首页> 外文期刊>Plant and cell physiology >The S-Type Anion Channel ZmSLAC1 Plays Essential Roles in Stomatal Closure by Mediating Nitrate Efflux in Maize
【24h】

The S-Type Anion Channel ZmSLAC1 Plays Essential Roles in Stomatal Closure by Mediating Nitrate Efflux in Maize

机译:The S-Type Anion Channel ZmSLAC1 Plays Essential Roles in Stomatal Closure by Mediating Nitrate Efflux in Maize

获取原文
获取原文并翻译 | 示例
           

摘要

Diverse stimuli induce stomatal closure by triggering the efflux of osmotic anions, which is mainly mediated by the main anion channel SLAC1 in plants, and the anion permeability and selectivity of SLAC1 channels from several plant species have been reported to be variable. However, the genetic identity as well as the anion permeability and selectivity of the main S-type anion channel ZmSLAC1 in maize are still unknown. In this study, we identified GRMZM2G106921 as the gene encoding ZmSLAC1 in maize, and the maize mutants zmslac1-1 and zmslac1-2 harboring a mutator (Mu) transposon in ZmSLAC1 exhibited strong insensitive phenotypes of stomatal closure in response to diverse stimuli. We further found that ZmSLAC1 functions as a nitrate-selective anion channel without obvious permeability to chloride, sulfate and malate, clearly different from SLAC1 channels of Arabidopsis thaliana, Brassica rapa ssp. chinensis and Solanum lycopersicum L. Further experimental data show that the expression of ZmSLAC1 successfully rescued the stomatal movement phenotypes of the Arabidopsis double mutant atslac1-3atslah3-2 by mainly restoring nitrate-carried anion channel currents of guard cells. Together, these findings demonstrate that ZmSLAC1 is involved in stomatal closure mainly by mediating the efflux of nitrate in maize.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号