactonisations were slow, requiring many higher concentration.* The nucleophilic carboxylate ion could hours before starting material had all reacted. When the react in (32) to give the lactone (24) in a concerted process; monoacid (8) in a stirred mixture of Triton B-MeOH-H,O- reaction of the carboxylate in (31) would give the CH,Cl, was treated with I, a rapid (ca. 15min) conversion into the iodothiopyran (24) occurred in high yield. The 'H n.m.r. * The acyl hypoiodite is a possible intermediate but it is stericallyspectrum of (24) is in accord with the structure. When the unlikely that it could form the required (trans-) iodonium ion in an thiopyran (24) was exposed to the reaction conditions for the intramolecular reaction.CO,R'.Z I (32) I--(21) . CO,RI, bsol; nI (31) (29) Scheme. episulphonium ion (29)in a process of higher energy in CH,C1 solution. In aqueous solution the energetics of the competing processes are reversed and reaction occurs uia the sulphur or perhaps the related sulphonium iodide complex. In acetonitrile, where the participating group is the weakly nucleophilic carboxy or carboxyethyl, again (31)is the dominant intermediate. We next investigated the dehydroiodination of the iodide (24) with disappointing results. Use of DBN in nonpolar solvents failed to give any reaction while DBN in CC1,-Me2S0 and LiCO,-LiCl-HCO*NMe, gave the ring-contracted chloro compound (21;I = Cl).Li,CO,-HCO=NMe, gave the known unsaturated lactone (23). Stronger bases led to destruction of the molecule; with LiNPr,', a high yield of diethyl malonate was obtained. These results brought us to the view that the molecule could not readily attain the conformation with the axial I necessary for E, reaction and that in polar solvents ionisation in the equatorial I conformation formed episul-phonium ion and thence ring-contracted products. They also suggested that a syn-eliminationcould form the alkene. To this end, the monoacid (8) was treated', with PhSeCl to give the lactone (30) which, on oxidation with H20,, gave the unsaturated lactone (33)in 29 overall yield.No efforts were made to improve this process since a more satisfactory procedure was discovered concurrently. We also briefly investigated the iodolactonisation of the tri-and di-carboxylicacids (11) and (13).Reaction of (11) with KI,-H20in the presence of 1 mol equiv. of NaHCO, gave a mixture from which the two iodolactones (25)and (26)were isolated in 21 and 16 yields respectively.The structures were assigned on the basis of their 'H n.m.r. spectra. It is apparent from the pattern of coupling constants in both isomers that the iodine and oxygen substituents are both axial in contrast to their diequatorial disposition in the lactone (24).This suggests that both (25)and (26)are bridged lactones differing only in the stereochemistry of the acetic acid side-chain.From molecular models of bicyclo3.2.lring systems it is apparent that the two-atom bridge distorts the six-membered ring such that the torsion angles to the bridging methylene hydrogens are eq.-eq. ca. 35" and eq.-ax. ca. 85O. On this basis the isomer with J(3-H, 2-H) -0 Hz is assigned structure (26)and that with J 5.3 Hz structure (25). The formation of bridged lactones probably J. CHEM. SOC. PERKIN TRANS. I 1988 follows from the predominant species present in solution being the mono-anions of the malonic acid group of (11). Iodolactonisation of the cis-trans-mixture (1 :3) of the dicarboxylic acid (13)gave a mixture from which the bridged lactone (27)was isolated in 15 yield, together with 8 of the ring-contracted compound (22).Structural assignments were based on the similarity of their 'H n.m.r. spectra to compounds (26)and (21).It is obvious that lactone (27)must arise from the minor cis-isomer of (13).The stereochemistry of the carboxy group in (22)cannot be assigned unambiguously but its n.m.r. spectrum is consistent with its formation from the trans-isomer (13). Iodolactonisation of the ester (15) gave only ring contracted products. The poor yields which we obtained under conventional iodolactonisation conditions can make mechanistic speculation questionable. However, it is notable that only ring-contracted products were isolated when lactonisation of the acetic acid was involved while no ring-contracted bridged lactones were found.Our working hypothesis, shown in the Scheme, offers a possible explanation, suggesting that complex (31)is converted into the bridged episulphonium ion (29)which reacts with iodide at the secondary carbon forming a bicycle3.2.1. system rather than the more strained bicyclo2.2.1 arrangement. We next investigated the reactions of the thiopyran sulphoxides (6A)and (15A)with (CF,CO),O. The oxides were readily prepared by m-chloroperbenzoic acid oxidation of the esters (6)and (15). Pummerer" reaction of the triethyl ester (6A)gave a crude product containing trifluoroacetates and the y-lactone (33) in 41 yield accompanied by the diene (45) (44) -'amp;CO, R s 2 CO,R (11).The 'H n.m.r.spectrum of (45)established the presence of three vinyl protons, three ethoxy groups, and a methylene group and conjugation was indicated by A,,,,,. 245 and 321 nm. When the reaction time was extended to 20 h the diene (45) became the major product isolated. Reaction of the sulphoxide(15A)under similar conditions gave the diene (46)which, apart from the ethoxy absorption, showed in its 'H n.m.r. spectrum two vinyl protons and two methylene groups.In an attempt to improve the yield of y-lactone (33) the reaction of the triester (6) with N-chlorosuccinimide was investigated; the y-lactone (33) was indeed formed, but was accompanied by the diene (45)and other unidentified products. However the reaction of the acid (8) with N-chlorosuccinimide gave the lactone (33)in 75 yield.The conversion of the lactone (33) into the aldehyde (2) was attended by unexpected difficulties. The lactone (33) was inert to a variety of acid-catalysed and SN2 conditions for ester cleavage whilst, in contrast, it was completely destroyed under a variety of basic conditions. Eventually it was found that LiOH-H,O-tetra-hydrofuran followed by acidification and heating gave a cis- J. CHEM. SOC. PERKIN TRANS. I 1988 H -A H-B H-C H-D H-F (H-E) 6.18 -lo 5.82 -5.50 -7.5 3.59 -l2 2.82 I(33) X = Z = COzEt 2.40 17 10 4 7.76.56 -5.96 -5.19 -6 3.22 -2.76 3.04 6.48 -10 5.79 -5.31 -3.50 -'2 2.04 3 I 117 3.63 2.4310 5 3 6(36) X = CH(OMe),Z = H 6.27 -5.80 -5.00 -3.1 -10 2.52 01 117 3.1 2.93 5.5 I 4.47 10.5 3.5 8(2) X = CHO, Z = H 6.43 -5.95 -5.33 -3.49 -11 2.71 3.5 I I 17.5 4.23 2.92 -0 I 9.71 5.2 10.5 883.26 -6.22 -5.91 -1.5 3.54 -3.17 CO, H 17 I 3.39 / *2.K7(38) 43.04 -6.03 -5.71 -235 ? 3.28 2.5 17 I *2.!817 3.04 -4 11 3.53.22 -5.95 -5.71 -7.1 6 -6.5 2.75 17.5 I 4 5 71 117.5 3.07 4.53 -3.30 2.62 (40) 12bsol;4.30 A6.9 3.01 -5.87 -lm2 5.77 -7 3.07 -lo 2.77 -0 01 117.5 2.77 19.5 I 6 9.62 -3.47 2.64 3.28 -5.76 -5.90 -2.91 -8 2.7 8 2 12 7 18 I 7.5 0 I 116.5 2.85 4.47 -2.87 2.63 and trans-mixture of the acids (34) and (35) in a reproducible yield (50). The instability of the lactone (33) to basic conditions contrasts with the normal behaviour of its dihydro derivative.* This, coupled with some evidence that opening of *The dihydrolactone was prepared by Bu,SnH reduction of the iodolactone.the lactone ring leads to degradation, and some results reported in Part 2, prompts us to the view that the alkoxide (47) is unstable when there are two electron-withdrawing groups at C-2; an anion accelerated retro-Diels-Alder reaction is a possibility. The 7: 5 mixture of acids (34) and (35) could be separated by t.1.c. The 'H n.m.r. spectra confirmed the gross structures but did not allow an unambiguous assignment of stereochemistry. An X-ray crystallographic structure deter- Table 2. A B C D S-C(1)-C(2)-C(3)-C(6)-C(7)- C(1)-C(2)-C(3)-C(6)-C(7)-s- C(2)-C(3)-C(6)-C(7)-S-C(1)- C(3) C(6) C(7) S C(1) C(2) (33)-O(1)-C(4)-C(5)-C(6)-C(8)-S- O(1)-C(4)-C(5)-C(6)-C(3)-C(7)-C(7)- C(4)-C(5)-C(6)-C(3)-O(1)-C(6)-C(6)- C(5) C(6) C(3) O(1) C(4) C(5) C(5) C(2)-(37)-C(1)-C(3)-C(6)-S-S- C(3)-C(6)-C(2)-O(1)-C(5)-C(7)-C(7)- C(6)-C(3)-C(3)-C(4)-C(4)-C(8)-C(8)- C(5) O(1) O(1) O(4) O(4) O(81) O(82) In the table, each distance and angle is recorded once only. 04 c42 J.CHEM. SOC. PERKIN TRANS. I 1988 Bond lengths A-B B-C C-D 1.736(2) 1.31 l(3) 1.472(3) 1.523( ) 1.510( ) 1.814( ) 1.472(2) 1.324(2) 1.485(3) 1.512(3) 1.523(3) 1.502(3) 1.209(3) 1.323(3) 1.194(3) Bond angles ABC BCD 127.0(2) 126.1(2) 1 15.7(2) 1 15.8(2) 113.1(2) 1OO.7(1) 110.0(2) 110.8(2) 102.5(2) 10 1.7( 2) 102.8(2) 113.7(2) 114.5(2) 108.0(2) 120.6(2) 128.6(2) 107.3( 1) 11 1.0(2) 125.0(2) T -1 -10 +41 -56 +39 -13 +1+20 -32 +33 -22 -176 +62 -84 +158 -125 -179 -159 -85 +94 04 c4a s1 Figure 2. Compound (35) mination showed that the minor isomer had a trans-relationship of the carboxy and acetic side chains.A search of the X-ray Crystallographic Data Base revealed that no structure with this ring nucleus had been reported previously, so we list in Table 2 selected bond lengths, bond angles, and torsion angles. The six-membered ring adopts (Figure 2) a flattened half-chair conformation with the carboxy group and acetic side chains antiperiplanar (176"). The lactone ring is in an envelope conformation with C-6 as the flap.The positions of the hydrogen atoms were determined allowing a constant to be derived for the Karplus equation. The expression, J = 11 cos20, was found to be of general application in this series of compounds and suggests that the acid has the same conformation in solution as in the solid state. A variety of methods were examined for the conversion of the carboxy group to aldehyde with no success. To our surprise the acids (34) and (35) were not reduced by B,H, under standard conditions but reduction of the acid chlorides with LiBH, gave the mixture of alcohols (44). However, we were unable to oxidize the alcohols to the aldehydes in useful yields, using a number of methods. Reaction of the alcohol mixture with (COCl),-Me,SO lo gave a miniscule yield of aldehyde and a low yield of the X-MeS aldehyde.Reaction of the dicarboxylic acids (13C) and (13T) with N-chlorosuccinimide gave the lactone (38) while the anhydride (16) was converted into the diene (46) by the same reagent after hydrolysis. These results are in accord with the mechanistic proposal that acidic protons are eliminated from sulphonium intermediatesI7 and made it clear that lactonisation in the desired direction would be possible only if C-2 was disubstituted or if the acidity of the 2-H was reduced. To this end the anhydride (16) was reduced with LiBH, to the lactone (40). The anhydride was prepared from a 2: 1 mixture of the acids (13C) and (13T) which, together with J 7 Hz for the ring junction protons, indicates that the lactone is the cis-isomer.When the difficulties of oxidising the alcohols (44) became apparent, this approach was abandoned and we investigated preparation of the acetal (36). Reduction of the half ester (14) with 2.2 mol of J. CHEM. SOC. PERKIN TRANS. I 1988 Bu',AlH at -78 "C gave the aldehyde (42) (94) which was converted into the dimethyl acetal (43) (96) by reaction with SmCl3~8H2O-MeOH-HC(OMe),; l8 extended reaction times or use of other catalysts led to esterification of the carboxy group. All our evidence (t.l.c., capillary g.l.c., 'H n.m.r. spectra) supports the view that compounds (42) and (43) and, indeed, subsequent compounds, are single isomers despite (42) having been prepared from a cis,trans mixture of esters (14).Oxidation of the aldehyde (2) to the cis-acid (35) establishes the cis- stereochemistry in this series. It is possible that, due to acidity of 2-H, the A1 co-ordinated aldehyde forms an enol aluminate which is stereoselectively protonated on the least hindered face of the complex on work-up. The reaction of the acetal (43) with N-chlorosuccinimide- CH,Cl, gave the lactone (36).Its structure followed from its 'H n.m.r. spectrum and chemical correlation with the cis-acid (35). However, the best yield obtained was ca. 40 and the reaction proved capricious especially on scaling up. T.1.c. of the reaction mixture indicated that the lactone (36) was the only mobile product present and, indeed, isolated.Since HCl is a by-product, the reaction in the presence of 8 (v/v) 1,2-epoxypropane was examined. The lactone (36) was obtained in 44 yield but a new lactone was also isolated in 30 yield. This compound was assigned structure (39) on the basis of its 'H n.m.r. spectrum. In order to try and get a better under- standing of this reaction and to develop a reliable method for the preparation of the lactone (36), the reaction was studied using capillary g.1.c. with an internal standard. The results are summarised in Table 3 and allow the following conclusions to be drawn. (a)Starting material has reacted in ca. 5 rnin.; (b) in the absence of epoxypropane the lactone (36)was partially destroyed, but the yield of the lactone (39) was small and did not increase with time; (c)when epoxypropane was present before addition of the chlorinating agent the initial yield of the lactone (36) was reduced almost by one half, but was not degraded and the initial yield of the lactone (39) increased slowly with time.The addition of the epoxypropane 2 rnin after the N-chlorosuccinimide allowed a compromise and gave reproducible (ca. 75) yields of the lactone (36) when the concentration of starting material is 5 g 1-'. We do not have a complete explanation for these observations but it is possible that either different sulphonium intermediates and/or different bases for the decomposition of these intermediates are involved in the absence and presence of epoxypropane. In the first case, chloride ion could react with the N-chlorosuccinimide to give Cl,, which is the chlorinating agent for the bulk of the material by a chain reaction.In the second, C1- would act as base, giving thioxonium ion intermediates. When the concentration of C1- is reduced then a different sulphonium ion (S-succinimido or S-chloro?) base pair is formed and reacts more slowly and with different selectivity. Attempts to test these ideas gave inconclusive results. Hydrolysis of the acetal (36) to the aldehyde (2) gave poor yields in aqueous systems but reaction with anhydrous formic acid l9 gave the aldehyde in acceptable yield. Experimental N.m.r. spectra were recorded at 300 MHz in CDCl,, unless otherwise reported. 1.r. spectra were measured in CHCl,, and U.V.spectra in EtOH. Eth.191 6,6-Bisetho.~~~carbonl,l-5,6-dihydro-2H-thiopyran-5-y1-ucetute (6).-Diethyl oxomalonate (14.41 g), P4S10 (7.73 g), and ethyl hexa-3,5-dienoate (8.62 g) in dry THF (70 ml) were boiled under reflux in a N, atmosphere for 20 h. After evaporation of THF under reduced pressure the dark residue was repeatedly extracted with Et,O and the extracts concentrated to give a Table 3. G.c.peak height ratios to internal standarda Time Ratio 01 36 39 (36:39) (a) NCS-CH,Cl, 10 min 1.12 0.05 22.4 19 h 0.69 0.04 17.3 01 (b) NCS-CH ,CI,-C3H 60 5 min 20 min 0.55 0.58 0.22 0.39 2.5 1.5 3h 0.50 0.56 0.9 01 (c) NCS-CH,Cl,-C,H60 after 20 min 1.26 0.14 9.0 2 min. 19 h 1.07 0.25 4.3 an-C16H34as internal standard.brown oil. Flash chromatography on silica gel 60 eluting with hexane-Et,O (2: 1) gave the triester (6)(13.43 g) as a yellow oil (Found: C, 54.1; H, 6.9; S, 9.9. M+, 330.1137. C,,H,,O,S requires C, 54.5; H, 6.7; S, 9.9; M, 330.1 132). The following thiopyrans were prepared in a similar way using diethyloxomalonate. (a)Compound (7) from methyl hexa- 3,5-dienoate (69), m.p. 59-60 "C (pentane-Et,O) (Found: C, 52.9; H, 6.5; S, 10.6. Cl,H,oO,S requires C, 53.1; H, 6.4; S, 10.1); 6H(Cc14,60 MHz) 5.76 (2 H, br s), 4.18 (4 H 9, J 7 Hz), 3.62 (3 H, s), 3.37 (1 H, m), 3.05 (2 H, br s), 2.44 (2 H, d, J7 Hz), and 1.28 (6 H, t, J 7 Hz); (b) Compound (8) from hexa-3,5-dienoic acid (24), m.p. 82-84 "C EtOAc-light petroleum (b.p.40-60 "C) (Found: C, 52.1; H, 6.2; S, 11.0. C,,H18O,S requires C, 51.6; H, 6.0; S, 10.6); F,(CDCl,, 300 MHz), 5.95 (1 H, dd, J 11 and 5 Hz), 5.79 (1 H, m), 4.29 (4 H, m), 3.48 (1 H, m), 3.21 (1 H, dd, J 18 and 2 Hz), 3.03 (1 H, dd, J 18 and 5 Hz), 2.62 (1 H, dd, J 16 and 9 Hz), 2.55 (1 H, dd, J 16 and 6 Hz), and 1.25 (6 H, m); (c) Compound (9) from l,l,l-trichloroethylhexa-3,5-dienoate (90), m.p. 65-66 "C (hexane) (Found: C, 41.5; H, 4.4; S, 7.2. C,,H,,Cl,O,S requires C, 41.4; H, 4.4; S, 7.4); 6,(CDCl,, 60 MHz), 5.91 (2 H, m), 5.77 (2 H, s), 4.26 (4 H, q, J7 Hz), 3.56 (1 H, m), 3.16 (2 H, m), 2.72 (2 H, d, J 7 Hz), and 1.28 (6 H, t, J 7 Hz). Zn-AcOH Reduction gave the acid obtained in (b) (78); (d) Compound (17) from hexa-3,5-dienyl acetate, yellow oil (75) (Found: M+, 330.1132.C1,H,,O,S requires M, 330.1 137); amp;(CDC1,,60 MHz) 5.89 (2 H, m), 4.26 (2 H, m), 4.28 (2 H, q, J 7 Hz), 4.25 (2 H, q, J 7 Hz), 3.14 (2 H, br s), 2.65 (1 H, m), 2.05 (3 H, s), 1.78 (2 H, m), 1.30(3 H, t, J7 Hz), and 1.27 (3 H, t, J 7 Hz); (e)Compound (3) from l-acetoxybuta-1,3-diene,m.p. 89-90deg;C (EtOH) (Found: C, 51.6; H, 6.1; S, 10.3. C,,H,,O,S requires C, 51.6; H, 6.0; S, 10.6); G,(CDCl,, 90 MHz), 6.05 (2 H, m), 5.85 (1 H, m), 4.24 (4 H, q, J 7 Hz), 3.18 (2 H, m), 2.05 (3 H, s), and 1.27 (3 H, t, J 7 Hz). (f)Compound (12) (using butyl glyoxylate) from ethyl hexa- 3,5-dienoate, yellow oil (15) (Found: M+, 286.1236. C14H,,0,S requires M, 286.1239); S,(CDCl,, 90 MHz) 5.80 (2 H, m), 4.12 (4 H, m), 3.82 (0.5 H, d J4 Hz), (0.8 H, d, J4 Hz), 3.17 (3 H, m), and 2.98 (2 H, m).Hexa-3,5-dienoic Acid and its Esters.-The acid and the methyl and ethyl esters were prepared by deconjugation of the corresponding sorbates * (LDA-HMPA or LDA-TMU). The trichloroethyl ester was prepared from the acid, trichloro- ethanol, and dicyclohexycarbodi-imide in CH,Cl,-pyridine as a liquid, b.p. (bath) 60 "C/O.OOS Torr (84) (Found: C, 39.6; H, 3.9. C,H,Cl,O, requires C, 39.5; H, 3.8). * See footnote on p. 663. 670 6,6-Dicarboxy-5,6-dihydro-2H-thiopyran-5-ylacetic Acid (ll).-The triester (6) (235 mg) in EtOH (5 ml) and water (5 ml) containing NaOH (2 g) was stirred at 20deg;C for 14 h. The solution was brought to pH 1 with 2~ HCl and then saturated with NaCl and extracted with EtOAc (3 x 50 ml).Work-up of the extracts gave the tricarboxylic acid (11) (158 mg), m.p. ca. 125 "c(decomp); 6~(cD,CocD,, 60 MHz) 10.05 (3 H, s), 5.82 (2 H, m), 3.45 (1 H, m), 3.12 (2 H, m), and 2.54 (2 H, d, J 7 Hz). 6-Carboxy-5,6-dihydro-2H-thiopyran-5-ylaceticAcid (13).- (a) 20 Aqueous NaOH (12 ml) was added to a solution of the diester (12) (1.1 g) in EtOH (3 ml) and the mixture boiled under reflux (N, atmosphere) for 4 h. The solution was acidified to pH 1 with 2~ HCl and extracted with Et,O (3 x 60 ml). Concentration of the dried extract gave the cis- and trans-acids (13) (650 mg), m.p. 177--179deg;C (MeCN-Et,O) (Found: C, 47.8; H, 5.1. C8H,,0,S requires C, 47.5; H, 4.9); 6,(CD3- COCD,, 80 MHz), 5.85 (2 H, m), 3.85 (0.25 H, d, J 43 Hz), 3.54(0.75H,d, J3.5Hz),3.20(1 H,m),3.19(2H,m),and2.56(2 H, d, J7.5 Hz).The acid (13) was dissolved in Ac20 and after 4 h the mixture was evaporated to give the anhydride (16), m.p. 127-130 "C (Found: M+, 184.0193. C8H803S requires M, 184.0194); S,(CD,COCD,, 90 MHz), 5.97 (1 H, m), 5.68 (1 H, d, Jl1Hz),4.08(1H,d,J11Hz),3.56(1H,brd,J16Hz),3.15(2H,m), 2.89 (1 H, d, J 14 Hz), 2.54 (1 H, dd, J 14 and 4 Hz); v,,,.(CHCI,) 1 820 and 1 770 cm-'. Hydrolysis gave the starting acid (13). (b)If the acidified solution from hydrolysis of the triester (6) (323 mg) (previous experiment) was boiled under reflux for 20 min and then worked up as described, a mixture of the cis- and trans-dicarboxylic acids (13) (176 mg) was obtained as a yellow oil which solidified with time, G,(CDCI,, 60 MHz) 5.92 (2 H, m), 3.87 and 3.54 (d, J4.3 and 3.5 Hz respectively), 3.14 (3 H, m), and 2.58 (2 H, m).The same mixture was obtained when the acid (11) was heated at 130 "C. Dissolution of the mixture in Ac,O gave a cis- and trans-anhydride mixture. 6-Ethoxycarbonyl-5,6-dihydro-2H-thiopyran-5-ylaceticAcid (14).-The triester (7) (3.3 g) was dissolved in EtOH (35 ml) and water (35 ml) containing NaOH (1 g). After 12 h the solution was acidified with 5M HCl, saturated with NaCl, and extracted with EtOAc (2 x 50 ml). Concentration of the dried extract gave the dicarboxylic acid (lo), m.p. 125-130 "C (decomp.) (CHCl,) (Found: C, 48.4; H, 5.1; S,11.7.C1,Hl4O6S requires C, 48.2; H, 5.1; S,11.7); G,(CD,COCD,, 90 MHz), 5.85 (2 H, m), 4.17 (2 H,q, J7 Hz), 3.45 (1 H, m),3.12(2H7m),2.55(2H,d, J7 Hz), and 1.23 (3 H, t, J 7 Hz). The acid was heated at 130 "C under a N, atmosphere for 0.75 h to give a dark oil which was purified by flash chromatography on silica gel 60 eluting with CHC1,-MeOH (19: 1) to afford the acid (14) (1.85 g) as an oil (Found: C, 52.3; H, 6.3; S.14.0. C,,H,,O,S requires C, 52.2; H, 6.1; S, 13.97:); 8,(CD3COCD,, 220 MHz), 5.90 (1 H, br d, J 1 1 Hz), 5.77 (1 H, br d, J 11 Hz), 4.17 (2 H, m),3.83 (0.2 H, d, J4.5 Hz), 3.51 (0.7 H, d, J 3.5 Hz), 3.22 (1 H, m), 3.10 (0.2 H,m), 2.97 (2 H, m), 2.55 (2 H, m), and 1.22 (3 H, t, J7 Hz). 6- Ethoxycarbonyl-5-( 2-hydroxyethyl)-5,6-dihydro-2H-thiopyran (18).-The acetate (17) (109 mg) was dissolved in EtOH containing NaOEt (ex.10 mg Na). After 4 h, 2~ HCI (40 ml) was added and the mixture extracted with EtOAc (4 x 20 ml). The dried extracts were concentrated to give a mixture of starting material and product. Preparative t.1.c. eluting with hexane-Et,O (1 :2) gave the alcohol (19) (37 mg) (Found: M+, 216.0818. C,,H,,O,S requires M, 216.0820); G,(CDCl,, 60 J. CHEM. SOC. PERKIN TRANS. I 1988 6,6-Bisethoxycarbonyl-5-(2-hydroxyethyl)-5,6-dihydro-2H-thiopyran (18)-Acetyl chloride (4 ml) was added to EtOH (40 ml) and, after 5 min, the acetate (17) (1.14 g) was dissolved in the solution. After 6 h saturated aqueous NaHCO, (120 ml) was added and the mixture extracted with EtOAc (3 x 60 ml); the dried extracts were concentrated to give an oil which was chromatographed on silica gel 60 eluting with hexane-Et,O to afford the alcohol (18)(603 mg) as a colourless oil (Found M+, 288.1022.C13H,,05S requires M, 288.1031); GH(CDCl,, 60 MHz), 5.90 (2 H, m), 4.25 (2 H, q, J7 Hz), 4.21 (2 H, q, J7 Hz), 3.77 (2 H, J6 Hz), 3.27 (1 H, m), 3.15 (2 H, br s), 1.26 (2 H, m), 1.28(3 H, t, J 7 Hz), and 1.25 (3 H, t, J 7 Hz). On oxidation with Jones' reagent the alcohol (18) gave the acid (8) identical with material prepared previously. 6,6- Bisethoxycarbonyl-5- formylmethyl-5,6-dihydro-2H-thiopyran.-Me,SO (340 pl) in CH,C12 (1 ml) was added to (COCl), (200 pl) at -78 OC. After 5 min the alcohol (288 mg) in CH,Cl, (1 ml) was added to the solution now at -15 "C.After 15 min Et,N (1.4 ml) was added followed by water (20 ml) the mixture was then extracted with CH,Cl, (2 x 15 ml). Concentration of the dried extracts and chromatography of the product on silica gel 60 eluting with hexane-Et,O gave the aldehyde as an oil (181 mg) (Found: M+,286.0867. C,,H,,O,S requires M, 286.0871); 6,(CDC13, 60 MHz) 9.84 (1 H, t, J 1.5 Hz). It gave a 2,4-dinitrophenylhydrazone,m.p. 120-122 "C (EtOAc) (Found: C, 49.3; H, 4.7; N, 12.0. C,,H,2N408S requires C, 48.9; H, 4.8; N, 12.0). Iodolactonisation of the Tricarboxylic Acid (1 l).-A solution of I, (103 mg) and KI (200 mg) in water (6 ml) was added dropwise to a solution of the acid (11). The pH of the solution was maintained at its original value by addition of aqueous NaHCO, over 5 h.After a further 12 h, aqueous Na,S,O, was added to destroy the excess of I, and, after addition of 2~ HCl, the solution was extracted with EtOAc (3 x 60 ml). Evaporation of the dried extract gave a mixture which was chromatographed on a silica HF,,, plate using double elution with PhMe-Et,O-HC0,H (17.5: 5 :3). Elution of the two major bands gave the lactone (25) (32 mg), m.p. 166167 "C (decomp.) (CHC1,-Me,CO), v,,,. 1790 and 1 735 cm-' (Found: C, 29.0; H, 2.5; I, 33.5. C,H,IO,S requires C, 29.0; H, 2.7; I, 34.0) and the lactone (26) (25 mg), m.p. 156-95 "C (decomp.), m/z 328 (M -CO,). Reaction of (26) with CH,N,- Et20 gave a dimethyl ester m/z 273.0437. (M -1 requires 273.0433).Iodolactonisation of the Triethyl Ester (6)-I, (4 g) was added to the ester (6)(1.4 g) in MeCN (30 ml). After 8 days, Et,O (100 ml) was added and the solution shaken with aqueous Na,S,O,. The ethereal extract, after drying, was concentrated to give crude iodolactone (1.63 g) containing ca. 20 starting material. A portion (150 mg) was purified by double elution with PhMe- Et,O-HC0,H (17.5:5: 3) on a silica HF254 plate. Removal of the lower 1/3 of the main band gave the lactone (21) (39 mg), m.p. 71-72 "C (Et,O), v,,,. 1 790, and 1 735 cm-' (Found: C, 36.5; H, 3.7; M+,427.9798, C, 3H1 ,IO,S requires C, 36.5; H, 4.0; M, 427.9793). Dehydroiodination of Lactone (21).-A solution of the lactone (21) (83 mg) in PhMe (1 ml) containing DBU (50 mg) was heated under a N, atmosphere for 1 h at 75 "C.After removal of the PhMe the residue was chromatographed on silica HF,,, eluting with PhMe-Et,O-HC0,H (1 7.5 :5 :3). The least polar MHz),5.83(2H,brs),4.19(2H,q,J7Hz),3.74(2H,t,J6Hz), fraction gave the alkene (23) (1 5 mg) as an oil, v,,,. 1 785,l 735, and 1 620 cm-' (Found: M+,300.0667. C, ,HI6O6S requires M,3.40(1H,d,J4Hz),3.12(2H,m),2.79(1H,m),1.82(2H,q,J6 Hz), and 1.27 (3 H, t, J 7 Hz). 300.0667). The more polar component was the hydroxy acid(28) J. CHEM. SOC. PERKIN TRANS. I 1988 (12mg),v,,,, 1 735 cm-' which, after 2 h in vacuo (0.2Torr) was converted into the lactone (23). Iodolactonisation of the Monocarboxylic Acid (8).-(u) The acid (8) (150mg) dissolved in saturated aqueous NaHCO, (40 ml) was treated dropwise with I, (508 mg) and KI (1.004g) in water (10ml).After 8 h, work-up as before gave the lactone (21) (142 mg) identical with the compound prepared previously. (b)I, (1.37g) was added to a vigorously stirred mixture of the acid (8) (540mg), Triton B in MeOH C0.76 ml of a 40 (w/v) solution, CH,C1, (18 ml), and water (4 ml). After 15 min, aqueous Na,S,05 was added and the mixture extracted with Et,O (3 x 30 ml). The combined extracts were successively shaken with 2~ HCl, saturated aqueous NaHCO,, and brine and then dried and concentrated to give the lactone (24) (727 mg), m.p. 109-1 12 "C (CHC1,-hexane), v,,,. 1 790 and 1 730 cm-' (Found: C, 36.8;H, 4.1;I, 29.4;S, 7.9.C13H17106S requires C, 36.5;H, 4.0;I, 29.6;S,7.5).The lactone (24) was unchanged on exposure to the conditions for reaction (a). Rearrangement of the Lactone (24).+a) A solution of the lactone (24) (43 mg) in HCONMe, (2 ml) containing Li,CO, (10mg) and LiCl (6 mg) was heated at 100"C. After 2.5 h, the cooled mixture was poured into 2~ HCl and extracted with Et20. The extract was washed with 2~ HCl and saturated aqueous NaHCO,, dried, and concentrated to yield the chloro lactone (28 mg) as an oil, vmaX.1 790 and 1 730 cm-' (Found: M+, 336.0438.C13H17C106S requires M, 336.0436).The same compound was obtained on boiling under reflux in CCl,- Me2S0 (8 : 1) containing DBU (100mg). (b) The iodo lactone (24) (35 mg) in HCONMe, (1 ml) containing Li2C0, (10mg) was heated at 100"C for 20h.Work- up as before gave the unsaturated lactone (23) (5 mg) identical with the material prepared previously. 2,2-Bisethoxycarbonyl-5-phenylseleno-3,4-tetrahydrothio-pyrancarbolactone (30).-Et,N (55 mg) was added to the acid (8) (150mg) in CH,Cl, (3 ml) and the solution stirred under a N, atmosphere whilst it was cooled to -78 "C. PhSeCl(lO6 mg) was added to the mixture which was then kept at -78 "C for 30 min. The residue obtained on evaporation of the solvent was purified by thick layer chromatography (silica HF, 54, CH,Cl, elution) to give the selenide (30) (115 mg), m.p. 112-113 "C (CHC1,-light petroleum), v,,,. 1 780 and 1 725 cm-'; 6,7.63 (2 H, m), 7.34(3 H, m), 4.95(1 H, dd, J9.5and 7 Hz), 4.35 (4H, m), 3.38(1 H, dd, J 13,7, and 7 Hz), 3.04(1 H, dt, m J9 and 9.5Hz), 2.80(1 H, dd, J 17 and 13 Hz), 2.70 (2 H, d, J9 Hz), 2.13 (1 H, dd J 17 and 7 Hz), 1.25(3 H, t, J7 Hz), 1.21 (3 H, t, J7 Hz) (Found: C, 49.6;H, 4.6;H, 4.6.C,,H,,O,SSe requires C, 49.9;H, 4.9).2,2-Bisethoxycarbonyl-3,5-dihydro-2H-thiopyran-3,4-carbo-lactone (33).-A 3 solution of H,O, in aqueous tetrahydrofuran (0.113ml) was added to the selenide (30) (30 mg) in tetrahydrofuran (0.5 ml) at -20 "C. The solution was warmed to 0 "C and kept for 15 h. After addition of aqueous Na,S,O, the solution was extracted with Et,O. The dried extracts were concentrated to give an oil which was purified by thick layer chromatography silica HF254, Et,O-hexane (2: l) to give the unsaturated lactone (33) (11 mg) identical with an authentic sample.Iodolactonisation of the Dicarboxylic Acids (13).-A solution of I, (85 mg) and KI (157mg) in water (4ml) was added to the acid (13) (68mg) in a mixture of NaHCO, (30mg), water (3ml), and MeOH (3ml). After 14h the reaction mixture was worked up as before and the product chromatographed on a silica HF254 plate eluting with PhMe-Et,O-HC0,H (17.5:5:3). The least polar fraction gave the lactone (27) (9 mg), m.p. 159-162 "C, v,,,. 1 785, and 1 720 cm-' (Found: M+, 327.9275. 67 1 C,H,IO,S requires M, 327.9268).A mixed fraction was also obtained. Oxidation and Rearrangement of the Triethyl Ester (6).-The ester (6) (400 mg) in CH,C1, (4 ml) was treated with 85 m-chloroperbenzoic acid (250 mg).After 1 h Et20 (60 ml) was added and the solution shaken successively with aqueous Na,S,05 and aqueous NaHCO,. Concentration of the dried solution gave an oil (397mg) which was chromatographed on silica gel eluting with pentane-EtOAc (1: 1) to give the sulphoxides (6A)(350mg), 6,6.50 (2 H, m), 4.25(6 H, m), 3.67(1H,m), 3.39 (2 H, m), 2.78 (2 H, m), and 1.25 (9 H, m); m/z 346. (CF,CO),O (4ml) was added to the sulphoxides (6A) (72mg) at 0"C. After 10min the ice-bath was removed. After a further 1 h evaporation under reduced pressure gave an oil (79mg) which was chromatographed on silica gel eluting with pentane-Et,O (1 : 1) to give the lactone (33) (19 mg), m.p. 80-82 "C (CCl,). (Found: c, 51.8;H, 5.5; s,10.4; M+, 300.0658.C,,H1606S requires C, 52.0;H, 5.4;S, 10.7; M, 300.0667);vmaX.1 795,and 1 740 cm-'; A,,,.235 nm. If the product from the Pummerer rearrangement was hydrolysed with NaHC0,-H20-MeOH and the product purified by thick layer chromatography on silica HF254, an improved yield (41) of the lactone (33) was obtained. In addition, the diene ester (45) (1 1) was isolated as an oil, v,,,. 1 740 cm-'; 6,6.22 (3 H, m), 4.20 (6 H, m), 3.39 (2 H, m s), and 1.27(9 H, t, J 7 Hz); A,,,. 245,and 321 nm; mjz 328.The latter was the major product when the reaction with (CF,CO),O was extended to 20 h. Oxidation and Rearrangement of the Diethyl Ester (15).-The diester (15) (207 mg) was processed as in the previous experiment. Chromatography on silica gel gave the diene (46) (27mg) as an oil, v,,,.1 740cm-'; 6,5.92 (2 H, m), 4.22(4H, m), 3.71 (2 H, s), 3.22 (2 H, m), and 1.28 (6 H, m); A,,,. 345 nm (Found: M+, 256.0774.C1,Hl6O4S requires M, 256.0769). Reaction of the Acid (8) with N-Ch1orosuccinimide.--N-Chlorosuccinimide (1.04g) was added to a stirred solution of the acid (8) (2.33g) in PhH (70ml). After 4 h, the mixture was diluted with Et,O (100ml) and filtered. The filtrate was shaken with aqueous NaHCO, and brine. The dried Et,O solution was concentrated to give the lactone (33) (1.71g), identical with the material prepared previously. Reaction of the Dicarboxylic Acid (13) with N-Chloro- succinimide.-N-Chlorosuccinimide (60 mg) was added to the acid (90mg) in CHC1, (5 ml). After 10 min, the filtered mixture was extracted with aqueous NaHCO,.The extract was acidified with 2~ HCl, washed with saturated brine, and extracted with Et,O (2 x 10 ml). The dried extract was concentrated to yield an oil which was purified by t.1.c. on silica HF254 eluting with PhMe-Et,O-HC0,H (17.5:5:3) to give the lactone acid (38) (50 mg); v,,,. 1 795,and 1 725 cm-'; G,(CD,),CO 6.22 (1 H, m) 5.91 (1 H, d, J 10.5Hz), 3.54 (1 H, m), 3.39 (1 H, br d, J 17 Hz), 3.26(1 H,dd, J 17and 5.2 Hz), 3.17(1 H, dd, J 17.2 and 8.8 Hz), and 2.35(1 H, dd, J 17.2 and 4Hz) (Found: M', 200.0139. C,H,04S requires M, 200.0144). Reaction of Anhydride (16) with N-Ch1orosuccinimide.-The anhydride (16) (39 mg) in CH,Cl, was treated with N-chlorosuccinimide (28 mg) overnight after which the solvent was removed and the residue digested with aqueous NaHCO, (10ml).The solution was then processed as in the previous experiment to give the diene acid (46) (27mg), vmaX.1 710 cm-'; 6, (CD,,CO 6.15(1 H, d, J9.5Hz), 5.82(1 H, dt, J9.5and 5.5 Hz), 3.75 (2 H,s) 3.22 (2 H, d, J 5.5 Hz) (Found: M', 200.0147. C,H,O,S requires M, 200.0144). Table 4. Atom co-ordinates for compound (3) xla Ylb zlc 0.902 7(1) 0.125 5(1) 0.446 2( 1) 0.767 l(3) 0.233 2(3) 0.383 l(2) 0.656 6(4) 0.305 2(3) 0.420 7(2) 0.728 4(6) 0.374 3(4) 0.491 4(2) 0.868 8(7) 0.355 7(5) 0.528 6(2) 0.984 4(5) 0.264 5(5) 0.508 3(3) 0.681 O(5) 0.135 6(4) 0.322 5(2) 0.494 6( 11) 0.137 7(9) 0.210 O(4) 0.484 3( 10) 0.198 5(8) 0.147 9(3) 0.850 O(4) 0.343 6(4) 0.347 4(2) 1.017 2(7) 0.374 9(6) 0.268 6(3) 1.022 8( 17) 0.312 3(16) 0.204 3(8) 0.924 4( 18) 0.391 O( 15) 0.196 3(8) 0.409 l(4) 0.227 2(5) 0.426 7(3) 0.322 4(6) 0.103 l(7) 0.439 l(4) 0.697 9(4) 0.012 l(3) 0.321 5(2) 0.587 7(4) 0.210 4(4) 0.272 7(2) 0.839 l(3) 0.466 5(3) 0.354 5(2) 0.933 O(4) 0.283 l(3) 0.307 7(2) 0.554 5(3) 0.194 3(3) 0.433 2(2) 0.360 3(4) 0.342 9(4) 0.413 2(3) 0.598 0.375 0.387 0.665 0.439 0.512 0.901 0.407 0.575 1.047 0.223 0.553 1.049 0.322 0.485 0.392 0.128 0.218 0.536 0.044 0.208 0.556 0.159 0.125 0.504 0.296 0.155 0.385 0.185 0.118 0.232 0.096 0.401 0.298 0.1 10 0.485 0.383 0.02 1 0.439 Reduction of the Anhydride (16) with LiBH4.-The anhydride (16) (88 mg) in tetrahydrofuran (5 ml) was added to LiBH, (25 mg) and tetrahydrofuran (5 ml) under a N, atmosphere.After 45 min, water (2 ml) was added and, when effervescence ceased, this was followed by 2~ HCl. After 1 h the solution was saturated with NaCl and extracted with EtOAc (2 x 25 ml). Concentration of the dried extract gave an oil which was purified by t.1.c. on silica HF254 eluting with pentane-EtOAc (1 :1) to give the lactone (40) (36 mg); vmaX.1 735 cm-' (Found: M+, 170.0402. C8Hlo02S requires M, 170.0401). Hydrolysis and Decarboxylation of the Lactone Ester (33)- LiOH*H,O (200 mg) was added to the lactone (33) (300 mg) in tetrahydrofuran (5 ml) and water (5 ml) under a N, atmosphere. After 20 h, the dark mixture was acidified with 6~ HCl and boiled under reflux for 2 h.The cooled mixture was extracted with Et,O (2 x 20 ml) and CH,Cl, (20 ml). The dried extracts were concentrated to give an oil (229 mg) which was chromatographed on silica gel eluting with CH,Cl,-AcOH (9: 1) to give a mixture of cis- and trans-acids (34)and (35) (147 mg). The epimers were separated by t.1.c. on silica HF254 eluting with CH,Cl,-AcOH (4: 1): cis-acid (34), m.p. 128-130 "C (Found: M+,200.0148. C,H,O,S requires M, 200.0143). To characterize the acids, they were converted into their acid chlorides (COCl), and these were then treated with Me,CHCN, to give an amide, m.p. 185--187deg;C (hexane-CHCl,), v,,,. 1 780, and 1 670 cm-' (Found: C, 54.6; H, 6.2; N, 5.7. C1,H15N03S requires C, 54.8; H, 6.3; N, 5.8).Reduction of the Acids (34) and (35).-(cOc1), (54 pl) was added to a solution of the acids (2 + 3) (100 mg) and J. CHEM. SOC. PERKIN TRANS. I 1988 Table 5. Atomic co-ordinates for compound (35) Atom xla Ylb ZIC 0.955 4( 1) 0.842 6( 1) 0.120 7(0) 0.698 2(2) 0.658 9(2) 0.305 l(2) 0.327 5(2) 0.171 6(1) 0.306 6( 1) 0.682 l(2) 0.666 9(2) 1.004 5(2) 0.906 O(2) 0.041 7(2) 0.709 7(2) 0.589 2(3) 0.433 7(3) -0.030 3( 1) -0.055 6(1) 0.111 O(1) 0.103 4(1) 0.731 8(2) 0.684 l(2) 0.441 7(3) 0.41 1 4(3) 0.102 7(1) 0.241 7(1) 0.702 5(2) 0.668 l(2) 0.631 6(3) 0.644 9(3) 0.226 4(1) 0.127 7( 1) 0.737 O(2) 0.690 9(2) 1.1 16 7(27) 0.949 5(25) 0.668 6(21) 0.633 5(26) 0.815 O(25) 0.552 6(23) 0.830 4(3) 0.849 l(3) 0.568 8(34) 0.310 4(31) 0.389 9(26) 0.709 5(34) 0.667 3(31) 0.646 5(28) 0.091 7(1) 0.114 6(14) 0.097 8(13) 0.049 9( 1 1) 0.254 l(14) 0.249 O( 14) 0.107 5(12) -0.005 9( 1) 0.701 5(22) 0.668 6(28) 0.945 6(29) 1.054 l(37) 0.116 l(12) -0.083 2(15) HCONMe, (10 pl) in MeOCH,CH,OMe (1 ml) under a N, atmosphere.After 15 min the solution was cooled to -46 "C and LiBH, (14 mg) in Et,O (80 pl) added. After 15 min, the cooling bath was removed and 2~ HCl added. The mixture was extracted with EtOAc (3 x 10 ml) and the organic extract shaken with aqueous NaHCO,, dried, and concentrated to give the alcohols (44) (61 mg) as a 7:3 mixture of isomers, 6, (CD,),CO 6.52 (d,J 10 Hz), 6.47 (d,J9.5 Hz), 5.86 (dd,J 10 and 4 Hz), 5.74 (dd, J 9.5 and 3 Hz), 5.22 (dd, J 8 and 3 Hz), 5.06 (bdd, J 6 and 4 Hz), 3.87 (d, J 5 Hz), 3.71 (m), 2.75 (m), and 2.43 (dd, J 17 and 8 Hz) (Found: M', 186.0355. C,HloO,S requires M, 186.035 1).Reduction of the HaIf Esters (14).-A 1.2M solution of Bu',AlH in hexane (21.1 ml) was added to the esters (14) (2.65 g) in PhMe (100 ml) cooled to -78 "C under a N, atmosphere, the solution temperature being kept below -55 "C. After 2 h at -70 "C, EtOH (20 ml) was added and the mixture allowed to reach ambient temperature. 2~ HCl(100 ml) was added and the mixture extracted with EtOAc (100 ml and then 3 x 50 ml). The combined EtOAc extracts were shaken with saturated aqueous NaHCO, (3 x 75 ml) and then acidified to pH 1 with 2~ HCl. After saturation with NaCl the solution was extracted with EtOAc (3 x 75 ml), and the extract shaken with brine, dried, and concentrated to give the aldehyde (42) (2.02 g), m.p. 82- 84 "C (pentane-Et,O), v,,,.1 710 cm-(Found: C, 51.5; H, 5.4; S, 17.1; M+, 186.0349. C8Hlo0,S requires C, 51.6; H, 5.4; S, 17.2; M, 186.035 1). Acetalisation of the Aldehyde (42).-SmC1,-8H20 (21 1 mg) in MeOH (4 ml) was added to a solution of the aldehyde (42) (982 mg) in HC(OMe), (5.6 g). After 20 min, EtOAc (50 ml) was added and the solution shaken with water (3 x 20 ml), dried, and concentrated to give the acetal(43) (1.17 g), m.p. 84-86 "C (pentane-Et,O), v,,,. 1710 cm-' (Found: C, 51.9; H, 7.3; S, 13.8; M+,232.0761. C10H1604S requires C, 51.7; H, 7.0 S, 13.8; M, 237.0769). Lactonisation of the Acetal Acid (43)-(a) N-Chlorosuc-cinimide (658 mg) in CH,Cl, (10 ml) was added to the acetal (43) (1.04 g) in CH,Cl, (200 ml).After 2 min, 1,2-epoxypropane (20 ml) was added and 5 min later the solution was concentrated J. CHEM. SOC. PERKIN TRANS. I 1988 under induced pressure to ca. 20 ml. This solution was applied to a silica gel column and flash chromatographed eluting with Et,O-pentane to give the lactone (36) (760 mg), m.p. 43 "C (Et,O-pentane); v,,,. 243 nm (E 5 800) (Found: C, 52.1; H, 6.3; M+, 230.0617. CloH1404S requires C, 52.2; H, 6.1; M, 230.0613). (b)N-Chlorosuccinimide (55 mg) was added to the acetal(43) (87 mg) in CH,Cl, (25 ml) and 1,2-epoxypropane (3 ml). After 40 min, the solution was concentrated to ca. 1.5 ml and purified by flash chromatography as described.The lactone (36)(39 mg) was obtained and also a second lactone (39) (26 mg) as an oil, v,,,, 1785 cm-' (Found: M+, 230.0617. CloH1404S requires M, 230.061 3). Preparation of the Aldehyde Lactone (2).-Freshly distilled HC0,H (2 ml) was added to the acetal(36) (157 mg) in CH,Cl, (5 ml). After 14 h, CH,Cl, (50 ml) was added and the solution shaken with saturated aqueous NaHCO, (3 x 20 ml). Concentration of the dried extracts gave the aldehyde (2) (103 mg), m.p. 94 "C (Et,O); v,,,. 1 790 and 1 720 cm-';A,,,. 243 nm (E 4 500) (Found: C, 54.2; H, 4.4; M', 184.0198. C,H,O,S requires C, 52.2; H, 4.4; M, 184.0194). The acetal (36) was reformed by reaction of the aldehyde (2) with BF,-MeOH-HC(OMe), in 70 yield.Oxidation of the aldehyde with Jones' reagent gave a 47 yield of the cis-acid (34) identical with that prepared previously. Crystal Duta.-For compound (3). Cl,Hl ,O,S (3), M = 302, monoclinic, a = 9.059(4), b = 9.527(3), c = 18.772(5) A, p = 103.77(3)", I/ = 1574 A,, 2 = 4, D, = 1.27 g cm-', p(Mo-K,, h = 0.71069) = 2.4 cm-', space group P2Jc (No. 14), 2168 reflexions with F 30 (F), R = 6.9. From a sample of transparent, colourless, irregular-shaped crystals, a specimen of dimensions 0.52 x 0.42 x 0.40 mm was mounted on an Enraf-Nonius CAD-4 computer-controlled single-crystal diffractometer and intensity data collected to a value of 25" using Mo-K, radiation. Standard reflexion monitoring suggested no crystal deterioration during data collection and no absorption correction was applied(pRc 0.13).An earlier analysis, in 1978, in which 198 E values 1.8 collected on a Hilger and Watts diffractometer system together with the MULTAN direct methods program had yielded a solution, was used as the starting point. Difference Fourier series and least-squares refinement of positional and isotropic thermal parameters confirmed the structure which exhibited high B values in the ethyl groups. Disorder at one methyl position prevented five of the hydrogen atoms being directly located. Anisotropic refinement of all non-hydrogen atoms, C( 1 1 ) excluded, converged satisfactorily. Alternate site- occupancy and B-value refinement at the site of the disorder suggested two sites of equal occupancy, C(111) and C(112).Hydrogen atom positions were recalculated to maintain C-H distances of 0.98A (methyls 0.95 A). During the final cycles the weighting scheme w-' --(0.45 -0.07F + 0.0117F') was employed to give uniform w=AF2distribution over the range of F values. The final R was 6.90. The final atomic co-ordinates are listed in Table 4. For compound (35).C,H,S04, M = 200, monoclinic, a = 8.456(3), b 6.593(2), c = 15.603(4) A, p = 101.34", U = 852.9 A3, D, = 1.56 g cm-', p(Mo-K,) = 3.74 cm-', space group P2,/c1(No. 14), 1174 unique reflexions with F 3o(F), R = 2.89. The crystals were transparent, colourless plates with well- formed faces. One, of dimensions 0.32 x 0.21 x 0.1 1 mm, was mounted on an Enraf-Nonius CAD-4, computer-controlled, single-crystal diffractometer and used for collection of intensity data up to 8 = 23".The scan range was given by (0.8 + 0.35 tan) and the aperture dimension was 4 mm2. Standard reflexion monitoring suggested no crystal deterioration during data collection. No absorption correction was applied. The structure was solved by direct methods using the program MULTAN-76. The most likely E-map showed all the non-hydrogen atoms. The positions of the stereochemically constrained hydrogen atoms were calculated and that of the hydroxy hydrogen, H(81), found from a difference map after initial isotropic thermal refinement. After full-matrix anisotropic refinement of the non- hydrogen atoms the final R was 2.89. The final weighting scheme used was w = (0.23-0.0191; + 0.001F2).The final atomic parameters are given in Table 5 and selected bond lengths and angles in Table 2. Acknowledgements We thank the S.E.R.C., I.C.1.-Pharmaceuticals Division and The Royal Society for financial assistance. References 1 M. F. Ansell, M. P. L. Caton, M. N. Palfreyman, and K. J. A. Stuttle, Tetrahedron Lett., 1979, 4497; 1982, 1955; S. Ohuchida, N. Hamanaka, and M. Hayashi, ibid., 1979, 3661; K. C. Nicolau, R. L. Magolda, and D. A. Claremon, J. Am. Chem. Soc., 1980,102,1404, K. Maxey and G. L. Bundy, Tetrahedron Lett., 1980, 137; E. J. Corey, J. W. Ponder, and P. Ulrich, ibid., 1980, 137; S. Kosuge, N. Hamanaka, and M. Hayashi, ibid., 1981, 1345; T. K. Schaaf, D. L. Bussolotti, M. J. Parry, and E. J. Corey, J. Am. Chem. Soc., 1981,103, 6502; S. Ohuchida, N. Hamanaka, and M. Hayashi, Tetrahedron Lett., 1981,1349, and 5301; 1982,2883, J. Am. Chem. Soc., 1981,103, 4597. 2 E. J. Corey, N. M. Weinshenker, T. K. Schaaf, and W. Huber, J. Am. Chem. Soc., 1969,91, 5675. 3 J. F. W. Keana and P. E. Eckler, J. Org. Chem., 1976, 41, 2850. 4 W. J. Middleton, J. Org. Chem., 1965, 30,1390. 5 A. Ohiro, Y. Ohnishi, and G. Tschihashi, Tetrahedron, 1969,25,871. 6 D. M. Vyas and G. W. Hay, J. Chem. Soc., Chem. Commun., 1971, 1411. 7 P. Beslin and P. Metzner, Tetrahedron Lett., 1980, 4657. 8 E. Vedejs, M. J. Amost, J. M. Dolphin, and J. Eustache, J. Org. Chem., 1980,45, 2601. 9 R. C. Haltiwanger, P. T. Beurskens, P. A. T. W. Porskamp, L. A. G. M. van den Broek, and B. Zwanenburg, J. Crystallogr. Spectrosc. Res., 1985, 15, 109. 10 J. Mancuso, S. L. Huang, and D. Swern, J, Org. Chem., 1978,43,2480. 11 V. Jager and H. J. Gunther, Tetrahedron Lett., 1977, 2543. 12 E. E. van Tamelen and M. Shamma, J.Am. Chem. Soc., 1954,76,2315. 13 'Molecular Complexes,' ed. R. Foster, Elek Science, London, 1973, vol. 1. 14 K. C. Nicolaou and Z. Lysenko, J. Am. Chem. Soc., 1977,99, 3185. 15 R. Pummerer, Chem. Ber., 1901, 42, 2433; K. Praefabe and C. Weichsel, Annalen, 1979, 784. 16 D. L. Tuleen and V. C. Marcum, J. Org. Chem., 1867,32,204; D. L. Tuleen, J. Org. Chem., 1967, 32, 4006. 17 D. L. Tuleen and T. B. Stephens, J. Org. Chem., 1969, 34, 31. 18 A. L. Gemal and J. L. Luche, J. Org. Chem., 1979,44,4187. 19 A. Gorgues, Bull. Soc. Chim. Fr., 1974, 3-4 (2), 529. Received 3rd February 1987; Paper 7/ 188
机译:J. CHEM. SOC. PERKIN 译.I 1988 硫虫素的合成方法。第一部分功能化二氢硫吡喃的制备 Kevin R. Lawson, Brian P. McDonald, Owen S. Mills, Robert W. Steele, James K. Sutherland * and Trevor J. Wear 曼彻斯特维多利亚大学化学系, 曼彻斯特 M 13 9PL Andrew Brewster 和 Peter R. Marsham I.C.I. Pharmaceuticals Division, Mereside, Alderle y Park, Macclesfield, Cheshire SK 10 4TG 硫代乳酸二乙酯与六-3衍生物之间的异质Diels-Alder反应,5-二烯酸产生5,6,6-三取代的5,6-二氢-2H-噻喃。已经研究了这些化合物的水解和脱羧反应。这些化合物的碘内酯化产生了多种产物。4-甲酰基-3a,7a-二氢-4H-吡喃并[4,3-~]呋喃-2(3H)-酮二甲缩醛及相关丙二酸酯的有效路线已被开发出来。前列环素和补充血栓素 (1) 作为药物制备的模型和它们重要的生物学特性引起了人们的极大兴趣。血栓素A的碳化癶和硫胺类似物,与凝血素的双环[3.1.1]体系相比,具有更高的水解稳定性,因此引起了人们的关注。我们着手开发一条通往硫亚和二硫杂血栓素A类似物的途径。该方法的广泛策略类似于Corey为前列腺素开发的策略,并且需要一种功能化的中间体,可以将两条侧链连接到该中间体上,并允许在后期引入四元环。可能满足这些要求的化合物是内酯(2),它成为初始靶标。在这项工作开始时,已知氧丙胺酸酯可以在 Diels-Alder 反应中充当亲二烯亲素3 此外,n (1) (2) (3) X = H,OAc (4) X = H,OH (5) x = 0 米德尔顿最初证明六氟硫代丙酮是一种反应性亲二烯试剂,随后使用推测该基团与硫孤对电子的 1,3-相互作用在能量上小于与同斜乙氧羰基乙基乙基的相互作用组(图1)。似乎没有直接可比较的结构报道,因此表1列出了二氢硫吡喃环的选定几何特征。最近出现了二氢硫代吡喃的结构;相比之下,同样采用半椅子构象的氧化物中的环平面较少,并且与S-C(l)相对应的键似乎被延长了。随着加成性区域化学的牢固确立,该反应与许多相关的二烯一起进行。在沸腾的THF中用P4S和氧丙二酸二乙酯处理乙基和甲基-3,5-二烯酸酯,得到加合物(6)和(7),收率为6&70%。乙酯(6)显示I,,,.219 nm (E 1800) 和 6, 5.除酯信号外,还有83(1 H,ddt,J 10.5、4.5和2 Hz)、5.72(1 H、dm、J 10.5 Hz)、3.41(1 H,m)、3.13(1 H,dq、J 18和2 Hz)、2.95(lH,ddt,J18,4.5,andlHz)、2.49(1H,dd,J16和8.5Hz)和2.38(1 H、dd、J 16和5.5 Hz)。六-3,5-二烯酸对C02R'CO、R1 I C = cis T=反式硫代苯~苯酮、~甲基氰基二硫甲酸酯、'二硫代~三甲基、~和a-酰基二硫代酯的收率不理想(24%)。Vyas 和 Hay' 表明,硫代加成不对称二烯的区域化学与0x0组相反。根据这些结果,我们研究了硫代丙氨酸和P,S原位生成硫代丙酮酸盐,以及二烯类化合物的捕获。在第一个实验中,1-乙酰氧基丁二烯反应生成加合物(3),加合物可以水解为醇(4),然后氧化为酮(5)。光谱数据与这些结构一致,但为了使物质不容置疑,醋酸盐的结构是通过X射线晶体学确定的。(3)的二氢噻喃环采用半椅形象,乙酰氧基伪轴向;t 硫代丙氨酸也是由二溴丙二酸酯与 KS(CS)OEt 反应生成的 (J. L. Herrman,G. R. Kieczykowski, and R. H. Schlessinger, Tetrahedron Lett., 1973, 2433)。664 J. CHEM. SOC. PERKlN TRANS.I 1988 c4 表 1.-7-D C(3) (34) C(5)S C(1) C(2)C(6) (39) C(5) C &Cll* c111 图 1.化合物 (3) 键长 A-B B-C C-D 1.810(3) 1.519(5) 1.486(6) 1.309(7) 1.478( 8) 1.802(5) 1.531(5) 1.536(4) 1.459(4) 3C8 -键角 ABC BCD 111.8(2) 114.8(3) 125.4(4) 126.9(4) 113.1(3) 96.7(2) 106.7(2) 110.3(2) 105.1(3) 扭转角 ABCD 47 -13 1 -23 47 -60 180 63 -74 原子 C(l)、C(6)、0(1)、0(2)、 C(7)在0.001 A内共面,C(1),C(9),0(3),0(4),C(10)在0.009 A内,C(2),0(5),0(6),C(12),C(13)在0.015 A内加合物(8),由于我们无法选择性地将三酯(6)或(7)水解到该酸上,因此开发了其他途径。六-3,5-二烯-l-醇的乙酸盐使加合物(17)收率高。为了用NaOEt-EtOH去除乙酰氧基,获得单酯(19)作为顺反式混合物。由于三酯(6)对这些条件是惰性的,因此内酯(20)的中间体可能是,然后是裂解到混合碳酸盐,然后裂解到(18)和碳酸二乙酯。酸催化的酯交换反应得到醇(18),醇被氧化成酸(8)。醇(18)可通过Swern氧化转化为相应的醛。获得单酸(8)最令人满意的途径是使用2,2,2-三氯乙基六-3,二烯酸酯,使加合物(9)收率高;然后用 Zn-AcOH 还原生成酸 (8)。当用乙二醛酸丁酯*取代氧丙二酸酯时,与六-3,5-二烯酸乙酯的加成收率较低,得到反式异构体和顺式异构体的 4:1 混合物 (12)。在主要异构体中,2-H在6 3.46(J3.8 Hz)处共振,在次要异构体中共振为3。82 (J 4.5 赫兹)。在碱性水解中,在6 3.54(J3.5 Hz)和6 3.88(14.5 Hz)的次要异构体中,用2-H获得2-H的二羧酸(13)混合物。在用Ac,O处理时,酸被转化为酸酐(16),在水解时,得到酸的原始混合物。主要的酸酐异构体显示 2-H 为双峰 * 从那时起,已经开发了许多生成硫醛的方法,但我们没有应用它们。(参见 G. W. Kirby 和 A. W. Lochhead, J. Chem. Soc., Chem, Commun., 1983,423; J. E. Baldwin 和 R. C. G. Lopez, Tetrahedron, 1983, 39, 1487)。在 6 4.08 (J 11 Hz) 时,表明存在跨环结。在此基础上,在6 ca. 3.8时具有2-H的酸和酯均被赋予了顺式立体化学。结合六-3,5-二烯酸乙酯的E-立体化学,这些结果表明,电磁过渡态有利于这些异质Diels-Alder反应。三酯 (6) 和 (7) 与过量的碱水解得到三羧酸 (11),脱羧时得到反式酸和顺式酸的 3:l 混合物 (13)。三酯 (6) 和 (7) 与 2 当量碱水解得到二羧酸 (10) 的收率良好。(10) 的脱羧反应得到反式和顺式半酯 (14) 的 4:1 混合物。立体化学分配由n.0.e证实。差分光谱。2D-COSY谱图确定,6 3.51信号与6 2处的两个氢之一耦合。97 并给出 20% 的 n.O.e.,而 6 3.83 信号耦合到 6 3.10 的 1 信号,给出了 8% 的增强。我们制备不饱和y-内酯(33)的初步努力集中在碘内酯(24)的制备上。三酯 (6) 与 I,-MeCN l1 反应得到产物混合物,从中分离出四氢噻吩 (21),收率约为 25%。其'H n.m.r.谱图与该结构一致,通过与PhMe中的二氮杂二环-clo[5.4.0]十一-5-烯(DBU)反应得到不饱和内酯(23),与K,CO,-MeOH反应得到羟基酸1-这是由'H n.m.r.建立的,并与Z-异构体占主导地位的a,P-不饱和酯和酸形成对比(K. Beelitz, G. Hohne, and K. Praefcke, 2,Naturforsch., 1978, 33, 417)。这可能是由于可能存在的非常低浓度的顺式二烯。I 1988 0OYF 'HChemical shift and apparent J H -A H-B H -C H-D H-F 8 6.5 (H-El 3.37 -5.25 -3.85 -2.65 (21) R = Et 3.37X = COzEt 9 6(22) R = X = H 3.50 -3.77 -1.5 5.30 -3.85 -2.97 3.50 4 YO1 -%--20 6.3 5.45 5.64 -3.77 -9 2.59 (23) IS 5.35 10 14 3.16 -l3 3,94 -5.24 -7 3.34 -2.82(24) 14' 43.00 0 2 4 (25) X = COZH 3.74 -4.70 -5.25 -5 t3.501 =CHZCOZH Y=H (26) X = CO,H 3.60 -4.97 -4.82 -*' 3.90 -2.85 Z =H '4 4 118*2.50Y -CHZCOZH 2.98 4.5 -0 7.53.65 -4.98 -4.77 -3.70 -2.60 -0 IY = CH,C02H 1.3'4 12' 3.402.50 a 未标明酯烷基的共振。使用广泛的解偶联实验将(6)转化为四氢噻吩(21)不变,表明内酯(24)不是形成(21)的中间体。这两种碘内酯化速率和产物的巨大差异必须与溶剂效应密切相关。如果两相体系中的 Et 反应发生在 CH,Cl 相中,则羧酸根离子将比水相中的 (28) (30) 水合离子更具亲核性,并可能影响反应 (28)。在真空下加热时,酸(28)如方案所示。两种类型的电荷转移到内酯中 (23)。单酸 (8) 与 I 和硫吡喃之间的 KI 络合物的反应可能涉及 NaHC03-H,012 也使内酯 (21) 处于改进的烯烃和硫中心,',后者以 67% 的收率存在。这些碘内酯化反应缓慢,需要更高的浓度。 亲核羧酸根离子可能在起始材料全部反应前数小时。当在(32)中反应得到内酯(24)时,以协调一致的过程;单酸(8)在Triton B-MeOH-H,O-的搅拌混合物中与羧酸盐(31)反应得到CH,Cl,用I处理,快速(约15min)转化为碘硫吡喃(24),产率高。'H n.m.r.* 酰基次碘酸盐是一种可能的中间体,但它在空间上与(24)的结构一致。当它不太可能在硫吡喃(24)中形成所需的(反式)碘离子时,暴露于分子内反应的反应条件中。Z I (32) I--(21) .CO,RI, \ nI (31) (29) 方案。环槍离子 (29) 在 CH,C1 溶液中具有较高能量的过程。在水溶液中,竞争过程的能量被逆转,反应发生在硫或相关的碘化磺络合物中。在乙腈中,参与基团是弱亲核羧基或羧乙基,同样(31)是占主导地位的中间体。接下来,我们研究了碘化物(24)的脱氢碘化反应,结果令人失望。在非极性溶剂中使用 DBN 未能产生任何反应,而 CC1,-Me2S0 和 LiCO,-LiCl-HCO*NMe 中的 DBN 得到环收缩氯化合物 (21;I = Cl)。Li,CO,-HCO=NMe,得到已知的不饱和内酯(23)。更强的碱基导致分子的破坏;用LiNPr',得到高收率的丙二酸二乙酯。这些结果使我们得出这样的观点,即分子不能轻易地获得E反应所需的轴向I构象的构象,并且在极性溶剂中,赤道I构象中的电离形成episul-phonium离子,从而形成环收缩产物。他们还提出,同消除可以形成烯烃。为此,用 PhSeCl 处理单酸 (8) 得到内酯 (30),在用 H20 氧化后,得到不饱和内酯 (33),总收率为 29%。由于同时发现了更令人满意的程序,因此没有做出任何努力来改进这一过程。我们还简要研究了三羧酸和二羧酸 (11) 和 (13) 的碘内酯化。(11)与KI,-H20在1mol当量NaHCO存在下反应,得到混合物,从中分离出两种碘内酯(25)和(26),收率分别为21%和16%。这些结构是根据它们的'H n.m.r.光谱分配的。从两种异构体的偶联常数模式可以明显看出,碘和氧取代基都是轴向的,而它们在内酯中的二赤相位置相反 (24)。这表明(25)和(26)都是桥接内酯,仅在乙酸侧链的立体化学上有所不同。从双环[3.2.l]环系统的分子模型中可以明显看出,双原子桥扭曲了六元环,使得桥接亚甲基氢的扭转角为方程-方程。约 35 英寸和方程-斧头。约85O。在此基础上,J(3-H, 2-H) -0 Hz的异构体被赋予了结构(26)和J 5.3 Hz结构(25)。桥式内酯的形成可能是 J. CHEM. SOC. PERKIN TRANS.I 1988 从溶液中存在的主要物质是 (11) 的丙二酸基团的单阴离子得出的结论。二羧酸 (13) 的顺反式混合物 (1 :3) 的碘内酯化得到一种混合物,从中分离出 15% 的桥接内酯 (27) 和 8% 的环收缩化合物 (22)。结构分配基于其'H n.m.r.谱图与化合物(26)和(21)的相似性。很明显,内酯(27)必须来自(13)的次要顺式异构体。(22)中羧基的立体化学不能明确分配,但其n.m.r.谱图与反式异构体(13)形成的光谱一致。酯(15)的碘内酯化仅产生环收缩产物。我们在传统的碘内酯化条件下获得的低产量可能会使机械推测受到质疑。然而,值得注意的是,当涉及乙酸的内糖化时,仅分离出环收缩产物,而没有发现环收缩桥接内酯。我们的工作假设(如方案所示)提供了一个可能的解释,表明配合物(31)转化为桥接的环硫离子(29),该离子在二次碳处与碘化物反应,形成自行车[3.2.1]系统,而不是更紧张的双环[2.2.1]排列。接下来,我们研究了硫吡喃亚砜(6A)和(15A)与(CF,CO),O的反应。通过对酯(6)和(15)的间氯过苯甲酸氧化,可以很容易地制备出氧化物。三乙酯(6A)的Pummerer“反应得到含有三氟乙酸盐和y-内酯(33)的粗产物,收率为41%,并伴有二烯(45)(44)-'&CO,R s 2 CO,R(11%)。(45)的'H n.m.r.谱图确定了三个乙烯基质子、三个乙氧基和一个亚甲基的存在,并用A表示共轭,,,,,.245 和 321 nm。当反应时间延长至20 h时,二烯(45)成为分离出的主要产物。亚砜(15A)在类似条件下的反应得到二烯(46),除乙氧基吸收外,其'H n.m.r.光谱中显示两个乙烯基质子和两个亚甲基。为了提高y-内酯(33)的收率,研究了三酯(6)与N-氯琥珀酰亚胺的反应;Y-内酯(33)确实是形成的,但伴随着二烯(45)和其他不明产物。然而,酸(8)与N-氯琥珀酰亚胺反应得到内酯(33)的收率为75%。内酯(33)向醛(2)的转化遇到了意想不到的困难。内酯(33)对各种酸催化和SN2条件的酯裂解呈惰性,相反,它在各种碱性条件下被完全破坏。最终发现,LiOH-H,O-四氢呋喃经过酸化和加热后得到顺式-J. CHEM. SOC. PERKIN TRANS.I 1988 H -A H-B H-C H-D H-F (H-E) 6.18 -lo 5.82 -5.50 -7.5 3.59 -l2 2.82 I(33) X = Z = COzEt >2.40 17 10 4 7.76.56 -5.96 -5.19 -6 3.22 -2.76 3.04 6.48 -10 5.79 -5.31 -3.50 -'2 2.04 3 I 117 3.63 2.4310 5 3 6(36) X = CH(OMe),Z = H 6.27 -5.5.80 -5.00 -3.1 3.39 / *2.K7(38) 43.04 -6.03 -5.71 -235 ? 3.28 2.5 17 我 *2.!817 3.04 -4 11 3.53.22 -5.95 -5.71 -7.1 6 -6.5 2.75 17.5 I 4 5 71 117.5 3.07 4.53 -3.30 2.62 (40) 12\4.30 A6.9 3.01 -5.87 -lm2 5.77 -7 3.07 -lo 2.77 -0 01 117.5 2.77 19.5 I 6 9.62 -3.47 >2.64 3.28 -5.76 -5.90 -2.91 -8 2.7 8 2 12 7 18 I 7.5 0 I 116.5 2.85 4.47 -2.87 2.63 和酸(34)和(35)的反式混合物在可重现的可重复性中产量 (50%)。内酯 (33) 对碱性条件的不稳定性与其二氢衍生物的正常行为形成鲜明对比。 这一点,再加上一些证据表明 *二氢内酯的开口是通过碘内酯的 Bu,SnH 还原制备的.内酯环导致降解,以及第 2 部分中报告的一些结果,促使我们认为,当 C-2 处有两个吸电子基团时,醇盐 (47) 是不稳定的;阴离子加速的retro-Diels-Alder反应是可能的。酸(34)和(35)的7:5混合物可以用t.1.c分离。'H n.m.r.光谱证实了大体结构,但不允许明确分配立体化学。X射线晶体结构威慑-表2。A、B、C、D、S-C(1)-C(2)-C(3)-C(6)-C(7)- C(1)-C(2)-C(3)-C(6)-C(7)-s- C(2)-C(3)-C(6)-C(7)-S-C(1)- C(3)、C(6)、C(7)、S C(1)、C(2)、(33)-O(1)-C(4)-C(5)-C(6)-C(8)-S- O(1)-C(4)-C(5)-C(6)-C(3)-C(7)-C(7)- C(4)-C(5)-C(6)-C(3)-O(1)-C(6)-C(6)- C(5) C(6) C(3) O(1) C(4) C(5) C(5) C(5) C(2)-(37)-C(1)-C(3)-C(6)-S-S- C(3)-C(6)-C(2)-O(1)-C(5)-C(7)-C(7)- C(6)-C(3)-C(3)-C(3)-C(3)-C(4)-C(8)-C(8)- C(5) O(1) O(1) O(4) O(4) O(81)O(82) 在表中,每个距离和角度只记录一次。04 C42 J.CHEM. SOC. PERKIN TRANS.I 1988 键长 A-B B-C C-D 1.736(2) 1.31 l(3) 1.. 472(3) 1.523( ) 1.510( ) 1.814( ) 1.472(2) 1.324(2) 1.485(3) 1.512(3) 1.523(3) 1.502(3) 1.209(3) 1.323(3) 1.194(3) 键角 ABC BCD 127.0(2) 126.1(2) 1 15.7(2) 1 15.8(2) 113.1(2) 1OO.7(1) 110.0(2) 110.8(2) 102.5(2) 10 1.7( 2) 102.8(2) 113.7(2) 114.5(2) 108.0(2) 120.6(2) 128.6(2) 107.3(1) 11 1.0(2) 125.0(2) T -1 -10 +41 -56 +39 -13 +1+20 -32 +33 -22 -176 +62 -84 +158 -125 -179 -159 -85 +94 04 c4a s1 图 2.化合物(35)分析表明,次要异构体具有羧基和乙酸侧链的反式关系。对 X 射线晶体学数据库的搜索显示,以前没有报道过具有该环核的结构,因此我们在表 2 中列出了选定的键长、键角和扭转角。六元环采用(图2)扁平的半椅子构象,具有羧基和醋酸侧链对周(176“)。内酯环呈包膜状,以 C-6 为瓣。确定了氢原子的位置,从而推导出Karplus方程的常数。表达式 J = 11 cos20 被发现在这一系列化合物中具有普遍应用,并表明酸在溶液中具有与固态相同的构象。研究了将羧基转化为醛的各种方法,但没有成功。令我们惊讶的是,在标准条件下,酸(34)和(35)没有被B,H还原,而是用LiBH还原酰氯,得到醇的混合物(44)。然而,我们无法使用多种方法将醇氧化成有用的醛。醇混合物与(COCl),-Me,SO lo反应得到醛的微小产率和低的X-MeS醛产率。二羧酸(13C)和(13T)与N-氯琥珀酰亚胺反应得到内酯(38),而酸酐(16)在水解后被相同的试剂转化为二烯(46)。这些结果与从磺中间体I7中消除酸性质子的机理建议一致,并清楚地表明,只有当C-2被二取代或2-H的酸度降低时,才有可能在所需方向上进行乳素化。为此,将酸酐 (16) 用 LiBH 还原为内酯 (40)。酸酐由酸(13C)和(13T)的2:1混合物制备,与环结质子的J 7 Hz一起,表明内酯是顺式异构体。当氧化醇类的困难(44)变得明显时,这种方法被放弃了,我们研究了缩醛(36)的制备。用 2.2 mol J. CHEM. SOC. PERKIN TRANS. 还原半酯 (14)。I 1988 Bu',AlH在-78“C下得到醛(42)(94%),醛与SmCl3~8H2O-MeOH-HC(OMe)反应转化为二甲基缩醛(43)(96%);l8延长反应时间或使用其他催化剂导致羧基酯化。我们所有的证据(t.l.c.,毛细管g.l.c.,'H n.m.r.光谱)都支持这样的观点,即化合物(42)和(43)以及随后的化合物是单一异构体,尽管(42)是由酯的顺反式混合物制备的(14)。醛 (2) 氧化为顺式酸 (35) 建立了该系列中的顺式立体化学。由于 2-H 的酸度,A1 配位醛可能形成烯醇铝酸盐,该烯醇铝酸盐在处理时在复合物受阻最小的面上立体选择性质子化。缩醛 (43) 与 N-氯琥珀酰亚胺 - CH,Cl 反应得到内酯 (36)。其结构源于其 'H n.m.r. 光谱以及与顺酸的化学相关性 (35)。然而,获得的最佳收率约为 40%,并且该反应被证明是反复无常的,尤其是在扩大规模时。T.1.c.的反应混合物表明,内酯(36)是唯一存在的移动产物,并且确实是分离的。由于HCl是副产物,因此检查了在8%(v/v)1,2-环氧丙烷存在下的反应。内酯 (36) 的收率为 44%,但新的内酯也以 30% 的收率分离出来。该化合物根据其'H n.m.r.谱图被指定为结构(39)。为了更好地理解该反应并开发一种可靠的内酯制备方法(36),使用毛细管g.1.c研究了该反应。具有内部标准。表3总结了结果,并得出以下结论。(一)起始材料在约5 rnin中发生反应。(b)在无环氧丙烷的情况下,内酯(36)被部分破坏,但内酯(39)的收率很小,不随时间增加;(c)当在添加氯化剂之前存在环氧丙烷时,内酯(36)的初始产率几乎降低了一半,但没有降解,并且内酯(39)的初始产率随时间缓慢增加。在 N-氯琥珀酰亚胺之后加入环氧丙烷 2 rnin 允许折衷,当起始材料的浓度为 5 g 1-' 时,内酯 (36) 的产率可重现 (约 75%)。对于这些观察结果,我们没有完整的解释,但环氧丙烷的不存在和存在可能涉及不同的磺中间体和/或这些中间体分解的不同碱。在第一种情况下,氯离子可以与N-氯琥珀酰亚胺反应生成Cl,Cl是大部分材料的氯化剂,通过链式反应。在第二种情况下,C1-将充当碱,产生硫代铵离子中间体。当C1-的浓度降低时,就会形成不同的磺离子(S-琥珀酰胺或S-氯?)碱基对,并且反应更慢,选择性也不同。测试这些想法的尝试给出了不确定的结果。缩醛 (36) 水解为醛 (2) 在水性体系中收率较低,但与无水甲酸 l9 反应使醛的收率可接受。除非另有报道,否则实验性N.m.r.光谱在CDCl中以300 MHz记录。1.r.光谱以CHCl为单位,U.V.光谱以EtOH为单位。将Eth.191 6,6-双烯醇~~~carbonl,l-5,6-二氢-2H-噻喃-5-y1-ucetute(6).-氧代乳酸二乙酯(14.41g)、P4S10(7.73g)和六-3,5-二烯酸乙酯(8.62g)在干燥的THF(70ml)中回流煮沸20小时。THF在减压下蒸发后,用Et,O反复提取暗残留物,浓缩提取物,得到表3。G.c.峰高比值与内标a 时间比值 01 36 39 (36:39) (a) NCS-CH,Cl, 10 min 1.12 0.05 22.4 19 h 0.69 0.04 17.3 01 (b) NCS-CH ,CI,-C3H 60 5 min 20 min 0.55 0.58 0.22 0.39 2.5 1.5 3h 0.50 0.56 0.9 01 (c) NCS-CH,Cl,-C,H60 20 min 1.26 0.14 9.0 2 min. 19 h 1.07 0.25 4.3 an-C16H34as 内标.brown oil.在硅胶60上用己烷-Et,O(2:1)洗脱的快速色谱法得到三酯(6)(13.43克)为黄色油(发现:C,54.1;H,6.9;S,9.9%。M+,330.1137。C,,H,,O,S 需要 C, 54.5;H,6.7;S,9.9%;M,330.1 132)。使用二乙基氧丙果酸以类似的方式制备以下硫吡喃。(一)化合物(7)由六-3,5-二烯酸甲酯(69%),熔点59-60“C(戊烷-Et,O)(发现:C,52.9;H,6.5;S,10.6。Cl,H,oO,S要求C,53.1;H,6.4;S,10.1%);6H(Cc14,60 MHz) 5.76 (2 H, br s), 4.18 (4 H 9, J 7 Hz), 3.62 (3 H, s), 3.37 (1 H, m), 3.05 (2 H, br s), 2.44 (2 H, d, J7 Hz) 和 1.28 (6 H, t, J 7 Hz);(b) 化合物(8)来自六-3,5-二烯酸(24%),m.p.82-84“C [EtOAc-轻石油(b.p.40-60”C)](发现:C,52.1;H,6.2;S,11.0。C,,H18O,S需要C,51.6;H,6.0;S,10.6%);F,(CDCl,, 300 MHz), 5.95 (1 H, dd, J 11 和 5 Hz), 5.79 (1 H, m), 4.29 (4 H, m), 3.48 (1 H, m), 3.21 (1 H, dd, J 18 和 2 Hz), 3.03 (1 H, dd, J 18 和 5 Hz), 2.62 (1 H, dd, J 16 和 9 Hz), 2.55 (1 H, dd, J 16 和 6 Hz) 和 1.25 (6 H, m);(c) 化合物(9)来自l,l,l-三氯乙基六-3,5-二烯酸酯(90%),熔点65-66“C(己烷)(发现:C,41.5;H,4.4;S,7.2。C,,H,,Cl,O,S需要C,41.4;H,4.4;S,7.4%);6、(CDCl,, 60 MHz)、5.91 (2 H, m)、5.77 (2 H, s)、4.26 (4 H, q, J7 Hz)、3.56 (1 H, m)、3.16 (2 H, m)、2.72 (2 H, d, J 7 Hz) 和 1.28 (6 H, t, J 7 Hz)。Zn-AcOH还原得到(b)中得到的酸(78%);(d) 化合物(17)由六-3,5-二烯基乙酸酯制成,黄油(75%)(发现:M+,330.1132.C1,H,,O,S需要M,330.1 137);&(CDC1,,60 MHz) 5.89 (2 H, m), 4.26 (2 H, m), 4.28 (2 H, q, J 7 Hz), 4.25 (2 H, q, J 7 Hz), 3.14 (2 H, br s), 2.65 (1 H, m), 2.05 (3 H, s), 1.78 (2 H, m), 1.30(3 H, t, J7 Hz) 和 1.27 (3 H, t, J 7 Hz);(e)化合物 (3) 来自 l-乙酰氧基丁-1,3-二烯,熔点:89-90°C (EtOH)(发现:C,51.6;H,6.1;S,10.3。C,,H,,O,S 需要 C, 51.6;H,6.0;S,10.6%);G,(CDCl,, 90 MHz)、6.05 (2 H, m)、5.85 (1 H, m)、4.24 (4 H, q, J 7 Hz)、3.18 (2 H, m)、2.05 (3 H, s) 和 1.27 (3 H, t, J 7 Hz)。(六)化合物(12)(使用乙醛酸丁酯)由六-3,5-二烯酸乙酯,黄油(15%)(发现:M+,286.1236。C14H,,0,S 需要 M, 286.1239);S,(CDCl,, 90 MHz) 5.80 (2 H, m)、4.12 (4 H, m)、3.82 (0.5 H, d J4 Hz)、(0.8 H, d, J4 Hz)、3.17 (3 H, m) 和 2.98 (2 H, m)。六-3,5-二烯酸及其酯类-通过相应的山梨酸盐*(LDA-HMPA或LDA-TMU)的脱偶联制备酸和甲酯和乙酯。由酸、三氯乙醇和二环己基脲在CH,Cl,-吡啶溶液中制备三氯乙酯为液体,b.p.(浴)60“C/O.OOS Torr(84%)(Found:C,39.6;H,3.9。C,H,Cl,O,要求C,39.5;H,3.8%)。* 见第663页脚注。670 6,6-二羧基-5,6-二氢-2H-噻喃-5-乙酸 (ll).-将三酯 (6) (235 mg) 在 EtOH (5 ml) 和含有 NaOH (2 g) 的水 (5 ml) 中在 20°C 下搅拌 14 小时。将溶液用2~HCl加热至pH1,然后用NaCl饱和,用EtOAc(3×50ml)萃取。提取物的处理得到三羧酸(11)(158mg),熔点约125“c(decomp);6~(cD,CocD,, 60 MHz) 10.05 (3 H, s), 5.82 (2 H, m), 3.45 (1 H, m), 3.12 (2 H, m), 和 2.54 (2 H, d, J 7 Hz).将6-羧基-5,6-二氢-2H-噻喃-5-基乙酸(13).- (a)将20%NaOH(12ml)水溶液加入到二酯(12)(1.1g)的EtOH(3ml)溶液中,并将混合物在回流(N,气氛)下煮沸4小时。将溶液用2~HCl酸化至pH1,并用Et,O(3×60ml)萃取。干燥提取物的浓度得到顺式酸和反式酸 (13) (650 mg),熔点 177--179°C (MeCN-Et,O)(发现:C,47.8;H,5.1。C8H,,0,S 需要 C, 47.5;H,4.9%);6、(CD3-COCD,、80 MHz)、5.85(2 H、m)、3.85(0.25 H、d、J 43 Hz)、3.54(0.75H,d、J3.5Hz)、3.20(1 H,m)、3.19(2H,m)和2.56(2 H、d、J7.5 Hz)。将酸(13)溶于Ac20中,4小时后蒸发混合物,得到酸酐(16),熔点127-130“C(发现:M+,184.0193。C8H803S 需要 M, 184.0194);S,(CD,COCD,, 90 MHz), 5.97 (1 H, m), 5.68 (1 H, d, Jl1Hz),4.08(1H,d,J11Hz),3.56(1H,brd,J16Hz),3.15(2H,m), 2.89 (1 H, d, J 14 Hz), 2.54 (1 H, dd, J 14 和 4 Hz);v,,,.(CHCI,) 1 820 和 1 770 cm-'。水解得到起始酸(13)。(二)如果将三酯(6)(323mg)(先前的实验)水解的酸化溶液在回流下煮沸20分钟,然后按照所述进行处理,则获得顺式和反式二羧酸(13)(176mg)的混合物,作为黄色油,随时间凝固,G,(CDCI,,60MHz)5.92(2小时,m), 3.87 和 3.54(分别为 d、J4.3 和 3.5 Hz)、3.14(3 H、m)和 2.58(2 H、m)。当酸(11)在130“C下加热时得到相同的混合物,将混合物溶解在Ac,O中,得到顺反式酸酐混合物。6-乙氧羰基-5,6-二氢-2H-噻喃-5-基乙酸(14).-将三酯(7)(3.3g)溶于含有NaOH(1g)的EtOH(35ml)和水(35ml)中。12小时后,将溶液用5M HCl酸化,用NaCl饱和,并用EtOAc(2×50ml)提取。干燥提取物的浓度得到二羧酸(lo),熔点125-130“C(分解)(CHCl,)(发现:C,48.4;H,5.1;S,11.7.C1,Hl4O6S需要C,48.2;H,5.1;S,11.7%);G,(CD,COCD,, 90 MHz)、5.85 (2 H, m)、4.17 (2 H,q, J7 Hz)、3.45 (1 H, m)、3.12(2H7m)、2.55(2H,d, J7 Hz) 和 1.23 (3 H, t, J 7 Hz)。将酸在N下在130“C下加热0.75小时,得到深色油,在用CHC1,-MeOH(19:1)洗脱的硅胶60上通过快速色谱法纯化,得到酸(14)(1.85g)作为油(发现:C,52.3;H,6.3;S.14.0. C,,H,,O,S 需要 C, 52.2;H,6.1;S, 13.97:);8,(CD3COCD,, 220 MHz)、5.90 (1 H, br d, J 1 1 Hz)、5.77 (1 H, br d, J 11 Hz)、4.17 (2 H, m)、3.83 (0.2 H, d, J4.5 Hz)、3.51 (0.7 H, d, J 3.5 Hz)、3.22 (1 H, m)、3.10 (0.2 H,m)、2.97 (2 H, m)、2.55 (2 H, m) 和 1.22 (3 H, t,J7 Hz)。6-乙氧羰基-5-(2-羟乙基)-5,6-二氢-2H-噻喃(18).-乙酸盐(17)(109mg)溶于含有NaOEt的EtOH(例如10mg Na)中。4 h后,加入2~HCI(40ml)并用EtOAc(4 x 20 ml)萃取混合物。将干燥的提取物浓缩,得到起始原料和产物的混合物。制备t.1.c.用己烷-Et,O(1:2)洗脱得到醇(19)(37mg)(Found: M+, 216.0818。C,,H,,O,S 需要 M, 216.0820);G,(CDCl,, 60 J. CHEM. SOC. PERKIN TRANS.I 1988 将6,6-二乙氧基羰基-5-(2-羟乙基)-5,6-二氢-2H-噻喃(18)-乙酰氯(4ml)加入到EtOH(40ml)中,5分钟后,将乙酸盐(17)(1.14g)溶解在溶液中。饱和NaHCO水溶液6小时后,加入(120ml)并用EtOAc(3×60ml)萃取混合物;将干燥的提取物浓缩得到一种油,该油在硅胶 60 上色谱,用己烷 Et,O 洗脱,得到醇 (18)(603 mg),为无色油(发现 M+,288.1022.C13H,,05S 需要 M,288.1031);GH(CDCl,, 60 MHz)、5.90 (2 H, m)、4.25 (2 H, q, J7 Hz)、4.21 (2 H, q, J7 Hz)、3.77 (2 H, J6 Hz)、3.27 (1 H, m)、3.15 (2 H, br s)、1.26 (2 H, m)、1.28(3 H, t, J 7 Hz) 和 1.25 (3 H, t, J 7 Hz)。在用琼斯试剂氧化时,醇(18)得到的酸(8)与先前制备的材料相同。将6,6-双乙氧羰基-5-甲酰甲基-5,6-二氢-2H-噻喃-Me,SO(340 pl)加入到CH,C12 (1 ml)中,在-78 OC下加入(COCl),(200 pl)。5分钟后,将CH,Cl,(1ml)中的醇(288mg)加入到现在-15“C.15分钟后,加入Et,N(1.4ml)15分钟后,然后加入水(20ml),然后用CH,Cl(2×15ml)萃取混合物。将干燥的提取物浓缩并在硅胶60上用己烷-Et,O洗脱产物的色谱法得到醛作为油(181mg)(发现:M+,286.0867。C,,H,,O,S 需要 M, 286.0871);6,(CDC13,60 MHz) 9.84 (1 H, t, J 1.5 Hz)]。它给出了2,4-二硝基苯腙,m.p. 120-122“C(EtOAc)(发现:C,49.3;H,4.7;N,12.0。C,,H,2N408S需要C,48.9;H,4.8;N,12.0%)。将三羧酸(1l)的碘内酯化-I,(103mg)和KI(200mg)的水溶液(6ml)滴加到酸溶液(11)中。再加入NaHCO水溶液,使溶液的pH值保持在原来的值5 h,再加12 h后,加入Na、S、O水溶液以破坏过量的I,加入2~HCl后,用EtOAc(3 x 60 ml)萃取溶液。蒸发干燥的提取物得到混合物,该混合物在二氧化硅HF,,,板上使用PhMe-Et,O-HC0,H(17.5:5:3)双重洗脱进行色谱。洗脱两个主要条带得到内酯 (25) (32 mg),m.p.166167 “C(分解)(CHC1,-Me,CO), v,,,.1790 和 1 735 cm-' (发现: C, 29.0;H,2.5;我,33.5。C,H,IO,S 需要 C,29.0;H,2.7;I,34.0%)和内酯(26)(25mg),m.p.156-95“C(分解),m/z 328(M-CO,)。(26)与CH,N,-Et20反应得到二甲酯m/z 273.0437。(M -1 需要 273.0433)。将三乙酯(6)-I(4g)的碘内酯(4g)加入到MeCN(30ml)中的酯(6)(1.4g)中。8天后,加入Et,O(100ml),用Na,S,O,水溶液摇动。将空灵的提取物浓缩干燥后,得到含有约20%起始原料的粗碘内酯(1.63g)。在二氧化硅HF254板上用PhMe-Et,O-HC0,H(17.5:5:3)双重洗脱纯化一份(150mg)。去除主带的下部 1/3 得到内酯 (21) (39 mg),m.p. 71-72 “C (Et,O),v,,,.1 790 和 1 735 cm-' (发现: C, 36.5;H,3.7%;M+,427.9798,C,3H1,IO,S需要C,36.5;H,4.0%;M,427.9793)。内酯(21)的脱氢碘化-内酯(21)(83mg)在含有DBU(50mg)的PhMe(1ml)中的溶液在N,气氛下在75“C下加热1小时.除去PhMe后,将残留物在二氧化硅HF上色谱,,,用PhMe-Et,O-HC0,H(1,7.5:5:3)洗脱。最小极性MHz),5.83(2H,brs),4.19(2H,q,J7Hz),3.74(2H,t,J6Hz),馏分得到烯烃(23)(1 5 mg)作为油,v,,,.1 785,l 735 和 1 620 cm-' (发现:M+,300.0667。C、HI6O6S需要M、3.40(1H,d,J4Hz)、3.12(2H,m)、2.79(1H,m)、1.82(2H,q,J6 Hz)和1。27 (3 H, t, J 7 Hz).300.0667). 极性较强的成分是羟基酸(28) J. CHEM. SOC. PERKIN TRANS.I 1988 (12mg),v,,,, 1 735 cm-',在真空(0.2Torr)中2小时后转化为内酯(23)。单羧酸的碘内酯化 (8).-(u) 将溶解在饱和NaHCO水溶液(40ml)中的酸(8)(150mg)用I,(508mg)和KI (1.004g)在水(10ml)中滴加处理。8小时后,像以前一样进行检查,得到与先前制备的化合物相同的内酯(21)(142mg)。(二)I,(1.37g)加入到酸(8)(540mg)、Triton B在MeOH C0.76ml的40%(w/v)溶液中、CH,C1(18ml)和水(4ml)的剧烈搅拌混合物中。15分钟后,加入Na,S,05水溶液,并用Et,O(3×30ml)萃取混合物。将合并后的提取液先后用2~HCl、饱和NaHCO水溶液和盐水振荡,然后干燥浓缩,得到内酯(24)(727mg),m.p.109-1 12“C(CHC1,-己烷),v,,,.1 790 和 1 730 cm-' (发现: C, 36.8;H,4.1;我,29.4;S, 7.9.C13H17106S 需要 C, 36.5;H,4.0;我,29.6;S,7.5%)。内酯(24)在暴露于反应条件(a)时保持不变。内酯(24)的重排+a)将内酯(24)(43mg)在含有Li,CO(10mg)和LiCl(6mg)的HCONMe(2ml)中的溶液加热到100“C。 2.5 h后,将冷却后的混合物倒入2~HCl中,用Et20萃取。提取液用2~HCl和饱和NaHCO水溶液洗涤,干燥,浓缩,得到氯内酯(28 mg)作为油,vmaX.1 790和1 730 cm-'(Found: M+, 336.0438.C13H17C106S requires M, 336.0436)。在含有DBU(100mg)的CCl,-Me2S0(8:1)中回流煮沸时得到相同的化合物。(b)将碘内酯(24)(35mg)在HCONMe(1ml)中含有Li2C0,(10mg)在100“C下加热20h。如前所述,处理得到与先前制备的材料相同的不饱和内酯(23)(5mg)。将2,2-二乙氧羰基-5-苯基硒基-3,4-四氢硫代吡喃羧内酯(30).-Et,N(55mg)加入到CH,Cl,(3ml)中的酸(8)(150mg)中,并在N气氛下搅拌溶液,同时冷却至-78“C。将溶剂蒸发时得到的残留物通过厚层色谱法(二氧化硅HF,54,CH,Cl,洗脱)纯化,得到硒化物(30)(115mg),熔点112-113“C(CHC1,-轻石油),v,,,.1 780 和 1 725 cm-';6,7.63 (2 H, m), 7.34(3 H, m), 4.95(1 H, dd, J9.5 和 7 Hz), 4.35 (4H, m), 3.38(1 H, dd, J 13,7 和 7 Hz), 3.04(1 H, dt, m J9 和 9.5Hz), 2.80(1 H, dd, J 17 和 13 Hz), 2.70 (2 H, d, J9 Hz), 2.13 (1 H, dd J 17 和 7 Hz), 1.25(3 H, t, J7 Hz), 1.21 (3 H, t, J7 Hz) (发现: C, 49.6;H,4.6;H, 4.6.C,,H,,O,SSe 需要 C, 49.9;H, 4.9%).2,2-二乙氧羰基-3,5-二氢-2H-噻喃-3,4-羰基内酯 (33).-在-20“C下,将3%的四氢呋喃水溶液(0.113ml)中的H,O溶液加入到四氢呋喃(0.5ml)中的硒化物(30mg)中。将溶液加热至0“C并保持15h。加入Na,S,O水溶液后,用Et,O萃取溶液。将干燥的提取物浓缩得到油,通过厚层色谱法[二氧化硅HF254,Et,O-己烷(2:l)]纯化,得到与真实样品相同的不饱和内酯(33)(11mg)。将I,(85mg)和KI(157mg)的水溶液(4ml)加入到NaHCO(30mg),水(3ml)和MeOH(3ml)的混合物中,将I,(85mg)和KI(157mg)的溶液加入到酸(13)(68mg)中。14h后,将反应混合物如前所述处理,并将产物在用PhMe-Et,O-HC0,H(17.5:5:3)洗脱的二氧化硅HF254板上色谱。极性最小的部分给出内酯(27)(9mg),熔点159-162“C,v,,,.1 785 和 1 720 cm-' (发现:M+, 327.9275. 67 1 C,H,IO,S 需要 M, 327.9268)。还获得了混合部分。三乙酯(6)的氧化和重排.-酯(6)(400mg)在CH,C1(4ml)中用85%间氯过苯甲酸(250mg)处理。1 h后,加入Et20(60ml),用Na,S,05水溶液和NaHCO水溶液依次摇动。干燥溶液的浓度得到油(397mg),在硅胶上色谱,用戊烷-EtOAc(1:1)洗脱,得到亚砜(6A)(350mg),6,6.50(2小时,m),4.25(6小时,m),3.67(1H,m),3。39 (2 H, m)、2.78 (2 H, m) 和 1.25 (9 H, m);中号:346。(CF,CO),O(4ml)加入到0“C的亚砜(6A)(72mg)中。10分钟后,取出冰浴。在减压下再蒸发1小时后,得到油(79mg),将其在硅胶上色谱,用戊烷-Et,O(1:1)洗脱,得到内酯(33)(19mg),熔点80-82“C(CCl,)。(发现:c,51.8;H,5.5;s,10.4%;M+, 300.0658.C,,H1606S 需要 C, 52.0;H,5.4;S,10.7%;米,300.0667);vmaX.1 795 和 1 740 cm-';A,,,.235 海里。如果将Pummerer重排的产物用NaHC0,-H20-MeOH水解,并通过二氧化硅HF254上的厚层色谱纯化产物,则获得提高的内酯(33)的收率(41%)。此外,将二烯酯(45)(1 1%)分离为油,v,,,.1 740 厘米-';6.6.22 (3 H, m), 4.20 (6 H, m), 3.39 (2 H, m s), 和 1.27 (9 H, t, J 7 Hz);一个。245 和 321 nm;mjz 328.后者是与(CF,CO),O反应延长至20 h时的主要产物。二乙酯(15)的氧化和重排-二酯(15)(207mg)的处理与先前的实验相同。硅胶色谱法得到二烯(46)(27mg)为油,v,,,.1 740cm-';6.5.92 (2 H, m), 4.22 (4H, m), 3.71 (2 H, s), 3.22 (2 H, m) 和 1.28 (6 H, m);一个。345 nm(发现:M+,256.0774.C1,Hl6O4S 需要 M,256.0769)。将酸(8)与N-Ch1orosuccinimide--N-氯琥珀酰亚胺(1.04g)反应加入到酸(8)(2.33g)的PhH(70ml)搅拌溶液中。4小时后,将混合物用Et,O(100ml)稀释并过滤。滤液用NaHCO水溶液和盐水摇匀。将干燥的Et,O溶液浓缩,得到内酯(33)(1.71g),与先前制备的材料相同。将二羧酸(13)与N-氯-琥珀酰亚胺反应,将-N-氯琥珀酰亚胺(60mg)加入到CHC1(5ml)中的酸(90mg)中。10分钟后,用NaHCO水溶液萃取过滤后的混合物。提取液用2~HCl酸化,用饱和盐水洗涤,用Et,O(2×10ml)萃取。将干燥的提取物浓缩以产生油,并通过t.1.c纯化。在二氧化硅HF254上用PhMe-Et,O-HC0,H(17.5:5:3)洗脱,得到内酯酸(38)(50mg);v,,,.1 795 和 1 725 cm-';G,[(CD,),CO] 6.22 (1 H, m) 5.91 (1 H, d, J 10.5Hz), 3.54 (1 H, m), 3.39 (1 H, br d, J 17 Hz), 3.26(1 H,dd, J 17 和 5.2 Hz), 3.17(1 H, dd, J 17.2 和 8.8 Hz) 和 2.35(1 H, dd, J 17.2 和 4Hz) (发现: M', 200.0139.C,H,04S 需要 M, 200.0144)。酸酐(16)与N-Ch1orosuccinimide的反应-CH,Cl中的酸酐(16)(39mg)用N-氯琥珀酰亚胺(28mg)处理过夜,然后除去溶剂,并用NaHCO水溶液(10ml)消化残留物。然后像前面的实验一样处理溶液,得到二烯酸(46)(27mg),vmaX.1 710 cm-';6, [(CD,>,CO] 6.15(1 H, d, J9.5Hz), 5.82(1 H, dt, J9.5 和 5.5 Hz), 3.75 (2 H,s) 3.22 (2 H, d, J 5.5 Hz) (发现: M', 200.0147.C,H,O,S 需要 M,200.0144)。表 4.化合物的原子坐标 (3) xla Ylb zlc 0.902 7(1) 0.125 5(1) 0.446 2( 1) 0.767 l(3) 0.233 2(3) 0.383 l(2) 0.656 6(4) 0.305 2(3) 0.420 7(2) 0.728 4(6) 0.374 3(4) 0.491 4(2) 0.868 8(7) 0.355 7(5) 0.528 6(2) 0.984 4(5) 0.264 5(5) 0.508 3(3) 0.681 O(5) 0.135 6(4) 0.322 5(2) 0.494 6( 11) 0.137 7(9) 0.210 O(4) 0.484 3( 10) 0.198 5(8) 0.147 9(3) 0.850 O(4) 0.343 6(4) 0.347 4(2) 1.017 2(7) 0.374 9(6) 0.268 6(3) 1.022 8(17) 0.0.312 3(16) 0.204 3(8) 0.924 4( 18) 0.391 O( 15) 0.196 3(8) 0.409 l(4) 0.227 2(5) 0.426 7(3) 0.322 4(6) 0.103 l(7) 0.439 l(4) 0.697 9(4) 0.012 l(3) 0.321 5(2) 0.587 7(4) 0.210 4(4) 0.272 7(2) 0.839 l(3) 0.466 5(3) 0.354 5(2) 0.933 O(4) 0.283 l(3) 0.307 7(2) 0.554 5(3) 0.194 3(3) 0.433 2(2) 0.360 3(4) 0.342 9(4) 0.413 2(3) 0.598 0.375 0.387 0.665 0.439 0.512 0.512 0.901 0.407 0.575 1.047 0.223 0.553 1.049 0.322 0.485 0.392 0.128 0.218 0.536 0.044 0.208 0.556 0.159 0.125 0.504 0.296 0.155 0.385 0.185 0.118 0.232 0.096 0.401 0.298 0.1 10 0.485 0.383 0.02 1 0.439 用LiBH4.-四氢呋喃(5ml)中的酸酐(16)(88mg)加入LiBH中, (25mg)和四氢呋喃(5ml)在N,气氛下。45 min后,加入水(2ml),当泡腾停止时,随后加入2~HCl。1小时后,将溶液用NaCl饱和并用EtOAc(2×25ml)提取。干燥提取物的浓度得到油,该油通过t.1.c纯化。在二氧化硅HF254上用戊烷-EtOAc(1:1)洗脱,得到内酯(40)(36mg);vmaX.1 735 cm-' (找到: M+, 170.0402.C8Hlo02S 需要 M,170.0401)。将内酯(33)-LiOH*H,O(200mg)的水解和脱羧加入到内酯(33)(300mg)中,在N气氛下加入到四氢呋喃(5ml)和水(5ml)中。20 h后,将深色混合物用6~HCl酸化,回流煮沸2 h,冷却后的混合物用Et,O(2×20 ml)和CH,Cl(20 ml)萃取。将干燥的提取物浓缩得到油(229mg),在硅胶上用CH,Cl,-AcOH(9:1)洗脱,得到顺酸和反式酸(34)和(35)(147mg)的混合物。差向异构体通过t.1.c分离。二氧化硅HF254用CH,Cl,-AcOH(4:1):顺式酸(34),熔点128-130“C(发现:M+,200.0148。C,H,O,S 需要 M,200.0143)。为了表征酸,将它们转化为它们的酰氯[(COCl),],然后用Me,CHCN处理,得到酰胺,熔点185--187°C(己烷-CHCl),v,,,.1 780 和 1 670 cm-' (发现: C, 54.6;H,6.2;N,5.7。C1,H15N03S 需要 C, 54.8;H,6.3;N,5.8%)。将酸(34)和(35).-(cOc1),(54 pl)的还原加入到酸(2 + 3)(100mg)和J. CHEM. SOC. PERKIN TRANS.I 1988 表 5.化合物的原子坐标 (35) 原子 xla Ylb ZIC 0.955 4( 1) 0.842 6( 1) 0.120 7(0) 0.698 2(2) 0.658 9(2) 0.305 l(2) 0.327 5(2) 0.171 6(1) 0.306 6( 1) 0.682 l(2) 0.666 9(2) 1.004 5(2) 0.906 O(2) 0.041 7(2) 0.709 7(2) 0.589 2(3) 0.433 7(3) -0.030 3( 1) -0.055 6(1) 0.111 O(1) 0.103 4(1) 0.731 8(2) 0.684 l(2) 0.441 7(3) 0.41 1 4(3) 0.102 7(1) 0.241 7(1) 0.702 5(2) 0.668 l(2) 0.631 6(3) 0.644 9(3) 0.226 4(1) 0.127 7( 1) 0.737 O(2) 0.690 9(2) 1.1 16 7(27) 0.949 5(25) 0.668 6(21) 0.633 5(26) 0.815 O(25) 0.552 6(23) 0.830 4(3) 0.849 l(3) 0.568 8(34) 0.310 4(31) 0.389 9(26) 0.709 5(34) 0.667 3(31) 0.646 5(28) 0.091 7(1) 0.114 6(14) 0.097 8(13) 0.049 9( 1 1) 0.254 l(14) 0.249 O( 14) 0.107 5(12) -0.005 9( 1) 0.701 5(22) 0.668 6(28) 0.945 6(29) 1.054 l(37) 0.116 l(12) -0.083 2(15) HCONMe,(10 pl)在 MeOCH,CH,OMe (1 ml) 中,N 气氛下。15分钟后,将溶液冷却至-46“C和LiBH,(14mg)加入Et,O(80pl)溶液。15 min后,取出冷却浴,加入2~HCl。用EtOAc(3×10ml)提取混合物,并用NaHCO水溶液摇动有机提取物,干燥并浓缩,得到醇(44)(61mg)为7:3的异构体混合物,6,[(CD,),CO] 6.52(d,J 10 Hz),6.47(d,J9.5Hz),5.86(dd,J 10和4Hz),5.74(dd,J 9.5和3Hz), 5.22 (dd, J 8 和 3 Hz)、5.06 (bdd, J 6 和 4 Hz)、3.87 (d, J 5 Hz)、3.71 (m)、2.75 (m) 和 2.43 (dd, J 17 和 8 Hz) (发现:M', 186.0355.C,HloO,S 需要 M, 186.035 1).将己烷(21.1ml)中的Bu',AlH的1.2M溶液加入到PhMe(100ml)中的酯(14)(2.65g)中,在N气氛下冷却至-78“C,气氛,溶液温度保持在-55”C以下。在-70“C下2小时后,加入EtOH(20ml),使混合物达到环境温度。加入2~HCl(100ml),并用EtOAc(100ml和3×50ml)萃取混合物。将合并的EtOAc提取物用饱和NaHCO水溶液(3×75ml)摇匀,然后用2~HCl酸化至pH 1。用NaCl饱和后,用EtOAc(3×75ml)萃取溶液,用盐水摇动提取物,干燥,浓缩得到醛(42)(2.02g),熔点82-84“C(戊烷-Et,O),v,,,.1 710 cm-(发现:C,51.5;H,5.4;S,17.1%;M+,186.0349。C8Hlo0,S 需要 C, 51.6;H,5.4;S,17.2%;M, 186.035 1).将醛(42).-SmC1,-8H20(21 1mg)的MeOH(4ml)溶液加入到醛(42)(982mg)的HC(OMe)溶液中,(5.6g)。20分钟后,加入EtOAc(50ml),用水(3×20ml)摇动溶液,干燥,浓缩,得到缩醛(43)(1.17g),熔点84-86“C(戊烷-Et,O),v,,,.1710 cm-' (发现: C, 51.9;H,7.3;S,13.8%;M+,232.0761.C10H1604S要求C,51.7;H, 7.0 S, 13.8%;M,237.0769)。将乙缩醛酸(43)-(a)N-氯吸-芥子酰亚胺(658mg)在CH,Cl,(10ml)中加入到聚甲醛(43)(1.04g)的CH,Cl,(200ml)中。2分钟后,加入1,2-环氧丙烷(20ml),5分钟后将溶液浓缩J.CHEM.SOC.PERKIN TRANS。I 1988 年在诱导压力下至约 20 毫升。将该溶液施加于硅胶柱上,用Et,O-戊烷快速色谱洗脱,得到内酯(36)(760mg),熔点43“C(Et,O-戊烷);v,,,.243 nm (E 5 800) (发现: C, 52.1;H,6.3%;M+,230.0617。CloH1404S 需要 C,52.2;H,6.1%;M,230.0613)。(二)将N-氯琥珀酰亚胺(55 mg)加入到缩醛(43)(87 mg)的CH,Cl(25 ml)和1,2-环氧丙烷(3 ml)中。40分钟后,将溶液浓缩至约1.5ml,并如上所述通过快速色谱纯化。获得内酯(36)(39 mg)和第二内酯(39)(26 mg)作为油,v,,,, 1785 cm-'(发现:M+,230.0617。CloH1404S 需要 M, 230.061 3).醛内酯(2)的制备.-将新鲜蒸馏的HC0,H(2ml)加入到缩醛(36)(157mg)的CH,Cl,(5ml)中。14小时后,加入CH,Cl(50ml),并用饱和NaHCO水溶液(3×20ml)摇动溶液。干燥提取物的浓度得到醛(2)(103mg),熔点94“C(Et,O);v,,,.1 790 和 1 720 cm-';一个。243 nm (E 4 500) (发现: C, 54.2;H,4.4%;米',184.0198。C,H,O,S 需要 C, 52.2;H,4.4%;M,184.0194)。醛(36)由醛(2)与BF,-MeOH-HC(OMe)反应重整,收率为70%。用琼斯试剂氧化醛得到47%的顺酸(34)收率,与先前制备的顺酸相同。Crystal Duta.-用于化合物 (3)。Cl,Hl ,O,S (3), M = 302, 单斜晶系, a = 9.059(4), b = 9.527(3), c = 18.772(5) A, p = 103.77(3)“, I/ = 1574 A,, 2 = 4, D, = 1.27 g cm-', p(Mo-K,, h = 0.71069) = 2.4 cm-', 空间群 P2Jc (No. 14), 2168 反射,F > 30 (F), R = 6.9%。从透明、无色、不规则形状的晶体样品中,将尺寸为 0.52 x 0.42 x 0.40 mm 的样品安装在 Enraf-Nonius CAD-4 计算机控制的单晶衍射仪上,并使用 Mo-K 辐射收集强度数据至 25 英寸值。标准反射监测表明,在数据收集过程中没有晶体劣化,也没有应用吸收校正(pRc 0.13)。1978 年的早期分析以在 Hilger 和 Watts 衍射仪系统上收集的 198 个 E 值> 1.8 以及 MULTAN 直接方法程序产生了解决方案,被用作起点。差异:傅里叶级数和最小二乘法对位置和各向同性热参数进行了细化,证实了该结构在乙基中表现出较高的B值。一个甲基位置的无序阻止了五个氢原子的直接定位。除去所有非氢原子的各向异性细化,C( 1 1 ) 令人满意地收敛。在病变部位的交替位点占有率和 B 值细化表明两个位点占有率相等,即 C(111) 和 C(112)。重新计算氢原子位置以保持 0.98A(甲基 0.95 A)的 CH 距离。在最后循环中,采用加权方案 w-' --(0.45 -0.07F + 0.0117F') 在 F 值范围内给出均匀的 w=AF2分布。最终R为6.90%。最终的原子坐标列于表4中。对于化合物 (35)。C,H,S04, M = 200, 单斜晶系, a = 8.456(3), b 6.593(2), c = 15.603(4) A, p = 101.34“, U = 852.9 A3, D, = 1.56 g cm-', p(Mo-K,) = 3.74 cm-', 空间群 P2,/c1(No. 14), 1174 个唯一反射,F > 3o(F), R = 2.89%.晶体是透明的、无色的板状物,表面形状良好。一个尺寸为 0.32 x 0.21 x 0.1 1 mm 的传感器安装在计算机控制的 Enraf-Nonius CAD-4 单晶衍射仪上,用于收集高达 8 = 23“ 的强度数据。扫描范围为(0.8 + 0.35 tan),孔径尺寸为4 mm2。标准反射监测表明,在数据收集过程中没有晶体劣化。未应用吸收校正。该结构是使用程序MULTAN-76通过直接方法求解的。最有可能的电子图显示了所有非氢原子。计算了立体化学约束氢原子的位置,并计算了羟基氢H(81)的位置,该位置是从初始各向同性热精炼后的差异图中发现的。对非氢原子进行全基质各向异性精炼后,最终R为2.89%。最终使用的加权方案是 w = (0.23-0.0191; + 0.001F2)。最终的原子参数在表5中给出,选定的键长和角度在表2中给出。致谢 我们感谢 S.E.R.C.、I.C.1.-Pharmaceuticals Division 和英国皇家学会的财政援助。参考文献 1 M. F.Ansell, M. P. L. Caton, MN Palfreyman, and K. J. A. Stuttle, Tetrahedron Lett., 1979, 4497;1982, 1955;S. Ohuchida, N. Hamanaka, and M. Hayashi, 同上, 1979, 3661;K. C. Nicolau, R. L. Magolda, and D. A. Claremon, J. Am. Chem. Soc., 1980,102,1404, K. Maxey and G. L. Bundy, Tetrahedron Lett., 1980, 137;E. J. Corey, J. W. Ponder, and P. Ulrich, 同上, 1980, 137;S. Kosuge, N. Hamanaka, and M. Hayashi, 同上, 1981, 1345;T. K. Schaaf, D. L. Bussolotti, M. J. Parry, and E. J. Corey, J. Am. Chem. Soc., 1981,103, 6502;S. Ohuchida、N. Hamanaka 和 M. Hayashi,Tetrahedron Lett.,1981,1349 和 5301;1982,2883, J. Am. Chem. Soc., 1981,103, 4597.2 E. J. Corey, N. M. Weinshenker, T. K. Schaaf, and W. Huber, J. Am. Chem. Soc., 1969,91, 5675.3 J. F. W. Keana 和 P. E. Eckler, J. Org. Chem., 1976, 41, 2850.4 W. J. Middleton, J. Org. Chem., 1965, 30,1390.5 A. Ohiro、Y. Ohnishi 和 G. Tschihashi,四面体,1969,25,871。6 D. M. Vyas 和 G. W. Hay, J. Chem. Soc., Chem. Commun., 1971, 1411.7 P. Beslin 和 P. Metzner,Tetrahedron Lett.,1980 年,4657 页。8 E. Vedejs, M. J. Amost, J. M. Dolphin, and J. Eustache, J. Org. Chem., 1980,45, 2601.9 R. C. Haltiwanger, P. T. Beurskens, P. A. T. W. Porskamp, L. A. G. M. van den Broek, and B. Zwanenburg, J. Crystallogr.光谱仪。研究, 1985, 15, 109.10 J. Mancuso, S. L. Huang, and D. Swern, J, Org. Chem., 1978,43,2480.11 V. Jager 和 H. J. Gunther,Tetrahedron Lett.,1977 年,第 2543 页。12 E. E. van Tamelen 和 M. Shamma, J.Am. Chem. Soc., 1954,76,2315.13 “分子复合物”,R. Foster编,Elek Science,伦敦,1973年,第1卷。14 K. C. Nicolaou 和 Z. Lysenko, J. Am. Chem. Soc., 1977,99, 3185.15 R. Pummerer, Chem. Ber., 1901, 42, 2433;K. Praefabe 和 C. Weichsel,Annalen,1979 年,第 784 页。16 D. L. Tuleen 和 V. C. Marcum, J. Org. Chem., 1867,32,204;D. L. Tuleen, J. Org. Chem., 1967, 32, 4006.17 D. L. Tuleen 和 T. B. Stephens, J. Org. Chem., 1969, 34, 31.18 A. L. Gemal 和 J. L. Luche, J. Org. Chem., 1979,44,4187.19 A.戈尔格斯,公牛。Soc. Chim.Fr., 1974, 3-4 (2), 529.1987年2月3日收稿;论文 7/ 188

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号