首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >A total synthesis of an antibacterial clerodane, 16-hydroxycleroda-3,13(14)Z-dien-15,16-olide
【24h】

A total synthesis of an antibacterial clerodane, 16-hydroxycleroda-3,13(14)Z-dien-15,16-olide

机译:一种抗菌氯烷,16-羟基烯烷-3,13(14)Z-二烯-15,16-内酯的全合成

获取原文
获取外文期刊封面目录资料

摘要

757J. CHEM. SOC. PERKIN TRANS. I 1995 A total synthesis of an antibacterial clerodane, 16-hydroxycleroda- 3,13( 14)Z-dien-l5,16=0lide Hisahiro Hagiwara,* Kazuhiro Inome and Hisashi Uda Institute for Chemical Reaction Science, Tohoku University, Katahira, Aoba-ku, Sendai 980-77, Japan The total synthesis of an antibacterial clerodane, 16-hydroxycleroda-3,13( 14)Z-dien- 15,16-olide, has been achieved and its absolute stereochemistry has been determined. The wide distribution of clerodane diterpenoids amongst plants and microorganisms makes them an important group of natural products, particularly so since of the 800 known clerodanes' a number have significant bioactivity, e.g. insect antifeedant, antibiotic or antitumour; nevertheless, the bioactivity of most clerodanes has yet to be explored.In spite of much synthetic effort, there have been only two successful total syntheses of optically active clerodanes so far. 16-Hydroxycleroda-3,13( 14)Z-dien-l5,16-olidet 1was first isolated by Bohlman et al. from Acritopappus longifolius3a and then from several sources such as Polyalthia longifolia,3b,3d Polyalthia viridis3' or Premna ~ligotricha.~ Although, at the time when Tayur isolated compound 1, only its antifeedant activity towards casterlooper was known,3b Waterman found that it had antibacterial activity comparable to that of streptomycin against a number of Gram- positive ba~teria.~ It is of note that thin twigs of plants containing the compound have been used as chewing sticks while the smoke formed from burning such plants has been used to sterilise milk containers in southern Ethi~pia.~ Although the relative stereochemistry of the acetate 2 was determined by 0 Ro,q513 ' 19 18 lR=H 2R=Ac X-ray ~rystallography,~~ the absolute stereochemistry has not been rigorously established.In view of significance of its biological activity, it was considered of importance to determine the absolute stereostructure of the clerodane 1, since two enantiomeric series, those arising from clerodane and ent-clerodane, occur in natural products. Biologically active compounds from plant sources are attractive targets for total synthesis in view of the difficulty in culturing plant cells. The intriguing bioactivity and lack of assignment of absolute stereochemistry stimulated us to investigate a total synthesis of 1; herein we delineate such a first total synthesis of 1,5 starting from (5R,9R,10R)-(-)-5 (99 optically pure).Results and discussion Our retrosynthetic analysis is described in Scheme 1. There were t Non-systematic numbering is used in this text, except in the Experimental section. 1 3 n Fs-amp;.*-I 0'e'0 4 Scheme 1 two major problems in the total synthesis of 1: the first was the construction of the y-hydroxybutenolide moiety and the second the introduction of four contiguous asymmetric centres in the decalin portion. We envisioned that the y-hydroxybutenolide moiety of 1 could be generated by photooxygenation of the furan 3 which, in turn, could be derived from the ketal 4 via addition of 3-furyllithium. The ketal4 would be obtained after transposition of the carbonyl group of the decalone (-)-5 whose enantiomer has been synthesised in stereochemically defined manner and used as a starting point for some biologically active terpenoids in this laboratory.6 Although we had no information about the absolute stereochemistry of 1, (5R,9R,lOR)-(-)-5 was chosen as the starting material in view of what was known about the absolute stereochemistry of other clerodanes and the sign of the optical rotation of 1.The decalone (-)-5 (99 optically pure 6a) has already three asymmetric centres in line with the four contiguous asymmetric centres of 1. The fourth asymmetric centre at C-8 was introduced by reduction with lithium in liquid ammonia of the enone 14 formed by enone transposition of the enone 12.For introduction of the butenolide moiety at the end of the synthetic pathway, removal of one carbon unit from the side chain was required. Although osmium tetroxide oxidation of the olefin 5 followed by metaperiodate cleavage gave unsatisfactory results, ozonolysis of 5 provided the ozonide 6 which was stable in the presence of dimethyl sulfide, zinc or hot water. However, the ozonide 6 could be reduced with lithium aluminium hydride (LAH) to afford the diol7 (Scheme 2). The 758 J. CHEM. SOC. PERKIN TRANS. I 1995 i c5 6 1' IOTIPS OH I OU0' 7 iv OTIPS OTIPS V 1vi 1OTIPS OTIPS I Scheme 2 Reagents and conditions: i, 0,,CH,Cl,, -78 "C; ii, LAH, Et,O, -78 "C to room temp.; iii, TIPSOTf, 2,6-dimethylpyridine, CH,Cl,, -8 "C; iv, Jones reagent, acetone, -35 to -20 "C, 30 min; v, LDA; HMPA, Me,SiCl, THF, -78 "C, 5 min; vi, PhSeC1, CH,Cl,, -78 "C, 5 min; vii, H,O,; pyridine, CH,Cl, diol7 was a mixture of epimers (3.5 :1)and the configuration of the secondary hydroxyl group at C-8 of the major epimer was assigned as equatorial from the half height width of 8-H (~3~3.5, wljZ 16 Hz), Selective protection of the diol 7 was successful and gave the silyl ether 8 in 79 overall yield upon treatment with triisopropylsilyl trifluoromethanesulfonate (TIPSOTf) at -8 "C. The reactivity of the primary hydroxy group at C-12 was low and attempts to protect it with tert-butyldimethylsilyl chloride (TBDMSCI), triethylsilyl chloride (TESCl) or pivaloyl chloride led to recovery of the starting diol7. Jones oxidation of the silyl ether 8 at -20 "C gave the ketone 9 in 94 yield. In contrast, pyridinium chlorochromate (PCC) oxidation was slow (38 yield, with recovery of the starting alcohol 8) probably because C-8 was a neopentyl position.In order to introduce the 6,7-double bond, the ketone 9 was transformed into the silyl enol ether 10 in 92 yield. Palladium-catalysed oxidation of this to give the enone 12 was slow, a large amount of the ketone 9 being recovered. In turn, the silyl enol ether 10 was transformed with phenylselanyl chloride into the selenide 11 in 80 yield, the oxidative elimination of which with hydrogen peroxide gave the enone 12 in 74 yield.Selanylation of the silyl enol ether 10 was clean and instantaneous, in contrast to direct selanylation of the enolate of the ketone 9 which led to large amounts of the starting ketone 9 being recovered. Introduction of the methyl group at C-8 was accomplished by addition of methyllithium (MeLi) to the enone 12 to afford an epimeric mixture (10: 1) of the allylic alcohol 13 (98 yield) (Scheme 3). Oxidative rearrangement of the allylic alcohol 13 was performed by employing a large excess of chromium oxide and 3,5-dimethylpyrazole to provide the A7*8-enone 14 in 62 yield accompanied by a small amount of the diene 15. Dissolving metal reduction of the A7v8-enone 14 with lithium in liquid ammonia furnished the desired a-methyl decalone 4 and the P-methyl decalone 16 in 65 yield (9: 1)9 along with recovery of the enone 14 (29).Introduction of a proton source after addition of the enone 14 improved the selectivity of the reduction. The relative stereochemistry of the a-methyl group at C-8 of 4 was determined by the coupling constants of 7P-H (6, 2.2, dd, J 14.4 and 2.8 Hz), 8P-H (6, 2.28, dd, J 12 and 2.8 Hz) and 7a-H (6,2.46, dd, J 14.4 and 12 Hz) in the NMR spectrum. The remaining problem in this series of transformations was removal of carbonyl oxygen at C-6 of the ketone 4. Since C-6 was a neopentyl position, it was expected to have low reactivity. Thus, the carbonyl group at C-6 was removed by radical deoxygenation.lo After reduction of the carbonyl group at C-6 of the ketone 4 (9373, the resulting hydroxy group was converted into an S-methyldithiocarbonate to give the xanthate 18 which was treated with tributyltin hydride and azoisobutyro- nitrile (AIBN) to afford the ketal 19 in 89 yield.Hydrolysis of the ketal 19 gave the keto alcohol 20 whose primary alcohol function was reprotected to provide the ketone 21 in 91 overall yield (Scheme 4). Selective deprotection of the ketal moiety of the ketal 19 could not be achieved even by pyridinium toluene-p-sulfonate. Addition of MeLi gave a diastereoisomeric mixture (4 :I) of the alcohol 22 quantitatively which was dehydrated with thionyl chloride to give an inseparable mixture of the exo-olefin 24 (6,4.51, d, J 2 Hz) and the endo-olefin (6, 5.2, br) 23 (1 :2) in 74 yield. Refluxing a solution of a mixture of the exo-olefin 24 and the endo-olefin 23 with a catalytic amount of iodine" in xylene completed isomerization of the exo-olefin 24 into the endo-olefin 23 in 91 yield.According to a molecular mechanics calculation, the endo-olefin 23 would be more stable (AE 1.27 kcal-' mol-' $) than the exo-olefin 24. After several attempts to introduce the y-hydroxybutenolide moiety of 1, including alkylation of maleic anhydride de- rivatives, success was achieved by singlet oxygen oxidation of the furan 3 (Scheme 5). To this end, deprotection of the TIPS ether followed by Swern oxidation provided the aldehyde 26 quantitatively.Addition of 3-furyllithium l3 to the aldehyde 26 gave an epimeric mixture (1 :1) of the alcohol 27 (97 yield), acetylation (92) of which followed by reductive removal of the acetate 28 with lithium in liquid ammonia afforded the furan 3 in 89 yield. Finally, photosensitised oxidation of the furan moiety in the presence of Rose Bengal gave a dioxetane precursor which was regioselectively opened by Hunig base l4 to provide 63 yield a total synthesis of the title compound 1. The spectral data of synthetic 1 were in good agreement with those of the natural product 1 including its optical rotation value (a,, -43 x lo-' deg cm2 g-' (c 0.21, CHCl,), lit.,, .ID-42 x lo-' deg cm2 g-' (c 0.42, CHCI,)).The 'H NMR 11 cal = 4.184J. J. CHEM. SOC. PERKIN TRANS. 1 1995 fJlWS I i 12 0 0 0:L/ 13 OTIPS + 15 iii OTIPS + 14 OTIPSI V c 18 19 Scheme 3 Reagents and conditions: i, MeLi, Et,O, 0 "C, 15 min; ii, CrO,, 2,3-dimethylpyrazole,CH,CI,; iii, Li, liq. NH,, THF, EtOH, -78 "C to reflux, 1 h; iv, LAH, Et,O, -78 to -70 "C, 1.5 h; v, BuLi, CS,, MeI, THF, 0 "C; vi, Bu,SnH, ATBN, xylene, 150 "C, 15 min spectra of both natural and synthetic 1indicated the presence of two C-16 epimers in equal ratio.15 Thus, the absolute stereochemistry of 1 was established as 5R,8R,9R,10R. 759 OH I i 19 0 u 22 21 iv 23 24 V It Scheme 4 Reagents and conditions: i, PTSA, 80 aq. acetone, reflux, 3 h; ii, TIPSOTf, 2,6-dimethylpyridine, CH,Cl,, 0 "C, 1 h; iii, MeLi, Et,O, 0 OC, 10min; iv, SOCl,, pyridine, 0 "C, 1.5 h; v, I,, xylene, reflux, 2h Experimental All mps were determined with a Mitamura Riken hot-stage apparatus and are uncorrected.IR spectra were recorded on a JASCO A-3 or FT/IR-8300 spectrophotometer for solutions in carbon tetrachloride unless otherwise indicated. 'H NMR spectra were obtained for solutions in deuteriochloroform with JEOL-FX 90Q (90 MHz) and JEOL-GX 400 (400 MHz) instruments with tetramethylsilane as internal standard. J Values are given in Hz. Mass spectra were run on a JEOL JMS- DX300 spectrometer with a JMA-3500 data system. Specific rotations, aID, were determined on a JASCO DIP-370 polarimeter for solutions in chloroform, and are given in 10-1 deg cm2 g-l.Medium-pressure liquid chromatography (MPLC) was carried out on a JASCO PRC-50 instrument with a silica gel packed column. Microanalyses were carried out in the microanalytical laboratory of this Institute. Ether refers to diethyl ether. Anhydrous sodium sulfate was used for drying organic extracts. THF was distilled from sodium diphenyl ketyl prior to use. Upon typical work-up, the product was extracted with solvent (2 x 20 cm3 for 1-10 mmol scale reaction). The organic layer was washed with water once and brine once. After being dried over sodium sulfate, the solvent was evaporated under reduced pressure. (4aR,5R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-6-hydroxy-5-(2'-hydroxyethyl)-5,8a-dimethylnaphthalen-l(ZH)-one ethylene ketal7 Ozone (10in oxygen) was bubbled through a stirred solution of the olefin 5 (5.966 g, 21.4 mmol) in dichloromethane (1 50 cm3) 25 27 26 iv 'p 28 3 I' 1 Scheme 5 Reagents and conditions: i, TBAF, THF, room temp., 7 h; ii, (COCl),, DMSO, Et,N, CH,Cl,, -60 to -20 "C; iii, 3-lithiofuran, THF, -78 "C, 15 min; iv, acetic anhydride, pyridine; v, Li, liq.NH,, THF, -78 to reflux, 2 h; vi, 0,, tungsten lamp, Rose Bengal, diisopropylethylamine, CH,Cl,, -70 to -55 "C at -70 "C for 15 min. The resulting solution was flushed with nitrogen and evaporated to dryness at room temperature. The residue hadamp; 1.07 (3 H, s), 1.25 (3 H, s), 1.2-2.8 (13 H, m), 3.9 (4 H, m), 5.03-5.24 (3 H, m) and was dissolved in anhydrous diethyl ether (100 cm3).After addition of LAH (2.41 g, 63.5 mmol) to the solution at -78 "C, the resulting slurry was stirred for 5 h and allowed to warm to room temperature. Aq. ammon- ium chloride was carefully added to the mixture which was then filtered to remove aluminium hydroxide and evaporated to leave the diol7 as an oil (5.28 g), a part of which was purified by MPLC for spectral data. The less polar minor (6s) isomer had mp 143-145 "c; aD +30 (c 0.25) (Found: C, 67.7; H, 9.9. Cl6H2,O4 requires C, 67.7; H, 9.9); vmax/cm-' 3421, 1457, J. CHEM. SOC. PERKIN TRANS. 1 1995 1384, 1335, 1283, 1234, 1177, 1128, 1104, 1047, 1012 and 950; dH(90 MHz) 0.85 (3 H, s, Me), 1.09 (3 H, s, Me), 1.2-2.04 (13 H, m),2.81-2.95(2H, br,OH)and3.614.01 (7H,m,0CH2CH20, 6-H and 2'-H); m/z 284 (M+, 8), 266 (7), 194 (S), 125 (S), 113 (9), 112 (12), 109 (9), 100 (15), 99 (loo), 87 (22) and 86 (36).The more polar major (6R) isomer had mp 108-1 11 "C; alD +14 (c 0.25) (Found: C, 67.3; H, 9.8. Cl6H2,O, requires C, 67.6; H, 9.9); vmaX/cm-' 3270, 1452, 1383, 1335, 1280, 1177, 1128, 1104, 1066 and 949; 6,(90 MHz) 0.85 (3 H, s, Me), 1.09 (3 H, s, Me), 1.39-1.99 (13 H, m), 2.67 (2 H, br s, OH), 3.50 (1 H, m, w1,2 16, 6-H), 3.73 (2 H, dd, J 8 and 7, 2'-H) and 3.85-3.96 (4 H, m, OCH2CH20); m/z 284 (M', lo), 266 (6), 222 (1 l), 194 (S), 178 (4), 125 (7), 113 (9), 100 (20), 99 (loo), 87 (19), 86 (31) and 55 (15). (4aR,5R,6S or 6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro+ hydroxy-5,8adimethyl-5-(2'-triisopropylsiloxyethyl)-naphthalen-l(2H)-one ethylene ketal8 To a solution of the diol7 (5.28 g, 18 mmol) and 2,6-dimethyl- pyridine (3.15 cm3, 27 mmol) in dichloromethane (25 cm3) was added a solution of TIPSOTf (4.85 cm3, 18 mmol) in di- chloromethane (5 cm3) over 1 h at -8 "C.After the reaction mixture had been stirred for 4 h, the reaction was quenched by addition of aq. sodium hydrogen carbonate to the mixture. After separation of the organic layer, the aqueous layer was extracted with ethyl acetate (x 2). The combined extracts were washed with brine and evaporated to dryness. The residue was purified by column chromatography on silica gel eluent :hexane-ethyl acetate (5 :l) to give the siZyZether 8(7.47 g, 79 overall), a part of which was separated by MPLC for spectral data.The less polar minor (6s) isomer had alD +14 (c 0.37) (Found: C, 68.1; H, 11. C2amp;,O,Si requires C, 68.1; H, 11); v,,,/crn-' 3483,1463,1384,1339,1283,1210,1187,1137,1104,1068,1034, 997,952and911;dH(90MHz)0.83(3H,s,Me),1.05(3H,s,Me), 1.07 (18 H, s, MeCH x 6), 1.0-2.07 (16 H, m), 3.563.67 (1 H, m, OH), 3.75-4.0 (6 H, m, OCH2CH20 and 2'-H) and 4.19 (1 H, br d, J4,6-H); m/z440 (M', lo), 397 (39), 336 (29), 335 (48), 266 (19), 249 (33,223 (13), 205 (15), 188 (28), 187 (79), 175 (15), 162 (12), 161 (12), 161 (38) and 99 (100). The more polar major (6R) isomer had .ID +5 (c 1.16) (Found: C, 68.3; H, 11. C2,H,,O,Si requires C, 68.1; H, 11); v,,,/cm-' 3416, 1463, 1383, 1335, 1281, 1199, 1177, 1128, 1097, 1068, 1014 and 962; 6,(90 MHz) 0.85 (3 H, s, Me), 1.06 (3 H, s, Me), 1.08 (18 H, s, MeCH x 6), 1.37-1.78 (16H, m), 3.33-3.55 (1 H, m, 6-H), 3.74-3.97 (6 H, m, OCH2CH20 and 2'-H) and 4.38 (1 H, d, J 3); m/z (M+, 13), 397 (46), 336 (27), 335 (43), 266 (15), 249 (29), 223 (22), 205 (18), 162 (32), 161 (IOO), 145 (17), 131 (23), 119 (20) and 99 (97).(4aR,5R,8aR)-3,4,4a,5,8,8a-Hexahydro-5,8a+iimethyl-5 (2'-triisopropylsiloxyethy1)naph thalene- 1,6(2H,7H)-dione ethylene ketal9 To a stirred solution of alcohol 8(2.30 g, 5.22 mmol) in acetone (15 cm3) was added Jones reagent dropwise at -35 "C until an orange colour persisted. After 10 min, the reaction was quenched by addition of isopropyl alcohol to the mixture and the product was extracted with ethyl acetate ( x 2).Evaporation of the combined extracts followed by column chromatography of the residue on silica gel eluent hexane-ethyl acetate (5 :I) provided the ketone 8(2.14 g, 94), aD + 16 (c 1.01) (Found: C, 68.7; H, 10.6. C2,H4,04Si requires C, 68.4; H, 10.3); v,,,/cm-' 1742, 1705, 1463, 1382, 1239, 1184, 1128, 1103, 1047, 1013,949 and 884; 6,(90 MHz) 1.04 (3 H, s, Me), 1.06 (18 H, s, MeCH x 6),1.01-1.12(3H,m),1.18(3H,s,Me),1.41-2.37(13 H, m), 3.64 (2 H, dd, J 9 and 2, 2'-H) and 3.844.0 (4 H, m, OCH,CH,O); m/z438 (M+,l), 396 (34), 395 (loo), 333 (13), 323 (lo), 247 (18), 213 (21), 201 (39), 187(17), 185 (21), 145 (1 l), 131 (11), 113 (10) and99 (76).J. CHEM. SOC. PERKIN TRANS. I 1995 (4aR,5R,8aR)-3,4,4a,5,8,8a-Hexahydro-5,8adimethyl-5-(2'-triisopropylsi)oxyethyl)-6-trimethylsiloxynaphthden-1(2N)-one ethylene ketal10 To a stirred solution of lithium diisopropylamide prepared from diisopropylamine (219 mm3, 1.56 mmol) in THF (2 cm3) and butyllithium (1.6 mol dm3 in hexane; 0.8 cm3,1.25 mmol) was added a solution of the ketone 9 (341.6 mg, 0.78 mmol) in THF (5 cm3) at -78 "C. After the mixture had been stirred for 20 min, HMPA (0.54 cm3, 3.1 mmol) followed by a solution of trimethylsilyl chloride (0.4 cm3, 3.12 mmol) in THF (1 cm3) were added to it. Stirring was continued for 10 min after which the reaction was quenched by the addition of aq. sodium hydrogen carbonate to the mixture.The mixture was extracted with ether (x2) and the combined extracts were evaporated to afford an oil which was purified by MPLC eluent hexane-thy1 acetate 5:l); this gave the enol ether 10 (365 mg, 92); v,,/cm-' 1743, 1670, 1464, 1375, 1344, 1253, 1186 and 846; 6,(90 MHz) 0.18 (9 H, s), 0.9 (3 H, s, Me), 1.05 (18 H, s, MeCH x 6), 1.05 (3 H, s, Me), 1.01-1.12 (3 H, m), 1.47-2.33 (11 H, m), 3.64 (2 H, t like, J 8, 2'-H), 3.82-3.97 (4 H, m, OCH,CH,O) and 4.67 (1 H, dd, J 7 and 2, 7-H). (4aR,5R,8aR)-3,4,4a,5,8,8a-Hexahydro-5,8a~ethyl-7-phenylselanyl-5-(2'-triisopropylsiloxyethyl)naphthalene-1,6(2H,7H)dione ethylene ketal 11 To a stirred solution of the enol ether 10 (260 mg, 0.5 mmol) in dichloromethane (1 -5 cm3) was added a solution of phenyl- selanyl chloride (1 12 mg, 0.58 mmol) in dichloromethane (2 cm3) in one portion.After the reaction mixture had been stirred for 5 min aq. sodium hydrogen carbonate was added to it to quench the reaction. The mixture was extracted with ethyl acetate ( x 2) and evaporation of the combined extracts left residue which was purified by MPLC eluent hexane- ethyl acetate (5: l) to afford the selenide 11 (272 mg, 80) and the enone 12 (23 mg, 9 from 9); for 11, aD +120 (c 1.17) (Found: C, 62.7; H, 8.3. C3,H,,04SiSe requires C, 62.7; H, 8.5); v,,,/crn-' 1705, 1464, 1438, 1384, 1184, 1098, 1071, 1001 and 690; 6,(90 MHz) 1.07 (18 H, s, MeCH x 6), 1.11 (3 H, s, Me), 1.16 (3 H, s, Me), 1.02-1.18 (3 H, m), 1.4-2.26 (11 H, m), 3.54-3.92 (6 H, m, OCH,CH,O and 2'-H), 4.42 (I H, dd, J 12 and 8,7-H), 7.21-7.36 (3 H, m, ArH) and 7.48-7.63 (2 H, m, ArH); mJz 594 (M+, 7), 592 (4), 553 (20), 552 (26), 551 (69), 549 (38), 547 (14), 394(15), 393 (25), 333 (22), 332 (1 I), 331 (13), 201 (25), 197 (17), 185 (27), 183 (16), 176 (12), 157 (ll), 147 (ll), 131 (12), 115 (13), 103 (12) and 99 (100).(4R,4aR,8aR)-4a,5,6,7-Tetrahydro-4,8adimethyl4 (2'-triisopropylsiloxyethyl)naphthalene-3,8(4H,8aH)-dione 8ethylene ketal 12 To a stirred solution of the selenide 11 (1.91 1 g, 1 mmol) and pyridine (0.16 cm3, 1.98 mmol) in dichloromethane (8 cm3) was added hydrogen peroxide (30 wt; 0.3 cm3, 9.8 mmol) at 0 "C. After the reaction mixture had been stirred for 1.5 h at 0 "C aq.sodium hydrogen carbonate was added to it to quench the reaction. The product was extracted with ether (x 2) and the combined extracts were evaporated to dryness. The residue was purified by MPLC to give the enone 12 (541.3 mg, 74); aID +31 (c 1.58) (Found: C, 69.0; H, 10.0. C2,H4,04Si requires C, 68.8; H, 10.2); v,,,/cm-' 1672, 1464, 1387, 1276, 1249, 1186, 1106, 1068, 996, 950 and 884; 6,(90 MHz) 1.03 (18 H, s, MeCH x 6), 1.06 (3 H, s, Me), 1.0-1.1 (3 H, m), 1.25 (3 H, s, Me), 1.47-2.63(9H,m),3.61(2H,brt,J7,2'-H),3.94-4.03(4H, m, OCH,CH,O), 5.94 (1 H, d, J 10,7-H) and 7.02 (1 H, d, J 10, 8-H); m/z 436 (M', 5), 394 (16), 393 (47), 333 (1 l), 332 (33), 331 (100),289(10),247(12),235(24),175(21), 161 (14), 115(45) and 99 (36).761 (4R,4aR,8aR)-3,4,4a,5,6,7-Hexahydro-3-hydroxy-3,4,8a-trimethyl-4-(2'-triisopropylsiloxyethyl)naphthalen~8aH)-0ne ethylene ketall3 To a stirred solution of the enone 12 (27 mg, 0.062 mmol) in ether (1 cm3) was added MeLi (1 mol dm3 in hexane; 0.11 cm3, 0.13 mmol) at 0 "C under nitrogen. After the reaction mixture had been stirred for 20 min, aq. ammonium chloride was added to it to quench the reaction. The product was extracted with diethyl ether ( x 2) and the combined extracts were evaporated to dryness. MPLC purification of residue eluent hexane-thy1 acetate (5:l) afforded two diastereoisomers of 13 (27.3 mg, 98). The less polar, major diastereoisomer had rollD -12 (c 2.0) (Found: C, 68.8; H, 10.85. C26H4804Si requires C, 69; H, 10.7); v,,/c111-~ 3432,1464,1375,1335,1238,1186,1128,1079, 949 and 884; amp;(90 MHz) 0.96 (3 H, s, Me), 1.07 (18 H, s, MeCH x 6),1.15(3H,s,Me),1.0-1.17(3H,m),1.36(3H,s, Me), 1.49-2.19 (9 H, m), 3.49 (1 H, s, OH), 3.83-4.03 (6 H, m, OCH2CH20 and 2'-H) and 5.52 (2 H, d, J 1, olefinic H); m/z 452 (M+,0.6), 434 (2), 419 (4), 409 (8),347 (8), 261 (28), 234 (25), 233(100), 199(27), 173(14), 147(11), 131 (15), 115(18), 114(14), 113 (13), 112 (21), 99 (75) and 86 (24).The more polar, minor diastereoisomer had aD +20 (c 0.58) (Found: c, 69.05; H, 10.9. C2,H4,04Si requiresc, 69; H, 10.7); v,,,/cm-' 3417,1463,1375,1240,1186,1092,1072,994,949,915 and 884; amp;(90 MHz) 0.8(3 H, s, Me), 1.07 (1 8 H, s, MeCH x 6), 1.13 (3 H, s, Me), 1.0-1.17 (3 H, m), 1.23 (3 H, s, Me), 1.35-1.84 (7 H, m), 2.37-2.58 (2 H, m), 3.49 (1 H, s, OH), 3.684.01 (6 H, m, OCH,CH,O and 2'-H), 5.55 (1 H, B part of AB type quartet, J 10, olefinic H) and 5.75 (1 H, A part of AB type quartet, J 10, olefinic H); m/z 452 (M+, l), 408 (19), 393 (lo), 347 (15), 278 (16),262(119),261(52),235(13),234(12),233 (26),201(1 I), 199 (51), 175(12), 173(28), 169(25), 159(13), 147(15), 133(13), 131 (18), 119(13), 115(29), 114(16), 113(17), 112(23), 105(ll), 103 (13), 99 (100) and 86 (29).(4aR,5R,8aR)-3,4,4a,5-Tetrahydro-3,4,8a-trimethy14 (2'-triisopropylsiloxyethyl)naph thalene- 1,8(2H,8aH)- dione ethylene ketal 14 To a stirred solution of chromic anhydride (99.9 mg, 1 mmol) in dichloromethane (1 cm3) was added 3,5-dimethylpyrazole (88.7 mg, 1 mmol) at -20 "C under nitrogen.After the mixture had been stirred for 20 min, a solution of the diastereoisomeric mixture of alcohols 13(22.9 mg, 0.05mmol) in dichloromethane (3 cm3) was added and stirring was continued for 20 min. The resulting solution was neutralized with aq. sodium hydroxide (1 mol dm3) and extracted with ethyl acetate ( x 2). Evaporation of the combined extracts followed by MPLC purification of the residue gave the enone 14 (14.2 mg, 62) together with a small amount of the diene 15. The enone 14 had alD -23 (c 1.27) (Found: C, 69.4; H, 10.2. C,,H,,O,Si requires C, 69.3; H, 10.3); v,,,/cm-' 1742, 1675, 1636, 1464, 1377,. 1287, 1241, 1183, 11 11 and 883; dH(90 MHz) 1.04 (18 H, s, MeCH x 6), 1.09 (3 H, s, Me), 0.98-1.13 (3 H, m), 1.28 (3 H, s, Me), 1.42- 1.84 (7 H, m), 1.91 (3 H, d, J 1,6-Me), 2.35-2.52 (2 H, m), 3.52 (1 H, dd, J 7 and 7, 2'-HH), 3.58 (1 H, dd, J 7 and 5, 2'-HH), 3.84.35 (4 H, m, OCH,CH,O) and 5.74 (1 H, d, J 1,7-H); m/z 450 (M +,15), 407 (1 3), 363 (1 6), 25 1 (2 I), 250 (1 OO),249 (25), 189 (12), 161 (12), 131 (lo), 114 (19), 113 (18), 99 (42) and 86 (52).The diene 15 had v,,,/cm-' 1464, 1382, 1187, 1093, 1008, 949, 914, 884 and 681; 6,(90 MHz) 0.82-2.02 (12 H, m), 1.05 (21H,s),1.17(3H,s,Me),3.61(2H,brt,J8),3.91-3.99(4H, m), 4.97 (2 H, d, J 7) and 6.98 (2 H, quartet like, J 9). (4aR, 5R,6R,8aR)-3,4,4a,5,6,7-Hexahydrw5,6,8a-trimethyl-5-(2'-triisopropylsiloxyethyl)naphthalene-l,8-(2H,8aH)dione ethylene ketal4 To a stirred solution of the enone 14 (68.4 mg, 0.152 mmol) in THF (5 cm3) and liquid ammonia (30 cm3)was added lithium (8.9 mg, 1.27 mmol) at -78 "C under nitrogen.After the mixture had been refluxed for 20 min at room temperature, ethanol (0.1 cm3,1.37mmol) was added to it at -78 "C. The re- sulting solution was then allowed to warm to room temperature during 2.5 h after which aq. ammonium chloride was added to it to quench the reaction. The product was extracted with ether (x 2) and the combined extracts were washed with brine and evaporated. MPLC separation afforded the (6s)-methyl deriv- ative 4(40.2 mg, 58.5) and (4aR,5R,6S,8aRj-( +)-3,4,4a,5,6,7- hexahydro-5,6,8a-trimethyl-5-(2'-triisopropylsiloxyethyl)naph-thalene-l,8(2H,8aH)-dioneethylene ketal 16 (4.6 mg, 6.7) along with recovered enone 14(20.1 mg, 29.4).The desired (6s)-methyl ketone 4 had aD -21 (c 2.09) (Found: C, 69.0; H, 10.6. C26H4804Si requires C, 69.0; H, 10.7); vmax/cm-l1717, 1675, 1464, 1378, 1339, 1279, 1182, 1088,1038,884 and 682; 6,(400 MHz) 0.98 (3 H, d, J 6.8,6-Me), 1.0 (3 H, s, Me), 1.03-1.1 (3 H, m), 1.07 (18 H, s, MeCH x 6), 1.33 (3 H, s, Me), 1.39-1.79 (9 H, m), 2.2 (1 H, dd, J 14.4and 2.8, 7P-H),2.28(1H,dd,J12,2.8,8P-H),2.46(1H,dd,J14.4and12, 7a-H),3.75-3.94 (4 H, m, OCH2CH20 and 2'-H) and 4.06 (2 H, m, OCH,CH,O); m/z 453 (M+ + 1, 18), 452 (M+, 49), 409 (23), 365 (27), 321 (27), 267 (12), 252 (19), 196 (35), 191 (1 l), 183 (14), 175(10), 131 (16), 114(12), 113(62), 112(81), 103(16), 100 (ll), 99 (loo), 87 (21) and 86 (44).The (6R)-methyl ketone 16had aD + 16 (c 0.5) (Found: C, 68.9; H, 10.7. C,,H,,O,Si requires C, 69; H, 10.7); v,,,/cm-' 1717, 1464, 1384, 1240, 1188, 1100, 1046, 951, 884 and 682; 6,(400 MHz) 0.9 (3 H, s, Me), 0.9 (3 H, d, J6.4,6-Me), 1.05-1.1 1 (3H,m),l.O6(18H,s,MeCH x 6),1.32(3H,s,Me),1.45-1.7(9 H, m), 2.03-2.12 (2 H, m), 2.52 (1 H, dd, J 14and 14), 3.65 (2 H, m, 2'-H), 3.86-3.95 (2 H, m, OCH,CH,O), 4.05-4.1 (1 H, m, OCH,CHHO) and 4.184.25 (1 H, m, OCH,CHHO); m/z 453 (19), 452 (M', 52), 409 (22), 365 (24), 321 (32), 252 (22), 233 (13), 196 (31), 175 (12), 173 (15), 131 (22), 114 (15), 113 (55), 112 (70), 103 (18), 99 (loo), 87 (19), 86 (48) and 75 (26). (4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydr~hydroxy-5,6,8a-trimethyl-5-(2'-triisopropylsiloxyethyl)naphthalen-l(2H)sne ethylene ketall7 To a stirred solution of the ketone 4(208.9 mg, 0.461 mmol) in ether (3 cm3)was added LAH (18.2 mg, 0.48 mmol) at -78 "C under nitrogen.After the mixture had been stirred for 1.5 h, water was added to it to quench the reaction. The aluminium hydroxide was filtered off and the filtrate evaporated to leave an oil which was purified by MPLC eluent hexane-ethyl acetate (5: I) to give the alcohol 17(194.2 mg, 93); aD +6 (c 0.84) (Found: C, 69.0; H, 11.0. C,,H5,04Si requires C, 68.7; H, 11.1); v,,,/cm-' 3539, 1464, 1386, 1355, 1302, 1175, 1103, 1068,1014,951,884 and 681; 6,(90 MHz) 0.72 (3 H, s, Me), 0.87 (3H,d, J6,6-Me), 1.07(18H,s,MeCH x 6), 1.11 (3H,s,Me), 1.43-2.55(16H,m),3.63(2H, brt, J8,2'-H),3.72(1 H,s,8-H) and 3.94-4.09 (4 H, m, OCH,CH,O); m/z 454 (M', 49), 412 (31), 41 1 (95), 349 (36), 268 (14), 267 (17), 254 (14), 237 (24), 219 (13), 201 (26), 191 (15), 175 (38), 163 (14), 159 (22), 131 (26), 121 (19), 99 (loo), 95 (23) and 86 (29).0-(4aR,5R,6R,8aR)-l-Ethylenedioxydecahydro-5,6,8a-trimethyl-l-oxo-5-(2'-triisopropylsiloxyethyl)-8-naphthyl S-methyldithiocarbonate 18 To a stirred solution of the alcohol 17(12.6 mg, 0.028 mmol) in THF (1 cm3)was added butyllithium (1.6 mol dm3 in hexane; 0.085 cm3, 0.14 mmol) at 0 "C under nitrogen. Stirring was continued for 30 min at 0 "C and for 1 h at room temperature. After this, carbon disulfide (12 mm3, 0.2 mmol) was added at 0 "C to the mixture which was then stirred for 30 min.Iodo- methane (23 mm3, 0.37 mmol) was then added to the mixture and stirring was continued for 20 min. The reaction was J. CHEM. SOC. PERKIN TRANS. 1 1995 quenched by addition of aq. ammonium chloride to the mixture which was then extracted with ethyl acetate (x 2). The com-bined extracts were evaporated to dryness and the residue was purified by MPLC to provide the xanthate 18(15.4 mg, quant); ~JD +I2 (C 0.99) (Found: C, 61.5; H, 9.5. C~~HS,O,S,S~ requires C, 61.7; H, 9.6); v,,,/cm-' 1464, 1386, 1242, 1177, 1110, 1048, 961, 884 and 681; 6,(90 MHz) 0.75 (3 H, s, Me), 0.87 (3 H, d, J 6, 6-Me), 1.06 (18 H, s, MeCH x 6), 1.29 (3 H, s, Me), 1.42.01 (14 H, m), 2.29-2.35 (1 H, m), 2.51 (3 H, s, MeS), 3.72-4.11 (6 H, m, OCH,CH20 and 2'-H) and 4.88-5.05 (1 H, m, 8-H); m/z 501 (M+ -Pr', l), 438 (33), 437 (93), 263 (34), 237 (13), 221 (13), 201 (52), 176 (16), 175 (loo), 159 (14), 145 (15), 131 (19), 119 (13), 99 (84), 95 (13), 87 (35) and 73 (34).(4aR,5R,6R,amp;R)-3,4,4a,5,6,7,8,8a-Octahydro-5,6,8a-trimethyl-5-(2'-triisopropylsiloxyethyl)naphthalen-1(2H)-one ethylene ketal 19 A solution of the xanthate 18(254.9 mg, 0.47 mmol), butyltin hydride (0.25 cm3,0.93 mmol) and AIBN (1 5.5 mg, 0.094 mmol) in xylene (5 cm3) was heated at 150 "C for 15 min. After the mixture had been cooled to room temperature, xylene was removed by flash column chromatography (eluent hexane).Elution with ethyl acetate followed by evaporation to dryness and purification of the residue by MPLC gave the ketal 19 (182.7 mg, 89); aD +5 (c 1.78) (Found: c, 71.O; H, 11.4. C,,H,,O,Si requires C, 71.2; H, 11.5); v,,,/crn-' 1463, 1383, 1335, 1279, 1240, 1180, 1091, 980, 938, 884 and 681; 6,(90 MHz) 0.69 (3 H, s, Me), 0.82 (3 H, d, J 5, 6-Me), 1.02 (3 H, s, Me), 1.05 (18 H, s, MeCH x 6), 1.2k1.68 (17 H, m), 3.66 (2 H, dd, J 7 and 7, 2'-H) and 3.83-3.98 (4 H, m, OCH,CH,O); m/z 440 (9), 439 (31), 438 (M', 84), 396 (32), 395 (loo), 238 (20), 221 (32), 203 (75), 193 (49), 177 (95), 176 (49), 175 (75), 133 (20), 131 (28), 121 (29), 109 (29), 99 (78), 95 (40) and 86 (22). (4aR,SR,6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-5-(2'-hydroxyethyl)-5,6,8a-trimethylnaphthalen-l(2H)+ne 20 A solution of the ketal 19 (78 mg, 0.178 mmol) and a catalytic amount of PTSA in 80aq.acetone (5 cm3) was heated under reflux for 3 h. After addition of aq. sodium hydrogen carbonate to the mixture, the product was extracted with ethyl acetate ( x 2). The combined extracts were evaporated after which MPLC purification of the residue afforded the hydroxy ketone 20 (42.3 mg, quant); mp 87-89 "C; aD +34 (c 0.90) (Found: C, 75.8; H, 11. C, 5H2602 requires C, 75.6; H, 11); vmaX/cm-' 3503, 1709, 1453, 1385, 1313, 1254, 1115, 1025, 950 and 669; 6,(90 MHz) 0.81 (3 H, s, Me), 0.84 (3 H, d, J 6, 6-Me), 1.12 (3 H, s, Me), 1.09-2.77 (14 H, m) and 3.4c13.72 (3 H, m, OH and 2'-H); m/z 238 (M', 15), 223 (28), 220 (62), 205 (44), 193 (96), 192 (47), 176 (53), 175 (95), 149 (24), 137 (56), 124 (33), 123 (30), 121 (40),111 (67), 110 (37), 109 (69), 107 (30), 97 (29), 96 (88), 95 (78), 83 (59), 81 (89), 67 (75), 55 (100) and 41 (90).(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-5,6,8a-trimethyl-5-(2'-triisopropylsiloxyethyl)naphthalen-1(2H)-one 21 To a stirred solution of the hydroxy ketone 20 (24.0 mg, 0.101 mmol) and 2,6-dimethylpyridine (35 mm3, 0.30 mmol) in di- chloromethane (1 cm3) was added TIPSOTf (54 mm3, 0.20 mmol) at 0 "C. After the reaction mixture had been stirred for 1 h, aq. sodium hydrogen carbonate was added to it to quench the reaction. The product was extracted with ether (x 2) and the combined extracts were evaporated to dryness.The residue was purified by MPLC eluent hexane-ethyl acetate (5:l) to give the silyl ether 21 (36.3 mg, 91); alD +21 (c 0.64) (Found: C, 73.2; H, 11.9.C,,H,,O,Si requiresC, 73; H, 11.75); v,,,/cm-' J. CHEM. SOC. PERKIN TRANS. 1 1995 1709,1463,1384,1254,1094,1014,950,920,884 and 682;6,(90 MHz) 0.8 (3 H, s, Me), 0.84 (3 H, d, J 7, 6-Me), 1.04 (18 H, s, MeCH x 6), 1.12(3H,s,Me),1.25-2.62(17H,m)and3,6(2H, td, J 7 and 2, 2'-H); m/z 394 (M+, l), 351 (42), 203 (52), 177 (loo), 175 (39), 133 (21), 131 (19), 121 (27), 109 (23), 107 (21), 95 (36) and 75 (26). (4aR,SR,6R,8aR)-Decahydro-l-hydroxy-l,5,6,8a-tetramethyl-5-(2'-triisopropylsiloxyethyl)naphthalene 22 To a solution of the ketone 21 (53.3 mg, 0.135 mmol) in ether (1.5 cm3) was added MeLi (1 mol dm3 in hexane; 0.25 cm', 0.25 mmol) at 0 "C under nitrogen.The reaction was quenched by addition of aq. ammonium chloride to the mixture. The mixture was then extracted with ether ( x 2) and the combined extracts were evaporated to leave an oil which was purified by MPLC eluent hexane-ethyl acetate (5 :l) to give the alcohol 22 (56.6 mg, quant). The less polar, minor isomer had aD + 11 (c 0.41) (Found: C, 73.3; H, 12.3. C25H,,02Si requires C, 73.1; H, 12.3); v,,,/cm-' 3627, 1463, 1385, 1249, 1184, 1086,994,915, 884 and 681; amp;(90 MHz) 0.8 (3 H, s, Me), 0.84 (3 H, d, J7, 6- Me), 0.95 (3 H, s, Me), 1.04 (18 H, s, MeCH x 6), 1.12 (3 H, s, Me), 1.25-2.62 (18 H, m) and 3.60 (2 H, td, J 7 and 2,2'-H); m/z 410 (M+, 279, 367 (4), 349 (8), 220 (15), 219 (82), 193 (25), 191 (48), 177 (15), 175 (19), 163 (52), 149 (57), 137 (29), 135 (25), 131 (24), 123 (69), 121 (24), 119 (21), 109 (loo), 107 (24), 103 (21), 97 (18), 83 (25), 81 (42), 75 (36) and 69 (46).The more polar, major isomer had alD +6 (c0.58) (Found: C, 73.2; H, 12.5. C2,H,,02Si requires C, 73.1; H, 12.3); v,,,/cm 3621,1463,1384,1313,1247,1179,1093,997,884and 682; 6,(90 MHz) 0.73 (3 H, s, Me), 0.85 (3 H, d, J 5,6-Me), 1.03 (3 H, s, Me), 1.07 (18 H, s, MeCH x 6), 1.27 (3 H, s, Me), 1.34- 1.79 (18 H, m) and 3.67 (2 H, t like, J 7, 2'-H); m/z 410 (M', 473, 368 (33), 367 (loo), 235 (26), 217 (62), 191 (39), 177 (19), 131 (20), 123 (20), 109 (35), 103 (18), 95 (36), 81 (19), 75 (26) and 43 (18).(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-l,5,6,8a-tetramethyl-5-(2'-tiisopropylsiloxyethyl)naphthalene 23 To a stirred solution of the diastereoisomeric mixture of the alcohols 22 (3 1.4 mg, 0.07 mmol) in pyridine was added thionyl chloride (0.08 cm3, 1.09 mmol) at 0 "C under nitrogen. After the mixture had been stirred for 1.5 h, ice was added to it to quench the reaction. The product was extracted with ethyl acetate ( x 2) and the combined extracts were evaporated. MPLC purifi- cation of residue provided the endo-olefin 23 and the exo-olefin 24 (20.1 mg, 74) in a 1 :2 ratio. A solution of the mixture of endo- and exo-olefins 23 and 24 (20.1 mg, 0.5 mmol) and iodine (2 mg) in xylene (3 cm3) was heated under reflux for 2 h and then cooled to room temper- ature.Aq. sodium hypochlorite was added to the mixture which was then stirred until it was colourless. The organic layer was separated, diluted with hexane and passed through short column of silica gel. Elution with ethyl acetate followed by evaporation of solvent left an oil which was chromatographed by MPLC eluent hexane to give the endo-olefin 23 (18.2 mg, 91); alD -23 (c 0.44); vmax/cm-l 1463, 1383, 1092, 1014, 884 and 688; 6,(90 MHz) 0.72 (3 H, s, Me), 0.86 (3 H, d, J7, 6-Me), 0.98 (3 H, s, Me), 1.05 (18 H, s, MeCH x 6), 1.57 (3 H, d, J 1, 1-Me), 1.24-2.25(15H,m),3.64(2H,tlike,J7,2'-H)and5.2(1 H, br s, 2-H); m/z392 (M+,7), 350(25), 349 (73), 218 (25), 217 (loo), 191 (63), 189(18), 161 (19), 147(18), 121 (27), 119(36), 109 (36), 107 (34) and 95 (52) (Found: M', 392.3474.C2,H,,0Si requires M, 392.3474). (4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-5-(2'-hydroxyethy1)-1,5,6,8a-tetramethyInaphthalene25 A solution ofthe olefin 23(56.2 mg, 0.143 mmol) in THF (1 cm3) and tetrabutylammonium fluoride (TBAF) (1.0 mol dm3 in THF; 0.7 an3,0.7 mmol) was stirred at room temperature for 7 h and then diluted with water and extracted with ethyl acetate ( x 2). Evaporation of the combined extracts followed by MPLC purification of the residue gave the alcohol 25 (34.1 mg, quant); a,, -47 (c 0.57); v,,Jcm-' 3630, 1458, 1383, 1024, 999 and 795; amp;(90 MHz) 0.74 (3 H, s, Me), 0.86 (3 H, d, J 6,6-Me), 0.99 (3 H, s, Me), 1.58 (3 H, s, 1-Me), 1.04-1.79 (11 H, m), 1.92-2.1 (2 H, m), 3.5-3.76 (2 H, m, 2'-H) and 5.2 (1 H, br d, J 1,2-H); m/z 236 (M', 23), 221 (ll), 203 (ll), 194 (17), 193 (loo), 192 (14), 191 (59), 177 (13), 175 (17), 163 (20), 149 (33), 147 (12), 136 (37), 135 (28), 133 (14), 123 (61), 122(39), 121 (47), 119 (18), 109 (36), 108 (20), 107 (73, 105 (29), 95 (71), 93 (44),91 (28), 81 (43), 79 (27), 69 (32) and 55 (37) (Found: M', 236.2140.Cl,H2,0 requires M, 236.2140). 2-(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-l,5,6,8a-tetramethyl-5-naphthylethanal26 To a stirred solution of oxalyl dichloride (14 mm3, 0.16 mmol) in dichloromethane (1 cm3) was added DMSO (23 mm3, 0.32 mmol) at -60 "C under nitrogen. After the mixture had been stirred for 30 min, a solution of the alcohol 25 (7.7 mg, 0.033 mmol) in dichloromethane (3 cm3) was added to it and stirring was continued for 45 min.Triethylamine (45 mm3, 0.32 mmol) was then added to the mixture and the resulting slurry was stirred for 1 h at -20 "C. The mixture was then diluted with water and the product was extracted with dichloromethane (x 2). The combined extracts were evaporated to dryness to afford an oil which was purified by MPLC eluent hexane-ethyl acetate (5 :l) to give the aldehyde 26(9.0 mg, quant); aD -30 (c 0.39); v,,,/cm-' 2863, 2725, 1719, 1459, 1383, 1245, 1175, 1128,1101, 1075,1045, 1001 and 980; amp;(90 MHz) 0.82 (3 H, s, Me), 0.95 (3 H, d, J6,6-Me), 0.99 (3 H, s, Me), 1.57 (3 H, d, J2, 1-Me), 1.11-1.83(8H,m), 1.92-2.11(2H,m),2.39(2H,t,J3.5, 2'-H), 5.2 (1 H, br s, 2-H) and 9.67 (1 H, t, J 3.5, CHO); m/z234 (M+, lo), 191 (11), 190 (35), 176 (ll), 175 (65), 147 (15), 121 (20), 1 19 (15), 107 (17), 105 (17), 95 (15),93 (16), 9 1 (16), 8 1 (16), 79 (14), 69 (14), 58 (30), 55 (16), 43 (100) and 41 (29) (Found: M+,234.1982.C,,H,,O requires M,234.1984). 3-{1-H ydrox y-2-(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-octahydro-1,5,6,8a-tetramethyl-5-naphthylethy1)furan 27 To a stirred solution of 3-bromofuran (21 mm3, 0.23 mmol) in THF (1 cm') was added tert-butyllithium (1.5 mol dm3 in hexane; 0.15 cm', 0.23 mmol) at -78 "C under nitrogen. After the mixture had been stirred for 30 min, a solution of the aldehyde 26 (10.9 mg, 0.047 mmol) in THF (4 cm') was added to it and the resulting solution was stirred for 25 min at -70deg;C.The reaction was quenched by addition of aq. ammonium chloride to the mixture which was then extracted with ethyl acetate (x2). The combined extracts were evaporated to dryness and the residue was purified by MPLC eluent hexane-ethyl acetate (3 :l) to afford a diastereo-isomeric mixture of the alcohols (1 :1 ratio) 27 (13.7 mg, 97); v,,,/cm-' 3613, 1501, 1458, 1450, 1383, 1161, 1128, 1101, 1044, 1023, 999, 875 and 601; amp;(90 MHz) 0.73 (3 H, s, Me), 0.91 (3 H,d, J6,6-Me), 1.0(3H,s,Me), 1.57(3H,d, J2, 1-Me), 1.25- 2.12 (13 H, m), 4.75-4.93 (1 H, m, 1'-H), 5.19 (1 H, br s, 2-H), 6.41 (1 H, br s, furan) and 7.37-7.41 (2 H, m, furan); m/z 302 (M', 273, 285 (24), 284 (loo), 190 (44),175 (62), 161 (97), 148 (46), 147 (37), 133 (34), 121 (83), 119 (54), 108 (68), 107 (58), 105 (41), 95 (43), 91 (34), 85 (32), 83 (46), 81 (47) and 55 (31) (Found: Mf -H20, 284.2140. C20H280 requires m/z 284.2 140).3-{1-Acetox y-2-(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-octahydro-1,5,6,8a-tetramethy1-5-naphthylethy1)furan 28 A solution of the alcohol 27 (24.3 mg, 0.08 mmol) in acetic anhydride (1 cm3) and pyridine (1 cm3) was stirred at room 764 temperature overnight under nitrogen. The solution was evaporated to dryness under reduced pressure and the residue was purified by MPLC eluent hexane-ethyl acetate (5 :l) to provide the acetate 28 (25.5 mg, 92); v,,Jcm-l 1742, 1505, 1438, 1371, 1236, 1162, 1024, 951, 875 and 602; 6,(90 MHz) 0.72 (3 H, s, Me), 0.89 (3 H, d, J 6, 6-Me), 0.98 (3 H, s, Me), 1.53 (3 H, s, 1-Me), 1.99 (3 H, s, Ac), 1.25-2.32 (12 H, m), 5.18 (1 H, br s, 1-H), 5.85-6.03 (1 H, m, 1'-H), 6.40(1 H, br s, furan) and 7.35-7.44 (2 H, m, furan); m/z 285 (2273, 284 (M' -AcOH, loo), 269 (21), 190 (42), 175 (55), 161 (77), 148 (37), 147 (33), 133 (32), 121 (77), 119 (47), 108 (60), 107 (55), 105 (44), 95 (47), 93 (39), 91 (35), 81 (47), 55 (34) and 43 (42) (Found: M+ -AcOH, 284.2139.C20H,,0 requires m/z 284.2140). 3-{2-(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-l,5,6,8a-tetramethyl-5-naphthyll ethy1)furan 3 To a stirred solution of lithium (1.7 mg, 0.24 mmol) in liquid ammonia (15 cm3) was added a solution of the acetate 28 (6.6 mg, 0.019 mmol) in THF (5 cm3) at -78 "C under nitrogen. The resulting solution was refluxed for 1.5 h after which liquid ammonia was removed by evaporation overnight at room temperature.Aq. ammonium chloride was added to the mixture and the product was extracted with ether (x2). Evaporation of the combined extracts followed by MPLC purification (eluent hexane) of the residue gave the furan 3 (4.9 mg, 89); aID -58 (c 0.36, CHCl,); v,,,/cm-' 1457, 1383, 1162, 1066, 1026, 874, 668 and 600; 6,(90 MHz) 0.75 (3 H, s, Me), 0.83 (3 H, d, J5, 6-Me), 1.00 (3 H, s, Me), 1.59 (3 H, d, J 2, 1-Me), 1.27-2.47 (14 H, m), 5.20 (1 H, br s, 1-H), 6.27 (1 H, br s, furan), 7.22 (1 H, br s, furan) and 7.37 (1 H, t, J 2, furan); m/z 287 (673, 286 (M+, 27), 271 (17), 191 (18), 121 (14), 107 (19), 96 (15), 95 (48), 81 (25), 58 (58), 43 (100) and 32 (69) (Found: M', 286.2297.C20H300 requires M, 286.2297). (5R,8R,9R,lOR)-16-Hydroxycleroda-3,13(14)Z-dim-15,16-olide 19 Anhydrous oxygen was passed through a solution of the furan 3 (9.2 mg, 0.032 mmol), diisopropylethylamine (56 mm3, 0.32 mmol) and a catalytic amount of Rose Bengal in dichloro- methane (6 cm3) irradiated with a tungsten lamp and held at -78 to -55 "C for 1.5 h. The resulting solution was diluted with a mixture of hexane and ethyl acetate and passed through short column of silica gel to remove Rose Bengal. Evaporation of solvent followed by MPLC purification eluent hexane-ethyl acetate (3 :l) gave the butenolide 1 (6.4 mg, 63); alD-43 (c 0.21, CHCl,) and -46(c0.21, MeOH); v,,,/cm-' 3336br, 1752, sect;Non-systematic numbering is used in this part.See text. J. CHEM. SOC. PERKIN TRANS. 1 1995 1647, 1456, 1132, 957 and 761; 6,(400 MHz) 0.77 (3 H, s, 20-Me), 0.81 and 0.82 (3 H total, d, J6.4, 17-Me), 1.00 (3 H, s, 19-Me), 1.15-1.57(6H,m), 1.59(3H,d, J1.2, 18-Me), 1.63-1.75(4 H, m), 1.99-2.43 (4 H, m), 3.99 (1 H, br s), 5.19 (1 H, br s, 3-H), 5.85 (1 H, s, 14-H) and 6.00 (1 H, s, 16-H); m/z 318 (M+, 3479, 303 (14), 285 (33), 191 (62), 190 (62), 189 (loo), 175 (18), 135 (40), 123 (79) and 107 (83) (Found: M', 318.2194. C20H3003 requires M, 318.2195). Acknowledgements We thank Professor Y. Fujimoto, Tokyo Institute of Technology, for providing spectral data of natural 1.Thanks are also due to Professor T. Tokoroyama, Osaka City University, for helpful discussions. References 1 T. Tokoroyama, J. Synth. Org. Chem., Jpn, 1993,51, 1164. 2 H. Iio, M. Monden, K. Okada and T. Tokoroyama, J. Chem. Soc., Chem. Commun., 1987,358; E. Piers and J. Y. Roberge, Tetrahedron Lett., 1992,33,6923. 3 (a) F. Bohlman, M. Ahmed, J. Jakupovic, R. M. King and H. Robinson, Rev. Latinoamer. Quim., 1984, 15, 16; (b) A. P. Phandnis, S. A. Patwardhan, N. N. Dhaneshwar, S. S. Tavale and N. Tayur, Phyrochemistry, 1988,27, 2899; (c) A. Kijjoa, M. M. M. Pinto and W. Hertz, Planta Med., 1989, 55, 205; (d) Y. K. Gupta, N. Hara, Y. Fujimoto and M. Sahai, Abstracts of Papers of Annual Meeting of Chemical Society of Japan, 1993, II,498. 4 S. Habtemariam, A. I. Gray and P. G. Waterman, Planta Med., 1992,58, 109. 5 Preliminary communication: H. Hagiwara, K. Inome and H. Uda, Tetrahedron. Lett., 1994,35, 8189. 6 (a)H. Hagiwara and H. Uda, J. Org. Chem., 1988,53,2308; (b)Bull. Chem. Soc. Jpn., 1989, 62, 624; (c) J. Chem. Soc., Perkin Trans. I, 1991, 1803. 7 Y. Ito, T. Hirao and T. Saegusa, J. Org. Chem., 1978,43, 101 1. 8 E. J. Corey and G. W. Fleet, Tetrahedron Lett., 1973,4499. 9 J. M. Lutein and A. de Groot, J. Org. Chem., 1981,46, 3448. 10 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. I, 1975, 1574 D. H. R. Barton and W. B. Motherwell, Pure Appl. Chem., 1981,53, 15. 11 A. Yoshikoshi, M. Kitadani and Y. Kitahara, Tetrahedron, 1967, 23, 1175. 12 Molecular modelling was performed using PCMODEL (Serena Software, Bloomington, IN, USA). 13 S. Takahashi, T. Kusumi and H. Kakisawa, Chem. Lett., 1979,515; T. Tokoroyama, R. Kanazawa, S. Yamamoto, T. Kamikawa, H. Suenaga and M. Miyabe, Bull. Chem. Soc. Jpn., 1980,53,1698. 14 M. R.Kernan and D. J. Faulkner, J. Org. Chem., 1988,53,2773. 15 Personal communication from Professor Y. Fujimoto. Paper 4/07069K Received 18th November 1994 Accepted 6th December 1994
机译:757J. CHEM. SOC. PERKIN TRANS.I 1995 抗菌氯罗丹,16-羟基硬罗丹- 3,13( 14)Z-二烯-l5,16=0lide Hisahiro Hagiwara,* Kazuhiro Inome and Hisashi Uda Institute for Chemical Reaction Science, Tohoku University, Katahira, Aoba-ku, Sendai 980-77, Japan 已经实现了抗菌硬烷 16-羟基硬化烷-3,13( 14)Z-二烯-15,16-内酯的全合成,并测定了其绝对立体化学性质。氯罗丹二萜类化合物在植物和微生物中的广泛分布使其成为一组重要的天然产物,特别是因为在已知的800种氯罗丹中,许多具有显着的生物活性,例如昆虫抗喂食剂、抗生素或抗肿瘤剂;然而,大多数氯罗丹的生物活性还有待探索。尽管进行了大量的合成工作,但到目前为止,只有两次成功的光学活性氯罗烷的完全合成。16-羟基硬化-3,13( 14)Z-二烯-l5,16-olidet 1首先由Bohlman等人从Acritopappus longifolius3a中分离出来,然后从几个来源中分离出来,如Polyalthia longifolia,3b,3d Polyalthia viridis3'或Premna ~ligotricha.~ 虽然在Tayur分离化合物1的时候,只有它对casterlooper的抗摄食活性是已知的,3b Waterman发现它对许多革兰氏阳性ba~teria具有与链霉素相当的抗菌活性。~ 值得注意的是,含有该化合物的植物的细枝被用作咀嚼棒,而燃烧这些植物形成的烟雾已被用于对埃塞俄比亚南部~皮亚的牛奶容器进行消毒~ 虽然醋酸盐 2 的相对立体化学性是通过 0 Ro,q513 ' 19 18 lR=H 2R=Ac X 射线测定的~rystallography,~~绝对立体化学尚未严格建立。鉴于其生物活性的重要性,人们认为确定氯罗烷 1 的绝对立体结构很重要,因为天然产物中存在两个对映体系列,即由氯罗烷和 ent-氯罗丹产生的对映体系列。鉴于培养植物细胞的困难,来自植物来源的生物活性化合物是全合成的有吸引力的靶标。有趣的生物活性和绝对立体化学的缺乏分配刺激了我们研究 1 的总合成;在这里,我们描绘了从(5R,9R,10R)-(-)-5(99%光学纯度)开始的1,5的第一总合成。结果与讨论 我们的逆合成分析在方案 1 中描述。除实验部分外,本文使用了非系统编号。1 3 n Fs-&.*-I 0'e'0 4 方案 1 全合成中的两个主要问题:第一个是 y-羟基丁烯内酯部分的构建,第二个是在十氢萘部分引入四个连续的不对称中心。我们设想 1 的 y-羟基丁烯内酯部分可以通过呋喃 3 的光氧化生成,而呋喃 3 又可以通过添加 3-呋喃基锂从酮 4 衍生而来。酮4将在癸蔬(-)-5的羰基转座后获得,其对映异构体已以立体化学定义的方式合成,并用作该实验室中一些生物活性萜类化合物的起点.6尽管我们没有关于1的绝对立体化学的信息,但鉴于对其他氯罗丹的绝对立体化学和符号的已知,选择(5R,9R,lOR)-(-)-5作为起始材料十陸腈(-)-5(99%光学纯度6a)已经有三个不对称中心,与1的四个连续不对称中心一致。C-8 处的第四个不对称中心是通过烯酮 12 的烯酮转座形成的烯酮 14 的液氨中的锂还原引入的,为了在合成途径的末端引入丁烯内酯部分,需要从侧链中去除一个碳单元。虽然烯烃 5 的四氧化锇氧化后进行偏高碘酸盐裂解的结果并不令人满意,但臭氧分解 5 提供了臭氧 6,臭氧共解在二甲基硫醚、锌或热水存在下是稳定的。然而,臭氧 6 可以用氢化铝锂 (LAH) 还原,以获得二醇 7(方案 2)。The 758 J. CHEM. SOC.佩尔金译。I 1995 i c5 6 1' IOTIPS OH I OU0' 7 IV OTIPS OTIPS V 1vi 1OTIPS OTIPS I 方案 2 试剂和条件:i,0,,CH,Cl,, -78“C;ii, LAH, Et,O, -78“C至室温; iii, TIPSOTf, 2,6-二甲基吡啶, CH,Cl,, -8”C;iv,琼斯试剂,丙酮,-35-20“C,30分钟;v, LDA;HMPA、Me、SiCl、THF、-78“C,5 min;vi, PhSeC1, CH,Cl,, -78“C, 5 min;vii, H,O,;吡啶、CH、Cl、二醇7为差向异构体(3.5 ∶1)的混合物,主差向异构体C-8处仲羟基的构型从半高8-H(~3~3.5,wljZ 16 Hz)划为赤道,二醇7的选择性保护成功,在-8“C下用三异丙基硅烷基三氟甲磺酸酯(TIPSOTf)处理后,硅烷基醚8的总收率为79%。C-12 位点伯羟基的反应性较低,尝试用叔丁基二甲基氯硅烷 (TBDMSCI)、三乙基氯硅烷 (TESCl) 或特戊酰氯保护它导致起始二醇的回收7。在-20“C下对甲硅烷基醚8进行Jones氧化,得到酮9的收率为94%。相比之下,氯铬酸吡啶(PCC)氧化缓慢(收率为38%,起始醇回收率为8),可能是因为C-8是新戊基位置。为了引入6,7-双键,以92%的收率将酮9转化为甲硅烷基烯醇醚10。钯催化氧化得到烯酮12的速度很慢,大量的酮9被回收。反过来,将甲硅烷基烯醇醚10与苯基硒酰氯转化成硒化物11,收率为80%,用过氧化氢氧化消除后得到烯酮12,收率为74%。甲硅烷基烯醇醚10的硒烷基化是干净和瞬时的,而酮9的烯醇酯的直接硒烷化导致大量起始酮9被回收。通过向烯酮 12 中加入甲基锂 (MeLi) 来获得烯丙醇 13 的差向异构混合物 (10:1)(98% 产率)(方案 3)来完成 C-8 处甲基的引入。烯丙醇13的氧化重排是用大量过量的氧化铬和3,5-二甲基吡唑来提供A7*8-烯酮14,收率为62%,同时加入少量的二烯15。将A7v8-烯酮14与锂溶解在液氨中的金属还原物,以65%的收率(9:1)9获得所需的a-甲基癸甫4和对甲基癸酮16,同时回收烯酮14(29%)。在加入烯酮14后引入质子源提高了还原的选择性。通过核磁共振谱图中7P-H(6,2.2,dd,J 14.4和2.8 Hz)、8P-H(6,2.28,dd,J 12和2.8 Hz)和7a-H(6,2.46,dd,J 14.4和12 Hz)的耦合常数测定了C-8 of 4的a-甲基的相对立体化学。这一系列转化中剩下的问题是去除酮 4 的 C-6 处的羰基氧。由于 C-6 是新戊基位置,因此预计其反应性较低。因此,C-6 处的羰基通过自由基脱氧除去.lo 在酮 4 (9373) 的 C-6 处还原羰基后,将所得羟基转化为 S-甲基二硫代碳酸酯,得到黄原酸 18,黄原酸酯 18 用三丁基氢化锡和偶氮异丁腈 (AIBN) 处理,以 89% 的收率获得酮基 19。酮醇19的水解得到酮醇20,其主要醇功能得到重新保护,以提供酮21的总收率为91%(方案4)。即使吡啶甲苯对磺酸盐也无法实现对酮 19 的酮部分的选择性脱保护。加入MeLi,定量得到醇22的非对映异构体混合物(4:I),用氯化亚砜脱水,得到外烯烃24(6,4.51,d,J 2 Hz)和内烯烃(6,5.2,br)23(1:2)的不可分离混合物,收率为74%。将外用烯烃24和内切烯烃23的混合物与催化量的碘回流到二甲苯中的外用烯烃24的异构化,以91%的收率完成外用烯烃24的异构化。根据分子力学计算,内烯烃23比外烯烃24更稳定(AE 1.27 kcal-'mol-'$)。在多次尝试引入 y-羟基丁烯内酯部分 1 后,包括马来酸酐衍生剂的烷基化反应,通过呋喃 3 的单线态氧氧化取得了成功(方案 5)。为此,对TIPS醚进行脱保护后进行Swern氧化,定量提供醛26。向醛26中加入3-呋喃基锂l3得到醇27的差向异构混合物(1:1)(产率为97%),其中乙酰化(92%),然后用液氨中的锂还原除去乙酸盐28,得到呋喃3的89%收率。最后,在孟加拉玫瑰存在下对呋喃部分进行光敏氧化,得到二氧杂环丁烷前体,该前体被 Hunig 碱基 l4 区域选择性打开,以 63% 的收率提供标题化合物 1 的总合成。合成物1的光谱数据与天然产物1的光谱数据吻合较好,包括其旋光度值([a],, -43 x lo-' deg cm2 g-' (c 0.21, CHCl,), lit.,, [.ID-42 x lo-' deg cm2 g-' (c 0.42, CHCI,))。'H NMR 11 cal = 4.184J。J. CHEM. SOC. PERKIN TRANS. 1 1995 fJlWS I i 12 0 0 0:L/ 13 OTIPS + 15 iii OTIPS + 14 OTIPSI V c 18 19 方案 3 试剂和条件:i,MeLi,Et,O,0“C,15 min;ii, CrO,, 2,3-二甲基吡唑,CH,CI,;iii, Li, liq. NH,, THF, EtOH, -78“C 回流, 1 h;iv, LAH, Et,O, -78 至 -70 “C, 1.5 小时;v, BuLi, CS,, MeI, THF, 0 “C;vi, Bu,SnH, ATBN, 二甲苯, 150 “C, 15 min的天然和合成光谱1表明存在两个相等比例的C-16差向异构体.15因此,1的绝对立体化学被确定为5R,8R,9R,10R. 759 OH I i 19 0 u 22 21 iv 23 24 V It 方案 4 试剂和条件: i,PTSA,80%丙酮水,回流,3小时;ii, TIPSOTf, 2,6-二甲基吡啶, CH,Cl,, 0 “C, 1 h;iii, MeLi, Et,O, 0 OC, 10min;iv, SOCl,, 吡啶, 0 “C, 1.5 h;v,I,,二甲苯,回流,2h 实验 所有 mps 均使用 Mitamura Riken 热台仪测定,未经校正。除非另有说明,否则在JASCO A-3或FT/IR-8300分光光度计上记录四氯化碳溶液的红外光谱。使用以四甲基硅烷为内标的 JEOL-FX 90Q (90 MHz) 和 JEOL-GX 400 (400 MHz) 仪器获得氘代氯仿溶液的 'H NMR 谱图。J 值以 Hz 为单位。 质谱在带有 JMA-3500 数据系统的 JEOL JMS-DX300 光谱仪上运行。在JASCO DIP-370旋光仪上测定氯仿溶液的比旋光度[aID,并以10-1°g2 g-l给出。中压液相色谱(MPLC)在JASCO PRC-50仪器上进行,仪器采用硅胶填充柱。微观分析是在该研究所的微观分析实验室进行的。乙醚是指乙醚。无水硫酸钠用于有机提取物的干燥。THF在使用前从二苯基酮基钠中蒸馏出来。在典型的处理过程中,用溶剂萃取产物(2 x 20 cm3,用于1-10 mmol级反应)。有机层用水洗涤一次,盐水洗涤一次。用硫酸钠干燥后,减压蒸发溶剂。(4aR,5R,8aR)-3,4,4a,5,6,7,8,8a-八氢-6-羟基-5-(2'-羟乙基)-5,8a-二甲基萘-l(ZH)-酮乙烯酮7臭氧(10%在氧气中)通过烯烃5(5.966g,21.4mmol)在二氯甲烷(1 50 cm3)中的搅拌溶液中起泡 25 27 26 iv 'p 28 3 I' 1 方案 5 试剂和条件:i,TBAF,THF,室温,7 h;ii, (COCl),, DMSO, Et,N, CH,Cl,, -60 至 -20 “C;iii,3-呋喃,THF,-78“C,15分钟;IV, 乙酸酐、吡啶;v, Li, liq.NH,,THF,-78 回流,2 h;vi,0,,钨丝灯,玫瑰孟加拉,二异丙基乙胺,CH,Cl,, -70至-55“C在-70”C下15分钟。将所得溶液用氮气冲洗并在室温下蒸发至干。残渣有&1.07(3 H,s),1.25(3 H,s),1.2-2.8(13 H,m),3.9(4 H,m),5.03-5.24(3 H,m),并溶于无水乙醚(100 cm3)中。在-78“C下将LAH(2.41g,63.5mmol)加入到溶液中后,将所得浆料搅拌5小时并使其升温至室温。小心地将氯化铵加入混合物中,然后过滤以除去氢氧化铝,并蒸发以使二醇7为油(5.28 g),其中一部分通过MPLC纯化以获得光谱数据。极性较小的次要(6s)异构体具有mp 143-145“c;[一]D +30 (c 0.25) (发现: C, 67.7;H,9.9。Cl6H2,O4 需要 C, 67.7;H,9.9%);vmax/cm-' 3421, 1457, J. CHEM. SOC. PERKIN TRANS. 1 1995 1384, 1335, 1283, 1234, 1177, 1128, 1104, 1047, 1012 和 950;dH(90 MHz) 0.85 (3 H, s, Me), 1.09 (3 H, s, Me), 1.2-2.04 (13 H, m),2.81-2.95 (2H, br,OH)和3.614.01 (7H,m,0CH2CH20, 6-H and 2'-H);m/z 284 (M+, 8%)、266 (7)、194 (S)、125 (S)、113 (9)、112 (12)、109 (9)、100 (15)、99 (loo)、87 (22) 和 86 (36)。更强的主要(6R)异构体具有mp 108-1 11“C;[alD +14 (c 0.25) (发现: C, 67.3;H,9.8。Cl6H2,O,要求C,67.6;H,9.9%);vmaX/cm-' 3270、1452、1383、1335、1280、1177、1128、1104、1066 和 949;6,(90 MHz) 0.85 (3 H, s, Me), 1.09 (3 H, s, Me), 1.39-1.99 (13 H, m), 2.67 (2 H, br s, OH), 3.50 (1 H, m, w1,2 16, 6-H), 3.73 (2 H, dd, J 8 and 7, 2'-H) 和 3.85-3.96 (4 H, m, OCH2CH20);m/z 284 (M', lo%), 266 (6), 222 (1 l), 194 (S), 178 (4), 125 (7), 113 (9), 100 (20), 99 (loo), 87 (19), 86 (31) 和 55 (15).(4aR,5R,6S或6R,8aR)-3,4,4a,5,6,7,8,8a-八氢+羟基-5,8二甲基-5-(2'-三异丙基硅氧乙基)-萘-l(2H)-酮乙烯酮8在二醇7(5.28g,18mmol)和2,6-二甲基-吡啶(3.15cm3,27mmol)在二氯甲烷(25cm3)中的溶液中加入TIPSOTf(4.85cm3,18mmol)在二氯甲烷(5cm3)中的溶液,在-8“C下超过1小时。在反应混合物搅拌4小时后,通过向混合物中加入碳酸氢钠来淬灭反应。分离有机层后,用乙酸乙酯(x 2)萃取水层。将合并的提取物用盐水洗涤并蒸发至干。残留物在硅胶[洗脱液:己烷乙酸乙酯(5:l)]上柱层析纯化,得到siZyZether 8(7.47 g,总79%),其中一部分通过MPLC分离以获得光谱数据。极性较小的次要 (6s) 异构体具有 [alD +14 (c 0.37) (Found: C, 68.1;H, 11.C2&,O,Si 需要 C, 68.1;H,11%);v,,,/crn-' 3483,1463,1384,1339,1283,1210,1187,1137,1104,1068,1034,997,952和911;dH(90MHz)0.83(3H,s,Me),1.05(3H,s,Me),1.07 (18 H, s, MeCH x 6),1.0-2.07 (16 H, m),3.563.67 (1 H, m, OH),3.75-4.0 (6 H, m, OCH2CH20 and 2'-H) 和 4.19 (1 H, br d, J4,6-H);m/z440 (M', lo%), 397 (39), 336 (29), 335 (48), 266 (19), 249 (33,223 (13), 205 (15), 188 (28), 187 (79), 175 (15), 162 (12), 161 (12), 161 (38) 和 99 (100).更极性的主要(6R)异构体具有[.ID +5(c 1.16)(发现:C,68.3;H, 11.C2,H,,O,Si要求C,68.1;H,11%);v,,,/cm-' 3416、1463、1383、1335、1281、1199、1177、1128、1097、1068、1014 和 962;6,(90 MHz) 0.85 (3 H, s, Me), 1.06 (3 H, s, Me), 1.08 (18 H, s, MeCH x 6), 1.37-1.78 (16H, m), 3.33-3.55 (1 H, m, 6-H), 3.74-3.97 (6 H, m, OCH2CH20 and 2'-H) 和 4.38 (1 H, d, J 3);m/z (M+, 13%)、397 (46)、336 (27)、335 (43)、266 (15)、249 (29)、223 (22)、205 (18)、162 (32)、161 (IOO)、145 (17)、131 (23)、119 (20) 和 99 (97)。(4aR,5R,8aR)-3,4,4a,5,8,8a-六氢-5,8a+二甲基-5(2'-三异丙基硅氧基乙醚1)萘-1,6(2H,7H)-二酮乙烯酮9 向8(2.30g,5.22mmol)丙酮(15cm3)的搅拌溶液中加入Jones试剂,在-35“C下滴加,直到橙色持续存在。10分钟后,通过向混合物中加入异丙醇来淬灭反应,并用乙酸乙酯(x 2)萃取产物。蒸发合并的提取物,然后在硅胶[洗脱液己烷-乙酸乙酯(5:I)]上对残留物进行柱层析,得到酮8(2.14g,94%),[a]D + 16(c 1.01)(发现:C,68.7;H,10.6。C2,H4,04Si需要C,68.4;H,10.3%);v,,,/cm-' 1742、1705、1463、1382、1239、1184、1128、1103、1047、1013、949 和 884;6,(90 MHz) 1.04 (3 H, s, Me), 1.06 (18 H, s, MeCH x 6),1.01-1.12(3H,m),1.18(3H,s,Me),1.41-2.37(13 H, m), 3.64 (2 H, dd, J 9 and 2, 2'-H) 和 3.844.0 (4 H, m, OCH,CH,O);m/z438 (M+,l%), 396 (34), 395 (loo), 333 (13), 323 (lo), 247 (18), 213 (21), 201 (39), 187(17), 185 (21), 145 (1 l), 131 (11), 113 (10) 和 99 (76)。I 1995 (4aR,5R,8aR)-3,4,4a,5,8,8a-六氢-5,8二甲基-5-(2'-三异丙基硅)氧乙基)-6-三甲基硅氧基萘-1(2N)-酮乙烯酮10 将二异丙胺锂(219 mm3,1.56 mmol)在THF(2 cm3)和丁基锂(1.6 mol dm3 己烷溶液;0.8 cm3,1.25 mmol)中制备的二异丙酰胺锂的搅拌溶液中加入酮9(341.6 mg,0.78 mmol)在-78“C下在THF(5 cm3)中的溶液。在混合物搅拌20分钟后,加入HMPA(0.54cm3,3.1mmol),然后加入三甲基氯硅烷(0.4cm3,3.12mmol)在THF(1cm3)中的溶液。继续搅拌10分钟,然后通过向混合物中加入水溶液碳酸氢钠来淬灭反应。用乙醚(x2)萃取混合物,将合并的提取物蒸发,得到由MPLC [洗脱液己烷-thy1乙酸盐5:l)]纯化的油;这得到烯醇醚10(365mg,92%);v,,/cm-' 1743、1670、1464、1375、1344、1253、1186 和 846;6,(90 MHz) 0.18 (9 H, s), 0.9 (3 H, s, Me), 1.05 (18 H, s, MeCH x 6), 1.05 (3 H, s, Me), 1.01-1.12 (3 H, m), 1.47-2.33 (11 H, m), 3.64 (2 H, t like, J 8, 2'-H), 3.82-3.97 (4 H, m, OCH,CH,O) 和 4.67 (1 H, dd, J 7 和 2, 7-H)。(4aR,5R,8aR)-3,4,4a,5,8,8a-六氢-5,8a~乙基-7-苯基硒烷基-5-(2'-三异丙基硅氧乙基)萘-1,6(2H,7H)二酮乙烯酮11向烯醇醚10(260mg,0.5 mmol)在二氯甲烷(1-5 cm3)中加入苯基硒烷酰氯(1 12 mg,0.58 mmol)在二氯甲烷(2 cm3)中的溶液。在反应混合物搅拌5分钟后,加入碳酸氢钠以淬灭反应。将混合物用乙酸乙酯(×2)提取,蒸发合并的提取物留下残留物,通过MPLC[洗脱液-己烷-乙酸乙酯(5:l)]纯化,得到硒化物11(272mg,80%)和烯酮12(23mg,9%从9中提取);对于 11, [a]D +120 (c 1.17) (找到: C, 62.7;H,8.3。C3,H,,04SiSe 需要 C, 62.7;H,8.5%);v,,,/crn-' 1705、1464、1438、1384、1184、1098、1071、1001 和 690;6,(90 MHz) 1.07 (18 H, s, MeCH x 6), 1.11 (3 H, s, Me), 1.16 (3 H, s, Me), 1.02-1.18 (3 H, m), 1.4-2.26 (11 H, m), 3.54-3.92 (6 H, m, OCH,CH,O 和 2'-H), 4.42 (I H, dd, J 12 和 8,7-H), 7.21-7.36 (3 H, m, ArH) 和 7.48-7.63 (2 H, m, ArH);mJz 594 (M+, 7%), 592 (4), 553 (20), 552 (26), 551 (69), 549 (38), 547 (14), 394(15), 393 (25), 333 (22), 332 (1 I), 331 (13), 201 (25), 197 (17), 185 (27), 183 (16), 176 (12), 157 (ll), 147 (ll), 131 (12), 115 (13), 103 (12) 和 99 (100)。(4R,4aR,8aR)-4a,5,6,7-四氢-4,8二甲基4(2'-三异丙基硅氧乙基)萘-3,8(4H,8aH)-二酮8乙烯缩醛12在0“C下向硒化物11(1.91 1 g,1 mmol)和吡啶(0.16 cm3,1.98 mmol)在二氯甲烷(8 cm3)中的搅拌溶液中加入过氧化氢(30 wt%;0.3 cm3,9.8 mmol)。将反应混合物在0“C下搅拌1.5小时后,加入碳酸氢钠进行淬灭反应。用乙醚(x 2)萃取产物,将合并的提取物蒸发至干。残留物经MPLC纯化,得到烯酮12(541.3mg,74%);[aID +31 (c 1.58) (发现: C, 69.0;H,10.0。C2,H4,04Si需要C,68.8;H,10.2%);v,,,/cm-' 1672、1464、1387、1276、1249、1186、1106、1068、996、950 和 884;6,(90 MHz) 1.03 (18 H, s, MeCH x 6), 1.06 (3 H, s, Me), 1.0-1.1 (3 H, m), 1.25 (3 H, s, Me), 1.47-2.63(9H,m),3.61(2H,brt,J7,2'-H),3.94-4.03(4H, m, OCH,CH,O), 5.94 (1 H, d, J 10,7-H) 和 7.02 (1 H, d, J 10, 8-H);m/z 436 (M', 5%), 394 (16), 393 (47), 333 (1 l), 332 (33), 331 (100), 289 (10), 247 (12), 235 (24), 175 (21), 161 (14), 115 (45) 和 99 (36).761 (4R,4aR,8aR)-3,4,4a,5,6,7-六氢-3-羟基-3,4,8a-三甲基-4-(2'-三异丙基硅氧乙基)萘~8aH)-0ne乙烯酮3 向烯酮12(27mg,0.062mmol)的乙醚(1cm3)搅拌溶液中加入MeLi(1mol dm3己烷溶液;0.11cm3, 0.13 mmol)在氮气下0“C。在反应混合物搅拌20分钟后,向其中加入氯化铵以淬灭反应。用乙醚(×2)萃取产物,将合并的提取物蒸发至干。残留物[洗脱液己烷-thy1乙酸盐(5:l)]的MPLC纯化得到了两种13(27.3mg,98%)的非对映异构体。极性较差的主要非对映异构体有rollD -12(c 2.0) (找到: C, 68.8;H,10.85。C26H4804Si 需要 C、69;H,10.7%);v,,/c111-~ 3432,1464,1375,1335,1238,1186,1128,1079,949 和 884;&(90 MHz) 0.96 (3 H, s, Me), 1.07 (18 H, s, MeCH x 6),1.15(3H,s,Me),1.0-1.17(3H,m),1.36(3H,s, Me), 1.49-2.19 (9 H, m), 3.49 (1 H, s, OH), 3.83-4.03 (6 H, m, OCH2CH20 and 2'-H) 和 5.52 (2 H, d, J 1, 烯烃 H);m/z 452 (M+,0.6%)、434 (2)、419 (4)、409 (8)、347 (8)、261 (28)、234 (25)、233(100)、199(27)、173(14)、147(11)、131 (15)、115(18)、114(14)、113 (13)、112 (21)、99 (75) 和 86 (24)。极性更强的次要非对映异构体具有 [a]D +20 (c 0.58) (Found: c, 69.05;H,10.9。C2,H4,04Si要求,69;H,10.7%);v,,,/cm-' 3417、1463、1375、1240、1186、1092、1072、994、949、915 和 884;&(90 MHz) 0.8(3 H, s, Me), 1.07 (1 8 H, s, MeCH x 6), 1.13 (3 H, s, Me), 1.0-1.17 (3 H, m), 1.23 (3 H, s, Me), 1.35-1.84 (7 H, m), 2.37-2.58 (2 H, m), 3.49 (1 H, s, OH), 3.684.01 (6 H, m, OCH,CH,O and 2'-H), 5.55 (1 H, B 部分 AB 型四重奏, J 10,烯烃H)和5.75(1 H,AB型四重奏的一部分,J 10,烯烃H);m/z 452 (M+, l%), 408 (19), 393 (lo), 347 (15), 278 (16), 262(119), 261(52), 235(13), 234(12), 233 (26), 201(1 I), 199 (51), 175(12), 173(28), 169(25), 159(13), 147(15), 133(13), 131 (18), 119(13), 115(29), 114(16), 113(17), 112(23), 105(ll), 103 (13), 99(100)和86(29)。(4aR,5R,8aR)-3,4,4a,5-四氢-3,4,8a-三甲基14(2'-三异丙基硅氧乙基)萘-1,8(2H,8aH)-二酮乙烯酮醛14 铬酸酐(99.9 mg,1 mmol)在二氯甲烷(1 cm3)中加入3,5-二甲基吡唑(88.7 mg,1 mmol)在-20“C下氮气下。混合物搅拌20分钟后,加入醇13(22.9mg,0.05mmol)的非对映异构体混合物在二氯甲烷(3cm3)中的溶液,并继续搅拌20分钟。将所得溶液用水溶液中和。 氢氧化钠(1mol dm3)并用乙酸乙酯(x 2)萃取。蒸发合并的提取物,然后对残留物进行MPLC纯化,得到烯酮14(14.2mg,62%)和少量的二烯15。烯酮 14 具有 [alD -23 (c 1.27) (发现:C, 69.4;H,10.2。C,,H,,O,Si 需要 C, 69.3;H,10.3%);v,,,/cm-' 1742, 1675, 1636, 1464, 1377,.1287、1241、1183、11、11和883;dH(90 MHz) 1.04 (18 H, s, MeCH x 6), 1.09 (3 H, s, Me), 0.98-1.13 (3 H, m), 1.28 (3 H, s, Me), 1.42- 1.84 (7 H, m), 1.91 (3 H, d, J 1,6-Me), 2.35-2.52 (2 H, m), 3.52 (1 H, dd, J 7 and 7, 2'-HH), 3.58 (1 H, dd, J 7 and 5, 2'-HH)、3.84.35 (4 H, m, OCH,CH,O) 和 5.74 (1 H, d, J 1,7-H);m/z 450 (M +,15%)、407 (1 3)、363 (1 6)、25 1 (2 I)、250 (1 OO)、249 (25)、189 (12)、161 (12)、131 (lo)、114 (19)、113 (18)、99 (42) 和 86 (52)。二烯15有v,,,/cm-' 1464、1382、1187、1093、1008、949、914、884和681;6,(90 MHz) 0.82-2.02 (12 H, m), 1.05 (21H,s),1.17(3H,s,Me),3.61(2H,brt,J8),3.91-3.99(4H, m), 4.97 (2 H, d, J 7) 和 6.98 (2 H, 四重奏, J 9)。(4aR,5R,6R,8aR)-3,4,4a,5,6,7-六氢5,6,8a-三甲基-5-(2'-三异丙基硅氧乙基)萘-l,8-(2H,8aH)二酮乙烯酮4在THF(5cm3)和液氨(30cm3)中的搅拌溶液中加入锂(8.9mg,1.27mmol)在-78“C下氮气下。混合物在室温下回流20分钟后,在-78“C下加入乙醇(0.1cm3,1.37mmol)。然后让再硫化溶液在2.5小时内升温至室温,然后加入氯化铵以淬灭反应。用乙醚(x 2)萃取产物,合并的萃取物用盐水洗涤并蒸发。MPLC分离得到(6s)-甲基衍生的4(40.2 mg,58.5%)和(4aR,5R,6S,8aRj-(+)-3,4,4a,5,6,7-六氢-5,6,8a-三甲基-5-(2'-三异丙基硅氧乙基)萘-l,8(2H,8aH)-二酮乙烯酮醛16(4.6 mg,6.7%)以及回收的烯酮14(20.1 mg,29.4%)。所需的(6s)-甲基酮4具有[a]D -21(c 2.09)(发现:C,69.0;H,10.6。C26H4804Si 需要 C, 69.0;H,10.7%);VMax/CM-L1717、1675、1464、1378、1339、1279、1182、1088、1038、884 和 682;6,(400 MHz) 0.98 (3 H, d, J 6.8,6-Me), 1.0 (3 H, s, Me), 1.03-1.1 (3 H, m), 1.07 (18 H, s, MeCH x 6), 1.33 (3 H, s, Me), 1.39-1.79 (9 H, m), 2.2 (1 H, dd, J 14.4and 2.8, 7P-H),2.28(1H,dd,J12,2.8,8P-H),2.46(1H,dd,J14.4and12, 7a-H),3.75-3.94 (4 H, m、OCH2CH20 和 2'-H)和 4.06 (2 H, m, OCH,CH,O);m/z 453 (M+ + 1, 18%), 452 (M+, 49), 409 (23), 365 (27), 321 (27), 267 (12), 252 (19), 196 (35), 191 (1 l), 183 (14), 175(10), 131 (16), 114(12), 113(62), 112(81), 103(16), 100 (ll), 99 (loo), 87 (21) 和 86 (44)。所述(6R)-甲基酮16具有[a]D+16(c 0.5)(发现:C,68.9;H,10.7。C,,H,,O,Si 需要 C, 69;H,10.7%);v,,,/cm-' 1717、1464、1384、1240、1188、1100、1046、951、884 和 682;6,(400 MHz) 0.9 (3 H, s, Me), 0.9 (3 H, d, J6.4,6-Me), 1.05-1.1 1 (3H,m),l.O6(18H,s,MeCH x 6),1.32(3H,s,Me),1.45-1.7(9 H, m), 2.03-2.12 (2 H, m), 2.52 (1 H, dd, J 14and 14), 3.65 (2 H, m, 2'-H), 3.86-3.95 (2 H, m, OCH,CH,O)、4.05-4.1 (1 H, m, OCH、CHHO) 和 4.184.25 (1 H, m, OCH、CHHO);m/z 453 (19%)、452 (M'、52)、409 (22)、365 (24)、321 (32)、252 (22)、233 (13)、196 (31)、175 (12)、173 (15)、131 (22)、114 (15)、113 (55)、112 (70)、103 (18)、99 (loo)、87 (19)、86 (48) 和 75 (26)。(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢~羟基-5,6,8a-三甲基-5-(2'-三异丙基硅氧乙基)萘-l(2H)sne乙烯酮7在-78“C下在氮气下加入酮4(208.9mg,0.461mmol)的乙醚(3cm3)的搅拌溶液中。将混合物搅拌1.5小时后,加入水以淬灭反应。滤去氢氧化铝,滤液蒸发,留下油,经MPLC[洗脱液己烷-乙酸乙酯(5:I)]纯化,得到醇17(194.2mg,93%);[一]D +6 (c 0.84) (找到: C, 69.0;H,11.0。C,,H5,04Si需要C,68.7;H,11.1%);v,,,/cm-' 3539、1464、1386、1355、1302、1175、1103、1068、1014、951、884 和 681;6,(90 MHz) 0.72 (3 H, s, Me), 0.87 (3H,d, J6,6-Me), 1.07(18H,s,MeCH x 6), 1.11 (3H,s,Me), 1.43-2.55(16H,m),3.63(2H, brt, J8,2'-H),3.72(1 H,s,8-H) 和 3.94-4.09 (4 H, m, OCH,CH,O);m/z 454 (M', 49%), 412 (31), 41 1 (95), 349 (36), 268 (14), 267 (17), 254 (14), 237 (24), 219 (13), 201 (26), 191 (15), 175 (38), 163 (14), 159 (22), 131 (26), 121 (19), 99 (loo), 95 (23) 和 86 (29).0-[(4aR,5R,6R,8aR)-l-乙烯二氧基十氢-5,6,8a-三甲基-l-氧代-5-(2'-三异丙基硅氧乙基)-8-萘基] S-甲基二硫代碳酸酯 18 向17(12.6mg, 0.028 mmol)在THF(1 cm3)中加入丁基锂(1.6 mol dm3的己烷溶液;0.085 cm3,0.14 mmol)在0“C下氮气下加入。在0“C下继续搅拌30分钟,在室温下搅拌1小时。此后,将二硫化碳(12mm3,0.2mmol)在0“C下加入到混合物中,然后搅拌30分钟。然后将碘甲烷(23mm3,0.37mmol)加入到混合物中,并继续搅拌20分钟。反应是J. CHEM. SOC. PERKIN TRANS. 1 1995,通过向混合物中加入氯化铵来淬灭,然后用乙酸乙酯(x 2)萃取。将合并的提取物蒸发至干,残留物经MPLC纯化,得到黄原酸盐18(15.4mg,定量);[~JD +I2 (C 0.99) (发现: C, 61.5;H,9.5。C~~HS,O,S,S~ 需要 C, 61.7;H, 9.6%);v,,,/cm-' 1464、1386、1242、1177、1110、1048、961、884 和 681;6,(90 MHz) 0.75 (3 H, s, Me), 0.87 (3 H, d, J 6, 6-Me), 1.06 (18 H, s, MeCH x 6), 1.29 (3 H, s, Me), 1.42.01 (14 H, m), 2.29-2.35 (1 H, m), 2.51 (3 H, s, MeS), 3.72-4.11 (6 H, m, OCH,CH20 and 2'-H) 和 4.88-5.05 (1 H, m, 8-H);m/z 501 (M+ -Pr', l%), 438 (33), 437 (93), 263 (34), 237 (13), 221 (13), 201 (52), 176 (16), 175 (loo), 159 (14), 145 (15), 131 (19), 119 (13), 99 (84), 95 (13), 87 (35) 和 73 (34)。(4aR,5R,6R,&R)-3,4,4a,5,6,7,8,8a-八氢-5,6,8a-三甲基-5-(2'-三异丙基硅氧乙基)萘-1(2H)-酮乙烯酮 19 黄原酸酯18(254.9mg,0.47mmol),丁基氢化锡(0.25cm3,0.93mmol)和AIBN(1 5.5mg,0.094mmol)在二甲苯(5 cm3)中的溶液在150“C下加热15分钟。将混合物冷却至室温后,通过快速柱层析法(洗脱液己烷)除去二甲苯。用乙酸乙酯洗脱,然后蒸发至干,用MPLC纯化残留物,得到酮19(182.7mg,89%);[一]D +5 (c 1.78) (发现: c, 71.O;H,11.4。C,,H,,O,Si 需要 C, 71.2;H,11.5%);v,,,/crn-' 1463、1383、1335、1279、1240、1180、1091、980、938、884 和 681;6,(90 MHz) 0.69 (3 H, s, Me), 0.82 (3 H, d, J 5, 6-Me), 1.02 (3 H, s, Me), 1.05 (18 H, s, MeCH x 6), 1.2k1.68 (17 H, m), 3.66 (2 H, dd, J 7 and 7, 2'-H) 和 3.83-3.98 (4 H, m, OCH,CH,O);m/z 440 (9)、439 (31)、438 (M', 84%)、396 (32)、395 (loo)、238 (20)、221 (32)、203 (75)、193 (49)、177 (95)、176 (49)、175 (75)、133 (20)、131 (28)、121 (29)、109 (29)、99 (78)、95 (40) 和 86 (22)。(4aR,SR,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-5-(2'-羟乙基)-5,6,8a-三甲基萘-l(2H)+ne 20 将酮醛19(78mg,0.178mmol)和催化量的PTSA在80%水溶液中加热3 h。在混合物中加入碳酸氢钠后,用乙酸乙酯(x 2)萃取产物。将合并的提取物蒸发,然后对残留物进行MPLC纯化,得到羟基酮20(42.3mg,定量);mp 87-89 “C;[一]D +34 (c 0.90) (发现: C, 75.8;H, 11.C,5H2602需要C,75.6;H,11%);vmaX/cm-' 3503、1709、1453、1385、1313、1254、1115、1025、950 和 669;6,(90 MHz) 0.81 (3 H, s, Me), 0.84 (3 H, d, J 6, 6-Me), 1.12 (3 H, s, Me), 1.09-2.77 (14 H, m) 和 3.4c13.72 (3 H, m, OH 和 2'-H);m/z 238 (M', 15%), 223 (28), 220 (62), 205 (44), 193 (96), 192 (47), 176 (53), 175 (95), 149 (24), 137 (56), 124 (33), 123 (30), 121 (40), 111 (67), 110 (37), 109 (69), 107 (30), 97 (29), 96 (88), 95 (78), 83 (59), 81 (89), 67 (75), 55 (100) 和 41 (90)。(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-5,6,8a-三甲基-5-(2'-三异丙基硅氧乙基)萘-1(2H)-酮 21 羟基酮20(24.0mg,0.101mmol)和2,6-二甲基吡啶(35mm3,0.30 mmol)在二氯甲烷(1 cm3)中加入TIPSOTf(54 mm3,0.20 mmol)在0“C。在反应混合物搅拌1小时后,向其中加入碳酸氢钠以淬灭反应。用乙醚(x 2)萃取产物,将合并的提取物蒸发至干。残留物用MPLC[洗脱液己烷-乙酸乙酯(5:l)]纯化,得到甲硅醚21(36.3mg,91%);[alD +21 (c 0.64) (发现: C, 73.2;H, 11.9.C,,H,,O,Si 要求 C, 73;H,11.75%);V,,,/CM-' J. CHEM. SOC. PERKIN TRANS. 1, 1995, 1709, 1463, 1384, 1254, 1094, 1014, 950, 920,884 和 682;6,(90 MHz) 0.8 (3 H, s, Me), 0.84 (3 H, d, J 7, 6-Me), 1.04 (18 H, s, MeCH x 6), 1.12(3H,s,Me),1.25-2.62(17H,m)和3,6(2H, td, J 7 and 2, 2'-H);m/z 394 (M+, l%), 351 (42), 203 (52), 177 (loo), 175 (39), 133 (21), 131 (19), 121 (27), 109 (23), 107 (21), 95 (36) 和 75 (26).(4aR,SR,6R,8aR)-十氢-l-l-羟基-l,5,6,8a-四甲基-5-(2'-三异丙基硅氧乙基)萘22在0“C的氮气下加入酮21(53.3mg,0.135mmol)的乙醚(1.5cm3)溶液。通过向混合物中加入氯化铵来淬灭反应。然后用乙醚(x 2)萃取混合物,将合并的提取物蒸发,留下油,通过MPLC[洗脱液己烷-乙酸乙酯(5:l)]纯化,得到醇22(56.6mg,定量)。极性较差的次要异构体具有[a]D + 11(c 0.41)(发现:C,73.3;H,12.3。C25H,,02Si 需要 C, 73.1;H,12.3%);v,,,/cm-' 3627、1463、1385、1249、1184、1086、994、915、884 和 681;&(90 MHz) 0.8 (3 H, s, Me), 0.84 (3 H, d, J7, 6- Me), 0.95 (3 H, s, Me), 1.04 (18 H, s, MeCH x 6), 1.12 (3 H, s, Me), 1.25-2.62 (18 H, m) 和 3.60 (2 H, td, J 7 和 2,2'-H);m/z 410 (M+, 279, 367 (4), 349 (8), 220 (15), 219 (82), 193 (25), 191 (48), 177 (15), 175 (19), 163 (52), 149 (57), 137 (29), 135 (25), 131 (24), 123 (69), 121 (24), 119 (21), 109 (loo), 107 (24), 103 (21), 97 (18), 83 (25), 81 (42), 75 (36) 和 69 (46)。极性更强的主要异构体具有[alD +6(c0.58)(发现:C,73.2;H,12.5。C2,H,,02Si需要C,73.1;H,12.3%);v,,,/cm 3621、1463、1384、1313、1247、1179、1093、997、884 和 682;6,(90 MHz) 0.73 (3 H, s, Me), 0.85 (3 H, d, J 5,6-Me), 1.03 (3 H, s, Me), 1.07 (18 H, s, MeCH x 6), 1.27 (3 H, s, Me), 1.34- 1.79 (18 H, m) 和 3.67 (2 H, t like, J 7, 2'-H);m/z 410 (M', 473, 368 (33), 367 (loo), 235 (26), 217 (62), 191 (39), 177 (19), 131 (20), 123 (20), 109 (35), 103 (18), 95 (36), 81 (19), 75 (26) 和 43 (18)。4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-l,5,6,8a-四甲基-5-(2'-二异丙基硅氧乙基)萘23在0“C下在氮气下加入非对映异构体醇22(3 1.4mg,0.07mmol)的吡啶混合物的搅拌溶液中加入氯化亚砜(0.08 cm3,1.09 mmol)。将混合物搅拌1.5小时后,向其中加入冰以淬灭反应。用乙酸乙酯(×2)提取产物,蒸发合并的提取物。残留物的MPLC纯化以1:2的比例提供内烯烃23和外烯烃24(20.1mg,74%)。将内烯烃和外烯烃23和外烯烃23和24(20.1mg,0.5mmol)和碘(2mg)在二甲苯(3cm3)中的混合物的溶液在回流下加热2小时,然后冷却至室温-ature.Aq。分离有机层,用己烷稀释并通过硅胶的短柱。用乙酸乙酯洗脱,然后蒸发溶剂,留下油,用MPLC[洗脱己烷]色谱得到内烯烃23(18.2mg,91%);[alD -23 (c 0.44); vmax/cm-l 1463, 1383, 1092, 1014, 884 和 688; 6,(90 MHz) 0.72 (3 H, s, Me), 0.86 (3 H, d, J7, 6-Me), 0.98 (3 H, s, Me), 1.05 (18 H, s, MeCH x 6), 1.57 (3 H, d, J 1, 1-Me), 1.24-2.25(15H,m),3.64(2H,tlike,J7,2'-H)和 5.2(1 H, br s, 2-H);m/z392 (M+,7%)、350(25)、349 (73)、218 (25)、217 (loo)、191 (63)、189(18)、161 (19)、147(18)、121 (27)、119(36)、109 (36)、107 (34) 和 95 (52)(找到:M',392.3474.C2,H,,0Si 需要 M,392.3474)。(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-5-(2'-羟基乙酰1)-1,5,6,8a-四甲基萘25烯烃23(56.2mg,0.143mmol)在THF(1cm3)和四丁基氟化铵(TBAF)(1.0mol dm3在THF中;0.7和3,0)的溶液。7mmol)在室温下搅拌7小时,然后用水稀释并用乙酸乙酯(×2)萃取。蒸发合并的提取物,然后对残留物进行MPLC纯化,得到25(34.1mg,定量)的醇;[a],, -47 (c 0.57);v,,Jcm-' 3630、1458、1383、1024、999 和 795;&(90 MHz) 0.74 (3 H, s, Me), 0.86 (3 H, d, J 6,6-Me), 0.99 (3 H, s, Me), 1.58 (3 H, s, 1-Me), 1.04-1.79 (11 H, m), 1.92-2.1 (2 H, m), 3.5-3.76 (2 H, m, 2'-H) 和 5.2 (1 H, br d, J 1,2-H);m/z 236 (M', 23), 221 (ll), 203 (ll), 194 (17), 193 (loo), 192 (14), 191 (59), 177 (13), 175 (17), 163 (20), 149 (33), 147 (12), 136 (37), 135 (28), 133 (14), 123 (61), 122(39), 121 (47), 119 (18), 109 (36), 108 (20), 107 (73, 105 (29), 95 (71), 93 (44),91 (28), 81 (43), 79 (27)、69 (32) 和 55 (37) (找到:M',236.2140.Cl,H2,0 需要 M,236.2140)。2-[(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-l,5,6,8a-四甲基-5-萘基]乙醛26在二氯甲烷(1cm3)中的草酰氯(14 mm3,0.16 mmol)的搅拌溶液中加入DMSO(23 mm3,0.32 mmol)在-60“C下氮气下。在混合物搅拌30分钟后,向其中加入醇25(7.7mg,0.033mmol)在二氯甲烷(3cm3)中的溶液,并继续搅拌45分钟。然后将三乙胺(45mm3,0.32mmol)加入到混合物中,并将所得浆料在-20“C下搅拌1小时。然后用水稀释混合物,并用二氯甲烷(x 2)萃取产物。将合并的提取物蒸发至干,得到油,该油通过MPLC[洗脱液己烷-乙酸乙酯(5:l)]纯化,得到醛26(9.0mg,定量);[一]D -30 (c 0.39);v,,,/cm-' 2863、2725、1719、1459、1383、1245、1175、1128、1101、1075、1045、1001 和 980;&(90 MHz) 0.82 (3 H, s, Me), 0.95 (3 H, d, J6,6-Me), 0.99 (3 H, s, Me), 1.57 (3 H, d, J2, 1-Me), 1.11-1.83(8H,m), 1.92-2.11(2H,m), 2.39(2H,t,J3.5, 2'-H), 5.2 (1 H, br s, 2-H) 和 9.67 (1 H, t, J 3.5, CHO);m/z234 (M+, lo%), 191 (11), 190 (35), 176 (ll), 175 (65), 147 (15), 121 (20), 1 19 (15), 107 (17), 105 (17), 95 (15), 93 (16), 9 1 (16), 8 1 (16), 79 (14), 69 (14), 58 (30), 55 (16), 43 (100) 和 41 (29) (找到: M+,234.1982.C,,H,,O 需要 M,234.1984)。3-{1-H ydrox y-2-[(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-1,5,6,8a-四甲基-5-萘基]乙基1)呋喃 27 在-78“C的氮气下,在THF(1 cm')中加入叔丁基锂(1.5 mol dm3 己烷溶液;0.15 cm',0.23 mmol)在-78”C的氮气下搅拌溶液。在混合物搅拌30分钟后,向其中加入醛26(10.9mg,0.047mmol)在THF(4cm')中的溶液,并将所得溶液在-70°C下搅拌25分钟。将合并的提取物蒸发至干,残留物用MPLC[洗脱液己烷-乙酸乙酯(3:l)]纯化,得到醇类的非对映异构体混合物(1:1比例)27(13.7mg,97%);v,,,/cm-' 3613、1501、1458、1450、1383、1161、1128、1101、1044、1023、999、875 和 601;&(90 MHz) 0.73 (3 H, s, Me), 0.91 (3 H,d, J6,6-Me), 1.0(3H,s,Me), 1.57(3H,d, J2, 1-Me), 1.25- 2.12 (13 H, m), 4.75-4.93 (1 H, m, 1'-H), 5.19 (1 H, br s, 2-H), 6.41 (1 H, br s, furan) 和 7.37-7.41 (2 H, m, furan);m/z 302 (M', 273, 285 (24), 284 (loo), 190 (44), 175 (62), 161 (97), 148 (46), 147 (37), 133 (34), 121 (83), 119 (54), 108 (68), 107 (58), 105 (41), 95 (43), 91 (34), 85 (32), 83 (46), 81 (47) and 55 (31) (发现: Mf -H20, 284.2140.C20H280 需要 m/z 284.2 140).3-{1-乙毒素 y-2-[(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-1,5,6,8a-四甲基1-5-萘基]乙烷1)呋喃 28 将乙酸酐(1 cm3)和吡啶(1 cm3)中的醇27(24.3mg,0.08 mmol)溶液在房间764温度下在氮气下搅拌过夜。将溶液减压蒸发至干,残留物用MPLC[洗脱液己烷-乙酸乙酯(5:l)]纯化,得到乙酸盐28(25.5mg,92%);v,,Jcm-l 1742、1505、1438、1371、1236、1162、1024、951、875 和 602;6,(90 MHz) 0.72 (3 H, s, Me), 0.89 (3 H, d, J 6, 6-Me), 0.98 (3 H, s, Me), 1.53 (3 H, s, 1-Me), 1.99 (3 H, s, Ac), 1.25-2.32 (12 H, m), 5.18 (1 H, br s, 1-H), 5.85-6.03 (1 H, m, 1'-H), 6.40(1 H, br s, 呋喃)和 7.35-7.44 (2 H, m, 呋喃);m/z 285 (2273, 284 (M' -AcOH, loo), 269 (21), 190 (42), 175 (55), 161 (77), 148 (37), 147 (33), 133 (32), 121 (77), 119 (47), 108 (60), 107 (55), 105 (44), 95 (47), 93 (39), 91 (35), 81 (47), 55 (34) 和 43 (42) (找到: M+ -AcOH, 284.2139.C20H,,0 需要 m/z 284.2140)。 3-{2-[(4aR,5R,6R,8aR)-3,4,4a,5,6,7,8,8a-八氢-l,5,6,8a-四甲基-5-萘基乙烷1)呋喃3在液氨(15cm3)中的锂(1.7mg,0.24mmol)的搅拌溶液中加入乙酸盐28(6.6mg,0.019mmol)在-78“C氮气下THF(5cm3)溶液。将所得溶液回流1.5小时,之后在室 temperature.Aq 蒸发过夜除去液氨。 向混合物中加入氯化铵,并用乙醚(x2)萃取产物。蒸发合并的提取物,然后对残留物进行MPLC纯化(洗脱液己烷),得到呋喃3(4.9mg,89%);[aID -58 (c 0.36, CHCl,); v,,,/cm-' 1457, 1383, 1162, 1066, 1026, 874, 668 和 600; 6,(90 MHz) 0.75 (3 H, s, Me), 0.83 (3 H, d, J5, 6-Me), 1.00 (3 H, s, Me), 1.59 (3 H, d, J 2, 1-Me), 1.27-2.47 (14 H, m), 5.20 (1 H, br s, 1-H), 6.27 (1 H, br s, furan), 7.22 (1 H, br s, furan) 和 7.37 (1 H, t, J 2, furan);m/z 287 (673, 286 (M+, 27), 271 (17), 191 (18), 121 (14), 107 (19), 96 (15), 95 (48), 81 (25), 58 (58), 43 (100) 和 32 (69) (找到: M', 286.2297.C20H300 需要 M, 286.2297)。(5R,8R,9R,lOR)-16-羟基硬化-3,13(14)Z-二聚-15,16-内脏19无水氧通过呋喃3(9.2mg,0.032mmol),二异丙基乙胺(56mm3,0.32mmol)和催化量的孟加拉玫瑰在二氯甲烷(6cm3)中的溶液,用钨丝灯照射并在-78至-55“C下保持1.5小时。将所得溶液用己烷和乙酸乙酯的混合物稀释,并通过硅胶的短柱以除去孟加拉玫瑰。溶剂蒸发后进行MPLC纯化[洗脱液己烷-乙酸乙酯(3:l)]得到丁烯内酯1(6.4mg,63%);[alD-43 (c 0.21, CHCl,) 和 -46(c0.21, MeOH); v,,,/cm-' 3336br, 1752, §本部分使用非系统编号。见正文。J. CHEM. SOC. PERKIN TRANS. 1, 1995, 1647, 1456, 1132, 957 和 761;6,(400 MHz) 0.77 (3 H, s, 20-Me), 0.81 和 0.82 (3 H 总计, d, J6.4, 17-Me), 1.00 (3 H, s, 19-Me), 1.15-1.57(6H,m), 1.59(3H,d, J1.2, 18-Me), 1.63-1.75(4 H, m), 1.99-2.43 (4 H, m), 3.99 (1 H, br s), 5.19 (1 H, br s, 3-H), 5.85 (1 H, s, 14-H) 和 6.00 (1 H, s, 16-H);m/z 318 (M+, 3479, 303 (14), 285 (33), 191 (62), 190 (62), 189 (loo), 175 (18), 135 (40), 123 (79) and 107 (83) (找到: M', 318.2194.C20H3003需要 M,318.2195)。致谢 感谢东京工业大学的 Y. Fujimoto 教授提供自然 1 的光谱数据,还要感谢大阪市立大学的 T. Tokoroyama 教授的有益讨论。参考文献 1 T. Tokoroyama, J. Synth.组织化学, 日本, 1993,51, 1164.2 H. Iio, M. Monden, K. Okada and T. Tokoroyama, J. Chem. Soc., Chem. Commun., 1987,358;E. Piers 和 J. Y. Roberge,四面体 Lett.,1992,33,6923。3(a) F.Bohlman、M.Ahmed、J.Jakupovic、R.M.King和H.Robinson、Latinoamer牧师。Quim., 1984, 15, 16;(b) A. P. Phandnis, S. A. Patwardhan, N. N. Dhaneshwar, S. S. Tavale and N. Tayur, Phyrochemistry, 1988,27, 2899;(c) A. Kijjoa, M. M. M. Pinto 和 W. Hertz, Planta Med., 1989, 55, 205;(d) Y. K. Gupta、N. Hara、Y. Fujimoto 和 M. Sahai,《日本化学会年会论文摘要》,1993年,II,498。4 S. Habtemariam、A. I. Gray 和 P. G. Waterman,Planta Med.,1992,58,109。5 初步来文:H.Hagiwara、K.Inome 和 H.Uda,四面体。Lett., 1994,35, 8189.6 (a)H. Hagiwara 和 H. Uda, J. Org. Chem., 1988,53,2308;(二)牛。化学学报, 1989, 62, 624;(c) J. Chem. Soc., Perkin Trans.我,1991 年,1803 年。7 Y. Ito, T. Hirao 和 T. Saegusa, J. Org. Chem., 1978,43, 101 1.8 E. J. Corey 和 G. W. Fleet,Tetrahedron Lett.,1973,4499。9 J. M. Lutein 和 A. de Groot, J. Org. Chem., 1981,46, 3448.10 D. H. R. Barton 和 S. W. McCombie, J. Chem. Soc., Perkin Trans.I, 1975, 1574 D. H. R. Barton 和 W. B. Motherwell, Pure Appl. Chem., 1981,53, 15.11 A. Yoshikoshi、M. Kitadani 和 Y. Kitahara,四面体,1967 年,23,1175 年。12 使用PCMODEL(Serena Software,Bloomington,IN,USA)进行分子建模。13 S. Takahashi, T. Kusumi 和 H. Kakisawa, Chem. Lett., 1979,515;T.Tokoroyama、R. Kanazawa、S. Yamamoto、T. Kamikawa、H. Suenaga 和 M. Miyabe,公牛。化学学报, 1980,53,1698.14 M. R.Kernan 和 D. J. Faulkner, J. Org. Chem., 1988,53,2773.15 Y. Fujimoto教授的个人来文。论文 4/07069K 收稿日期 1994 年 11 月 18 日 录用日期 1994 年 12 月 6 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号