首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Selective alkylation of allyl phenyl sulphone. A novel synthesis of alk-2-enes
【24h】

Selective alkylation of allyl phenyl sulphone. A novel synthesis of alk-2-enes

机译:烯丙基苯砜的选择性烷基化。一种醛-2-烯的新型合成

获取原文
获取外文期刊封面目录资料

摘要

1977 123Selective Alkylation of Allyl Phenyl Sulphone. A Novel Synthesis ofAl k-2-enesBy Diego Savoia, Claudio Trombini, and Achille Umani-Ronchi, lstituto Chimico ' G Ciamician,' Unversita diTreatment of the lithium salt of allyl phenyl sulphone (1 ) with a variety of alkyl halides affords exclusively a-alkylatedproducts (2a-d). which are easily isomerized to (euro;)-ap-unsaturated phenyl sulphones (4a-d) with catalyticamounts of t-butoxide. A new, simple method of reductive cleavage of the carbon-sulphur bonds of compounds(2)-(4) with potassium-graphite (C,K) is described, providing a general route to alk-2-enes (5) and (6) insatisfactory yields.Bologna, via Selmi 2, 40126 Bologna, ItalyWE recently developed two general methods for thesynthesis of ap-unsaturated sulphones.One involvesthe reaction of aa-dimetallo-sulphones with carbonylcompounds,l and the other phase-transfer-catalysedcondensation of sulphones with aldehydes in a two-phasesystem.2Sulphur-stabilized allylic anions of sulphides and sul-phoxides are assuming an increasingly important role insynthetic chemistry, since they represent useful reagentsfor extending a carbon chain. In fact, allyl sulphidesand sulphoxides are readily a- and 7-alkylated, therelative amounts of products being system-de~endent.~No examples are reported of regioselective alkylationof allyl sulphoxides, but isopropylthioallylcopper andvinylthioallyl-lithium 5 are known to undergo exclusiveattack at the positions y and a to sulphur, respectively.We have now found that a novel stereospecific synthe-sis of ap-unsaturated sulphones may be accomplishedfrom the lithium salt of allyl phenyl sulphone (1).Allylphenyl sulphone is easily metallated with n-butyl-lithium in t e trahydrofuran-tetrame thyle t hylenediamineat -60 OC, and the product (1) is regioselectively alkyl-ated by alkyl halides in the =-position to give By-un-iaturated sulphones (2) as major product, with smallamounts of dialkylated sulphones (3).Upon treatment with catalytic amounts of potassiumt-butoxide in dry tetrahydrofuran at 0 "C, the pr-un-saturated sulphones (2) are converted completely intothe ap-unsaturated sulphones (4), with the E configura-tion, as demonstrated by the chemical shifts of vinylicand methyl protons in their n.m.r.spectra. In fact theisomers (4) show the vinylic proton signal at 6 7.0 andthat of the methyl protons at 6 1.euro;LSap-Unsaturated sulphones can be reductively cleavedto the corresponding alkenes by treatment with a reagentsuch as aluminium amalgam 'p8 or lithium-ethylamine,Qthe overall alkylation-desulphuration process providinga useful route to-olefins from sulphones. We thereforecarried out a series of experiments in order to establishV. Pascali, N. Tangari, and A. Umani-Ronchi, J.C.S.Perkin I , 1973, 441; A. Bongini, D. Savoia, and A. Umani-Ronchi, J . Organometallic Chem., 1976, 112, 1.G. Cardillo, D. Savoia, and A. Umani-Ronchi, Synthesis,1975, 463.D. A. Evans and G. C. Andrews, Accounts Chem. Res., 1974,7,147.K.Oshima, H. Yamamoto, and H. Nozaki, J . Amer. Chem.Soc., 1973, 95, 7926.K. Oshima, H. Takahashi, H. Yamamoto, and H. Nozaki,J . Amer. Chem. SOC., 1973, 95, 2693.whether these methods could be applied to our sulphones(2) and (4). In fact alk-2-enes (5) were obtained in satis-factory yields by usingperature (method A).aluminium amalgam.Better results underlithium-ethylamine at low tem-No reaction was observed withR W r R'(6 ItRCH=CHMe RY PhSO2 I51( 4 1SCHEMEmilder reaction conditions havebeen achieved by the use in dry diethyl ether at roomtemperature of potassium-graphite,lO an easily pre-pared new solid state reagent (method B). Results aresummarized in the Table. The reaction seems quitegeneral, leading in good yield to the expected alk-2-enes(5) in all cases studied.Cleavage of 3-phenylsulphonylundec- 1-ene (2b) byMethod B did not afford undec-1-ene, but the correspond-ing alk-2-ene (5b).The same rearrangement of thedouble bond was also observed in the reduction of 3-octyl-3-phenylsulphonylundec-1 -ene (3b).C. Y. Meyers and I. Sataty, Tetrahedron Letters, 1972, 42,4323.E. J. Corey and M. Chaykovsky, J . Amer. Chem. Soc., 1966,87, 1345. * V. Pascali and A. Umani-Ronchi, J.C.S. Chem. Comm., 1973,361.@ J. F. Biellmann and J. B. Ducep. Tetrahedron, 1971, 27,6861.lo J. M. Lalancette, G. Rollin, andP. Dumas, Canad. J . Chem.,1972, 50, 3068; H. Podall and W. E. Foster, J . Org. Chem., 1968,28, 401124 J.C.S. Perkin IHowever all desulphuration methods have the dis-advantage of inducing partial ZE-isomerization.Theratio of 2 to E-isomers is temperature-dependent, the E-isomer being the major product.Cleavage of sulphones ; synthesis of alk-2-enesStarting Yieldsulphone Method Alkene (yo)b Z:ERatioCB Undec-2-ene 77 35 : 65B 3-Octylundec-2-ene 81A Hept-2-ene 60 40 : 60B Hept-2-ene 61 30: 70A Undec-2-ene 62 40 : 60B Undec-2-ene 65 35 : 65B d Undec-2-ene 55 65 : 35A Nonadec-2-ene 65 45 : 55B Nonadec-2-ene 55 35 : 65A 1-Phenylbut-2-ene 24 46 : 65B l-Phenylbut-2-ene 26 40 : 60(2b)(3b)(44(4a)(4b)(4b)(4b)(4c)(4c)(44(4d)@ See Experimental section. Of pure isolated compounds;the yield of hept-2-ene was determined by g.1.c. with an internalstandard.c Z : E Ratio determined by g.1.c. on a Carbo-wax 20M column (+ in x 6 f t ; 10 on 80-100 meshChromosorb G) (W. E. Falconer and L. G. Walker, J . Chromatog.Sci., 1971.9,184). d This reaction was performed with lithium-methylamine at -110 "C for 10 min.When performing the cleavage with (E)S-phenyl-sulphonylundec-2-ene (4b) and lithium-methylamine at-110 O C , we observed the greatest retention of confipr-ation in the alkene (2 : E ratio 65 : 35) ; when the reactionis conducted at room temperature with potassium-graphite the ratio is inverted.EXPERIMENTAL1.r. spectra were determined with a double-beam LeitzSpectrograph, n.m.r. spectra with a Perkin-Elmer R12Binstrument (solvent CDCl,; Me,Si as internal standard), andmass spectra with a Hitachi-Perkin-Elmer RMU6D (singlefocus) spectrometer (at 70 eV).T.1.c. was performed onsilica gel H3?254 (Merck) and column chromatography onMerck silica gel (0.05-0.20 mesh) with hexane-ether as asolvent. Tetrahydrofuran was obtained dry and oxygen-free by distillation over sodium and lithium aluminiumhydride under argon. Tetramethylethylenediamine wasdistilled from calcium hydride under argon. n-Butyl-lithium was purchased from Schuchardt (Munchen) as a1.8~-solution in n-heptane. Graphite was used as suppliedfrom Carlo Erba, and contained 99 carbon.Alkylation of Ally1 Phenyl Sulphone.--In a three-neckedflask equipped with stirrer and dropping funnel, dry tetra-hydrofuran (50 ml) , tetramethylethylenediamine (3.05ml, 20 mmol), and ally1 phenyl sulphone (3.65 g, 20 mmol)were placed under argon.To the stirred solution n-butyl-lithium ( 1 . 8 ~ ; 11.2 ml, 20 mmol) was added over 15 min a t-60 "C. After 1 h the allryl halide (20 mmol) was addedand stirring continued a t - 60 "C for 3 h. The temperaturewas raised to 0 "C, then the mixture was poured into ice-water and extracted with ether. After washing with water,drying, and evaporating, the products were isolated bychromatography on silica gel.3-PhenyZsulphonylhe~t- 1-ene (2a) (78) had m.p. 46" (fromhexane); 6 7.5-8.1 (aromatic, m), 4.8-6.1 (vinylic, m),3.5 (SO,CH, dt), and 0.8-2.3 (aliphatic, m) ; M+ 238 (Found:C, 65.5; H, 7.5; S, 13.2. C,,H,,O,S requires C, 65.5; H,7.6; S, 13.4). 3-Phenylsulphonylundec-l-ene (2b) (71)had m.p.71" (from hexane); 6 7.5-8.1 (aromatic, m), 4.8-6.1 (vinylic, m), 3.5 (SO,CH, dt), and 0.8-2.2 (aliphatic, m);M+ 294 (Found: C , 69.1; H, 8.8; S, 10.9. C,,H,,02S re-quires C, 69.4; H, 8.9; S, 10.9). 3-Phenylsulphonyl-nonadec-l-ene (2c) (70) had m.p. 91" (from benzene);6 7.5-8.1 (aromatic, m), 4.8-6.1 (vinylic, m), 3.5 (SO,CH,dt), and 0.8-2.3 (aliphatic, m) ; M+ 406 (Found: C, 73.9;H, 10.4; S, 7.8. C,,H,,O,S requires C, 73.8; H, 10.4; S7.9). 3-Benzyl-3-~henylsul~honyl~ro~- l-ene (2d) (75)had m.p. 85" (from hexane-benzene); 6 7.5-8.1 (C,H,SO,,m), 7.2 (C6H5*CH,, m,), 4.6-6.1 (vinylic, m), and 2.6-4.0(CH,*CH, m); M+ 272 (Found: C, 70.6; H, 5.9; S, 11.8.C,,H,,O,S requires C, 70.6; H, 5.9; S, 11.7). 3-ButyZ-3-phenyZsul;6honylhe~t-l-ene (3a) (9) had m.p.78" (fromhexane) ; 6 7.4-8.0 (aromatic, m), 4.8-6.1 (vinylic, m), and0.8-2.2 (aliphatic, m); Mf 294 (Found: C, 69.6; H, 8.8;S, 10.6. C,,H2,0,S requires C, 69.4; H, 8.9; S, 10.9). 3-Octyl-3-~henylsul~honylundec- 1-ene (3b) (8) was an oil; 67.4-8.0 (aromatic, m), 4.8-6.1 (vinylic, m), and 0.8-2.2(aliphatic, m); M+ 406 (Found: C, 73.5; euro;3, 10.2; S, 7.7.C,,H,,O,S requires C, 73.8; H, 10.4; S, 7.9). 3-Hexa-decyl-3-phenylsulphonylnonadec- l-ene (3c) (6) had m.p.53" (from hexane) ; 6 7.4-8.0 (aromatic, m), 4.8-6.1 (viny-lic, m), and 0.8-2.2 (aliphatic, m); M+ 630 (Found: C,78.1; H, 11.3; S,5.0. C,,H,,O,SrequiresC, 78.0; H, 11.8;S, 5.1). 3,3-Dibenzyl-3-~henylsul~honyl~rop-l-ene (3d)(8) had m.p. 113" (from ether); 6 7.4-8.0 (C,H,SO,, m),7.2 (C,H,*CH,, m), 5.0-6.3 (vinylic, m), and 3.4 (CH,, s);M+ 362 (Found: C , 76.0; H, 6.0; S, 8.5.C,,H,,02S re-quires C , 76.2; H, 6.1; S, 8.8).Conversion of By- into a@- Unsaturated Su1phones.-Potas-sium t-butoxide (56 mg, 0.5 mmol) was added to a stirredsolution of py-unsaturated sulphone (2) (10 mmol) . in drytetrahydrofuran (20 ml). The mixture was stirred for 3 h,then added to saturated aqueous sodium chloride and extrac-ted with ether. The dried organic layer was evaporatedin vacuo. The a@-unsaturated sulphone was isolated afterchromatography on a silica gel column (hexane-ether,98 : 2).(E)-3-Phenylsulfiho.nylhept-2-ene (4a) (95) was an oil, 67.4-8.1 (aromatic, m), 7.0 (vinylic, q), 1.8 (H*CH,, d), and0.8-2.4 (aliphatic, m) ; M+ 238.(E)-3-Phenylsulphonyl-undec-2-ene (4b) (96) was an oil; 6 7.4-8.0 (aromatic, m),7.0 (vinylic, q), 1.8 (=CH*CH,, d), and 0.8-2.4 (aliphatic,m) ; M+ 294. (E)-3-Phenylsulphonylnonadec-2-ene (4c)(94) had m.p. 43" (from hexane) ; 6 7.4-8.0 (aromatic, m),7.0 (vinylic, q), 1.8 (H*CH,, d), and 0.8-2.4 (aliphatic,m) ; M+ 406. (E) - 1 -Benzyl- l-~henylsul~honyZpro~-2-ene(4d) (95) had m.p. 76" (from hexane-benzene); 6 7.3-7.9(C,H,*SO,, m), 7.2 (vinylic, q), 7.1 (C,H,CH,, m), 3.7 (CH,,s), and 1.8 (CH,, d); M+ 272.By lithium-ethyla-mine. General procedure. Dry ethylamine (20 ml) wascondensed in a three-necked flask equipped with stirrer andcold finger. Lithium (0.25 g, 45 mg atom), previouslywashed with pentane, was added over 10 min to the stirredamine.After the lithium had completely dissolved, thesulphone (4) ( 5 mmol) in dry ether (5 ml) was added a t -30"C. After 1 h the mixture was quenched with solid ammon-ium chloride and then allowed to rise to room temperature inorder t o remove most of the amine. After 30 min water(10 ml) was added and the mixture extracted with ether.Alk-2-enes were isolated as previously r e p ~ r t e d . ~A single reaction was carried out with lithium-methyl-amine at - 110 "C on the sulphone (4b) dissolved in meth-Cleavage of Sulphones.-Method A .anol1977 125Method B. By potassium-graphite (C,K) . General pro-cedwe. A three-necked flask was flushed with argon andheated with a flame, then charged with graphite (6.0 g, 0.5niol) and flamed again under argon in order to desorb anyoxygen and water from the graphite.A stirrer was thenintroduced and the system heated a t 100 "C (oil-bath).Potassium (2.42 g, 62 mg atom), previously washed with n-pentane, was added in small portions over 10 min withstirring, a bronze-coloured solid being obtained. The sul-phone (5 mmol) in dry ether or dry tetrahydrofuran (20 ml)was added dropwise to the potassium-graphite a t room tem-perature. After 1 h ice and ether were added, graphite wasfiltered off , and the organic phase was separated and evapor-ated. The residue was chromatographed on silica gel (15cm column, 1.7 cm diam.; elution with 50 ml of n-pentane)to give the alk-2-eneJ identified by i.r., n.m.r., and massspectral data, or by comparison with an authentic sample;hept-2-eneJ M+ 98; undec-2-ene, M+ 154, vmx. (film) 695(CHH-cis) l1 and 965 cm-l (CH=CH-trans), 8 (CCl,) 5.2-5.6 (vinylic, m); nonadec-2-eneJ M+ 266, vmx. (film) 700(CH=CH-cis) and 960 cm-l (CH=CH-trans), 8 (CCl,) 5.2-5.7(vinylic, m) : 3-octylundec-2-ene, M+ 266, vmx. (film) 845,970, 1015, and 1060 cm-l, 8 (CCl,) 5.3-5.6 (vinylic, m).This work was supported by a grant from the C.N.R.,Rome.6/1258 ReceivJ, 29th June, 19761l1 F. Naif and P. Degen, HeZv. Chim. Acta, 1971, 54, 1939
机译:1977 123烯丙基苯基砜的选择性烷基化反应。Die Savoia 和 Claudio Trombini 和 Achille Umani-Ronchi 的 Al k-2-烯的新合成,lstituto Chimico ' G Ciamician,' Unversita di用多种烷基卤化物处理烯丙基苯基砜 (1) 的锂盐,仅提供 α-烷基化产物 (2a-d)。它们很容易用催化量的叔丁醇异构化为(€)-ap-不饱和苯砜(4a-d)。描述了一种用钾石墨(C,K)还原化合物(2)-(4)的碳硫键的简单方法,为烷-2-烯[(5)和(6)]的产率不佳提供了一条一般途径。博洛尼亚, via Selmi 2, 40126 Bologna, Italy我们最近开发了两种合成ap-不饱和砜的通用方法。一种涉及aa-二金属砜与羰基化合物的反应,l,另一种涉及砜与醛在两相系统中的相转移催化缩合.2硫稳定的硫化物和硫-磷硫的烯丙基阴离子在合成化学中发挥着越来越重要的作用,因为它们代表了延长碳链的有用试剂。事实上,烯丙基硫化物和亚硫氧化物很容易被a-和7-烷基化,产物的相对量是system-de~endent。~没有关于烯丙基亚硫醇区域选择性烷基化的例子的报道,但已知异丙基硫代烯丙基铜和乙烯基硫代烯丙基锂 5 分别在 y 位和 a 位发生对硫的排斥攻击。现在,我们发现,从烯丙基苯基砜的锂盐中可以完成一种新的 ap-不饱和砜的立体特异性合成 (1)。烯丙基苯砜在-60 OC时易与三氢呋喃-四甲基苯二胺中的正丁基锂金属化,产物(1)在=-位被烷基卤化物区域选择性烷基化,得到副未饱和砜(2)为主要产物,少量二烷基化砜(3)。在0“C的干燥四氢呋喃中用催化量的丁醇钾处理后,pr-不饱和砜(2)完全转化为ap-不饱和砜(4),具有E构型,如乙烯基和甲基质子在其n.m.r.光谱中的化学位移所示。事实上,异构体(4)在6 7.0处显示出乙烯基质子信号,在6 1时表现出甲基质子的信号,不饱和砜可以通过用铝汞合金'p8或锂乙胺等试剂处理还原裂解为相应的烯烃,Q整个烷基化-脱硫过程为从砜制烯烃提供了有用的途径。因此,我们进行了一系列实验,以建立V。Pascali、N. Tangari 和 A. Umani-Ronchi、JCS珀金一世,1973,441;A. Bongini、D. Savoia 和 A. Umani-Ronchi,J .Organometallic Chem., 1976, 112, 1.G. Cardillo, D. Savoia, and A. Umani-Ronchi, Synthesis,1975, 463.D. A. Evans and G. C. Andrews, Accounts Chem. Res., 1974,7,147.K.Oshima, H. Yamamoto, and H. Nozaki, J .Amer. Chem.Soc., 1973, 95, 7926.K. Oshima, H. Takahashi, H. Yamamoto, and H. Nozaki,J .Amer. Chem. SOC., 1973, 95, 2693.这些方法是否可以应用于我们的砜(2)和(4)。事实上,alk-2-烯(5)是通过使用perature(方法A).铝汞合金以令人满意的工厂收率获得的。在低温度下,锂乙胺下与R W r R'(6 ItRCH=CHMe RY PhSO2 I51( 4 1方案在室温下在干燥的乙醚中使用钾-石墨,lO是一种易于制备的新型固相反剂(方法B),可以达到较温和的反应条件。结果汇总在表中。该反应似乎相当普遍,在所有研究的情况下,预期的烷基-2-烯(5)的收率都很高。通过方法B裂解3-苯基磺酰基十一烯-1-烯(2b)得到的不是十一烷基-1-烯,而是相应的烷基-2-烯(5b)。在3-辛基-3-苯基磺酰基十一烯(3b)的还原中也观察到了双键的相同重排.C. Y. Meyers 和 I. Sataty, Tetrahedron Letters, 1972, 42,4323.E. J. Corey 和 M. Chaykovsky, J .美国化学学会, 1966,87, 1345.* V. Pascali 和 A. Umani-Ronchi, J.C.S. Chem. Comm., 1973,361.@ J. F. Biellmann 和 J. B. Ducep.四面体, 1971, 27,6861.lo J. M. Lalancette, G. Rollin, andP.大仲马,加拿大。化学,1972, 50, 3068;H. Podall 和 W. E. Foster, J .Org. Chem., 1968,28, 401124 J.C.S. Perkin I所有脱硫方法都具有诱导部分ZE异构化的缺点,2与E异构体的比例与温度有关,E异构体是主要产物。砜的裂解 ;烷基-2-烯的合成起始产率砜 方法 烯烃(yo)b Z:ERatioCB 十一碳-2-烯 77 35 : 65B 3-辛基十一烯-2-烯 81A 庚-2-烯 60 40 : 60B 庚-2-烯 61 30:70A 十一碳-2-烯 62 40 : 60B 十一碳-2-烯 65 35 : 65B d 十一烷-2-烯 55 65 : 35B 九烷-2-烯 65 35 : 65A 1-苯基-2-丁烯 24 46 : 65B l-苯基-2-丁烯 26 40 : 60(2b)(3b)(44(4a)(4b)(4b)(4b)(4b)(4c)(4c)(44(4d)@ 参见实验部分。纯分离化合物;庚-2-烯的收率由G.1.C.测定。具有 internalstandard.c Z : E 比率由 g.1.c 确定。在 Carbo-wax 20M 色谱柱上(+ in x 6 f t ;10% 在 80-100 目色谱柱上 10%)(W. E. Falconer 和 L. G. Walker, J .Chromatog.Sci., 1971.9,184)。d 该反应用甲胺锂在-110“C下进行10分钟。当用(E)S-苯基磺酰基十一烯-2-烯(4b)和锂甲胺在-110 O C下进行裂解时,我们观察到烯烃中confipr-ence的最大保留(2 : E比65 : 35);当反应在室温下与钾石墨进行时,比例倒置。EXPERIMENTAL1.r.光谱用双光束LeitzSpectrograph测定,n.m.r.光谱用Perkin-Elmer R12B仪器(溶剂CDCl,;Me,Si为内标)和Hitachi-Perkin-Elmer RMU6D(单焦点)光谱仪(70 eV)的质谱分析,在硅胶H3?254(Merck)上进行质谱分析,在Merck硅胶(0.05-0.20目)上进行柱层析,己醚为溶剂。在氩气下用钠和锂铝氢化物蒸馏得到干燥且无氧的四氢呋喃。四甲基乙二胺在氩气下由氢化钙蒸馏而成。正丁基锂购自Schuchardt(慕尼黑),作为正庚烷中的a1.8~-溶液。石墨由Carlo Erba提供,含有99%的碳。Ally1苯砜的烷基化--在装有搅拌器和滴液漏斗的三口烧瓶中,将干燥的四氢呋喃(50ml)、四甲基乙二胺(3.05ml,20 mmol)和烯丙1苯砜(3.65 g,20 mmol)置于氩气下。向搅拌后的正丁基锂(1. 8~; 11.2毫升,20毫摩尔)在15分钟内加入t-60“C。1小时后加入烯丙基卤化物(20mmol)并继续搅拌t-60“C3小时。将温度升至0“C,然后将混合物倒入冰水中并用乙醚萃取。经水洗、干燥、蒸发后,产物在硅胶上通过色谱分离.3-PhenyZsulphonylhe~t-1-ene (2a) (78%) 熔点46“ (来自己烷);6 7.5-8.1 (芳香族, m), 4.8-6.1(乙烯基,m),3.5(SO,CH,dt)和0.8-2.3(脂肪族,m);M+ 238 (发现:C, 65.5;H, 7.5;小号,13.2。C,,H,,O,S 需要 C,65.5;H,7.6;S,13.4%)。3-苯基磺酰基十一烯 (2b) (71%)有 m.p.71“ (来自己烷);6 7.5-8.1(芳香族,m),4.8-6.1(乙烯基,m),3.5(SO,CH,dt)和0.8-2.2(脂肪族,m);M+ 294 (发现: C , 69.1;H, 8.8;小号,10.9。C,,H,,02S 要求 C, 69.4;H, 8.9;S,10.9%)。3-苯基磺酰基-十九烷-l-烯 (2c) (70%) 熔点 91“ (来自苯);6 7.5-8.1(芳香族,m),4.8-6.1(乙烯基,m),3.5(SO,CH,dt),0.8-2.3(脂肪族,m);M+ 406 (发现: C, 73.9;H, 10.4;小号,7.8。C,,H,,O,S 需要 C,73.8;H, 10.4;S7.9%)。3-苄基-3-~巯基磺酸~壬基~ro~-l-烯 (2d) (75%)熔点85“ (来自己烷-苯);6 7.5-8.1 (C,H,SO,,m), 7.2 (C6H5*CH,, m,), 4.6-6.1 (乙烯基, m), 和 2.6-4.0(CH,*CH, M);M+ 272 (发现: C, 70.6;H, 5.9;S, 11.8.C,,H,,O,S 要求 C, 70.6;H, 5.9;S,11.7%)。3-丁基Z-3-苯磺;6Honylhe~t-l-ene (3a) (9%) 具有 m.p.78“ (来自己烷) ;6 7.4-8.0(芳香族,m),4.8-6.1(乙烯基,m)和0.8-2.2(脂肪族,m);MF 294 (实测值: C, 69.6;H, 8.8;小号,10.6。C,,H2,0,S 需要 C, 69.4;H, 8.9;S,10.9%)。3-辛基-3-~孰基磺酸~壬基十一烷-1-烯(3b)(8%)为油;67.4-8.0(芳香族,m),4.8-6.1(乙烯基,m)和0.8-2.2(脂肪族,m);M+ 406 (原价: C, 73.5; €3, 10.2;S, 7.7.C,,H,,O,S 要求 C, 73.8;H, 10.4;S,7.9%)。3-六-癸基-3-苯基磺酰基十九烷-l-烯(3c)(6%)的熔点为53“(来自己烷);6 7.4-8.0(芳香族,m),4.8-6.1(乙烯酸,m)和0.8-2。2(脂肪族,m);M+ 630 (原来: C,78.1;H, 11.3;S,5.0。C,,H,,O,SrequiresC, 78.0;H, 11.8;S,5.1%)。3,3-二苄基-3-~己基磺酸~壬基~rop-l-烯(3d)(8%)的熔点为113“(来自乙醚);6 7.4-8.0 (C,H,SO,, m),7.2 (C,H,*CH,, m), 5.0-6.3 (乙烯基, m), 和 3.4 (CH,, s);M+ 362 (原来: C , 76.0;H, 6.0;S, 8.5.C,,H,,02S re-require C , 76.2;H, 6.1;S,8.8%)。将副-转化为a@-不饱和Su1--钾-叔丁醇(56mg,0.5mmol)加入到吡咪不饱和砜(2)(10mmol)的搅拌溶液中。在干四氢呋喃(20ml)中。将混合物搅拌3小时,然后加入饱和氯化钠水溶液中,并用乙醚外加。将干燥的有机层真空蒸发。将a@不饱和砜在硅胶柱(己烷-醚,98 : 2)上进行后层析分离。(E)-3-苯基硫基-2-庚烯(4a)(95%)为油,67.4-8.1(芳香族,m),7.0(乙烯基,q),1.8(%H*CH,,d)和0.8-2.4(脂肪族,m);M+ 238.(E)-3-苯基磺酰基-十一碳-2-烯(4b)(96%)为油;6 7.4-8.0 (芳香族,m),7.0 (乙烯基,q),1.8 (=CH*CH,, d) 和 0.8-2.4 (脂肪族,m) ;M+ 294.(E)-3-苯基磺酰基十九烷-2-烯(4c)(94%)的熔点为43“(来自己烷);6 7.4-8.0 (芳香族,m),7.0 (乙烯基,q),1.8 (%H*CH,, d),0.8-2.4 (脂肪族,m) ;M+ 406。(E) -1-苄基-l-~henylsul~honyZpro~-2-ene(4d) (95%) 熔点76“ (来自己烷-苯);6 7.3-7.9(C,H,*SO,, m), 7.2 (乙烯酸, q), 7.1 (C,H,CH,, m), 3.7 (CH,,s), 和 1.8 (CH,, d);M+272.By 锂乙胺。一般程序。将干燥的乙胺(20ml)冷凝在装有搅拌器和冷手指的三口烧瓶中。将锂(0.25g,45mg原子),先前用戊烷洗涤,加入搅拌达明超过10分钟。锂完全溶解后,将砜(4)(5mmol)加入到干燥的乙醚(5ml)中,加入t-30“C。1小时后,用固体氯化铵淬灭混合物,然后升至室温,以除去大部分胺。30分钟后加入水(10ml)并用乙醚萃取混合物。分离出的 Alk-2-烯如先前的 r e p ~ r t e d 。~在-110“C下用锂甲胺对溶解在甲基磺胺中的砜(4b)进行单次反应,砜的裂解.-方法A.anol1977 125方法B.由钾石墨(C,K)制成。一般支持cedwe。用氩气冲洗三口烧瓶并用火焰加热,然后用石墨(6.0 g,0.5niol)充电并在氩气下再次燃烧,以从石墨中解吸任何氧气和水。然后引入搅拌器,系统加热 t 100“C(油浴)。钾(2.42 g,62 mg原子),先前用正戊烷洗涤,在10分钟内搅拌,分少量加入,得到青铜色固体。将干燥乙醚或干燥的四氢呋喃(20ml)中的sul-phone(5 mmol)滴加到钾石墨中。加入冰和乙醚1 h后,滤去石墨,分离有机相蒸发。将残留物在硅胶(15cm柱,直径1.7cm;用50ml正戊烷洗脱)上色谱,得到通过i.r.、n.m.r.和质谱数据鉴定的alk-2-eneJ,或与真实样品进行比较;庚-2-烯J M+ 98;十一碳-2-烯,M+ 154,vmx。(薄膜) 695(CH%H-cis) l1 和 965 cm-l (CH=CH-反式), 8 (CCl,) 5.2-5.6 (乙烯基, m);九十九烷-2-烯J M+ 266,vmx。(薄膜)700(CH=CH-cis)和960 cm-l(CH=CH-反式),8(CCl,)5.2-5.7(乙烯基,m):3-辛基-2-烯,M+ 266,vmx。(胶片)845,970、1015 和 1060 cm-l,8 (CCl,) 5.3-5.6(乙烯基,m)。这项工作得到了罗马C.N.R.的资助。[6/1258 ReceivJ,19761 年 6 月 29 日l1 F. Naif 和 P. Degen,HeZv。奇姆。Acta, 1971, 54, 1939

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号