首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Generation and reactions of butadienylthionium ions from 2-vinylcyclopropyl sulfoxides under Pummerer conditions
【24h】

Generation and reactions of butadienylthionium ions from 2-vinylcyclopropyl sulfoxides under Pummerer conditions

机译:Pummerer条件下2-乙烯基环丙基亚砜丁二烯硫离子的生成和反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1995 Generation and reactions of butadienylthionium ions from 2-vinylcyclopropyl sulfoxides under Pummerer conditions Tadashi Kataoka,* Harutoshi Matsumoto, Tetsuo Iwama, Taizo Ito and Hiroshi Shimizu Gijiu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan Treatment of 2-vinylcyclopropyl sulfoxides lacking an a-hydrogen with acid anhydrides produced butadienylthionium ion intermediates to give cyclic or acyclic conjugated dienes. The Pummerer reaction of sulfoxides eqn. (l) is a useful method for the synthesis of a-substituted or a,p-unsaturated sulfides and has been significantly studied from both R1-s-m2R2 + R3-C-O-C-R3 I1 I1+ II 000 R1S-CH-O-C-R3 + R3C02H II A2 0 mechanistic and synthetic points of view.' The general mechanism of the reaction is believed to consist of four sequential steps involving a thionium ion intermediate. Generation of vinylthionium ions has been widely investigated in the Pummerer reactions of ally1 sulfoxides3 and in the vinylogous Pummerer reactions of vinyl sulfoxides.3c*e*4 In contrast, little attention has been paid to generation of butadienylthionium ions by the Pummerer reaction of sulfoxides. The butadienylthionium ions are very versatile for the synthesis of functionalised conjugated dienes and we intend to explore a new method to generate them. It is known that sulfoxides lacking an a-hydrogen and carrying p-ones undergo the abnormal Pummerer reaction via sulfenic acid derivatives formed by p-hydrogen abstraction and C-S bond cleavage.6 If 2-vinylcyclopropyl sulfoxides I without an a-hydrogen are treated with acid anhydrides, a butadienylthionium ion II would be generated by the destruction of a cyclopropane ring accompanied by P-hydrogen elimination (Scheme 1, route a) 0 A2JJyt Ac~O -0Ac R2 __c I1RqI rather than a vinylcyclopropene by the abnormal Pummerer reaction (route b) because of the high energy content of the three-membered ring.For this strategy, we selected as substrates, 1,4-benzothiazin-3-one 1 -oxides without an a-hydrogen, because they were easily prepared from 4-methyl- 1,4- benzothiazin-3-one in good yields by vinylcyclopropanation * followed by m-chloroperbenzoic acid (MCPBA) oxidation.In this communication, we report the novel generation of butadienylthionium ion intermediates by the reactions of 2- vinylcyclopropyl sulfoxides lacking an a-hydrogen with acid an- hydrides. Several 2-vinylcyclopropyl sulfoxides 1 were treated under Pummerer conditions: Method A, 2 equiv. of trifluoroacetic Me a R1=R2=Me b R'=R2=Ha;pR2cR1=H,R2=Me-i d R1=Me,R2=H R' e R1=R2=Ph 0 f R1 = R2 =p-CCamp; 1 2 3 + 4 X=H 5 X-Ac Scheme 2 Reagents and conditions: i, Method A: 2 equiv. of TFAA, CH,CI,, room temp., 2 h; Method B: 5 equiv. of Ac,O, p-Me-C,H,SO,H (cat.), benzene, 85 OC, sealed tube, 24 h anhydride (TFAA) in CH2C12 at room temperature for 2 h; Method B: 5 equiv. of Ac20 and catalytic amount of p-MeC,H,SO,H in benzene at 85deg;C in sealed tube for 24 h (Scheme 2).The results are summarised in Table 1. Reactions of disubstituted vinylcyclopropanes, la (R' = R2 = Me), le (R' = R2= Ph) and If (R'= R2= p-Cl-C6H,), with 2equiv. of TFAA (Method A) furnished the cyclic dienes, 2a and 3a, 2e and Zf,in moderate yields, respectively (entries 1, 7 and 8). On the other hand, treatment of un- or mono-substituted vinylcyclopropanes, lb (R' = R2 = H), lc (R' = H, R2 = Me) and ld (R'= Me, R2 = H), afforded acyclic conjugated dienes, 4b or 5b, 4c and 4d, respectively (entries 3-6). The dienol 4 was obtained by hydrolysis of corresponding dienyl trifluoroacetates initially formed during work-up. A mixture of lc and Id (ca. 2: 1)tvSb when allowed to react by Method A, provided 4c in 70 yield.However, 4,which was observed in the 'H NMR spectrum of crude products, could not be isolated becuase of its instability to silica gel (entry 5). The geometry at the C(2')--C(3') double bond (A2'g3') of the acyclic dienes 4 and 5 t A mixture of 2-vinylcyclopropyl sulfoxides lc and Id (ca. 2: 1) was prepared as follows: 4-methyl-l,4-benzothiazin-3-onewas chlorinated with N-chlorosuccinimide, and the resultant a-chloro sulfide was treated with AgClO, in the presence of isoprene and then triethylamine followed by MCPBA oxidation. Table 1 Reactions of 2-vinylcyclopropyl sulfoxides 1 with acid anhydrides Products Entry Sulfoxides Conditions a ( yields) la 2a (25), 3a (46) la 2a (21), 3a (19) lb 4b (E, 81)dlb 5b (E, 39)d lc:ld(ca.2:l)' 4c (E, 70),' 4d (-)' Id 4d(E:Z = 1:1, 62)g le 2e (54)If 2f (60) Method A: 2 equiv.of TFAA, CH,Cl,, room temp., 2 h; Method B: 5 equiv. of Ac,O, p-MeC,H,SO,H (cat.), benzene, 85 OC, sealed tube, 24 h. Isolated yields unless otherwise mentioned. 'The ratio was determined by 'H NMR. The geometry of A2'q3 was determined from the coupling constant in 'H NMR. No geometrical isomer was isolated. 'The geometry of was determined by NOE. No geometrical isomer was isolated. Compound 4d was observed in the H NMR spectrum of crude products, but decomposed during purification by preparative TLC on silica gel. Crude yield. The geometry of A2'v3'was determined by NOE and the ratio was estimated by 'H NMR.was determined from the coupling constant between 2'-H and 3'-H (4b: J 15, 5b: J 15) in the 'H NMR spectrum or by the NOE technique (4c,a),and the geometry of A','' of 4 and 5, which consist of a single isomer, cannot at present be confirmed. In no case was any abnormal Pummerer-type product isolated. A possible mechanism for this Pummerer reaction is illustrated in Scheme 3. A butadienylthionium ion B generated by ring-opening of a cyclopropane ring with the elimination of a ring proton from an oxysulfonium salt A, which is initially formed by the reaction of a sulfoxide 1 with an acid anhydride. In the case of R' and/or R2 = H, the intermediate B might follow either of two pathways to give an acyclic diene. One is nucleophilic attack process (a) of XO-at the amp;-carbon of B to provide a trifluoroacetate 4', which is hydrolysed to the corresponding dienol 4 during work-up, or an acetate 5.The other is an intramolecular 2' + 41 polar cycloaddition 'v9 process (b). The resultant bicyclic sulfonium salt C reacts with XO-to give an acyclic diene, whose double bond may be isomerised under reaction conditions. In other cases (R' = R2 = Me or Ar), a cyclic diene 2 is formed via a carbocation D generated by the olefinic cyclisation" of a thionium ion B. When both R' and R2are methyl groups, deprotonation of a methyl hydrogen from the carbocation D affords another cyclic diene 3. The diene 3 may be given via processes of ring-opening of an oxysulfonium salt A' accompanied by methyl-proton abstraction, olefinic cyclisation of a thionium ion E and deprotonation of a carbocation F.In summary, reactions of 2-vinylcyclopropyl sulfoxides lacking an a-hydrogen with acid anhydrides such as TFAA or Ac,O provided cyclic or acyclic conjugated dienes via butadienylthionium ions, Extensive studies on this hmmerer reaction of various 2-vinylcyclopropyl sulfoxides are in progress. Experimental General procedure for the Pummerer reaction MethodA. To a solution of the 2-vinylcyclopropyl sulfoxide 1 (0.5 mmol) in dry CH,CI, (5 cm3) was added TFAA (210 mg, 1.0 mmol) at room temperature. After 2 h, saturated aqueous NaHCO, was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with CH2C12 (2 x 5 cm3).The combined organic layer and extracts were dried (MgSOJ and concentrated. The residue was purified J. CHEM. SOC. PERKIN TRANS. I 1995 B1 3 I x20 -1-2H c', -. 'H ox A' E F Scheme 3 by preparative TLC on silica gel eluting with hexane-ethyl acetate (4: 1, v/v) to give the conjugated dienes 2 and 3 or 4 as shown in Table 1. Method B. A mixture of compound 1 (0.5 mmol), Ac20 (255 mg, 2.5 mmol) andp-TsOH-H,O (10 mg, 0.05 mmol) in benzene (10 cm3) was heated at 85 "C in sealed tube for 24 h. The reaction mixture was cooled and concentrated and the residue was purified by preparative TLC on silica gel eluting with hexane-ethyl acetate (4: 1, v/v) to give 2 and 3 or 5 as shown in Table 1.References 1 For reviews see: S. Oae and T. Numata, in Isotopes in Organic Chemistry,ed. E. Buncel and C. C. Lee, Elsevier, New York, 1980,5, 45; S. Oae, T. Numata and T. Yoshimura, in The Chemistry of the Sulfonium Group, ed. C. J. M. Stirling and S. Patai, Wiley, New York, 1981, 2, 571; 0.D. Lucchi, U. Miotti and G. Modena, Org. React. (N. Y.),1991,40, 157. 2 C. R. Johnson, J. C. Sharp and W. G. Phillips, Tetrahedron Lett., 1967,5299. 3 (a)G. A. Koppel and L. J. McShane, J. Am. Chem. SOC.,1978,100, 288; (b) I. Cutting and P. J. Parsons, Tetrahedron Lett., 1981, 22, 2021; (c) R. D. Miller and D. R. McKean, Tetrahedron Lert., 1983, 24,2619; (d)R. D. Miller and R. Hassig, Tetrahedron Lett., 1984,25, 5351; (e)R. Hunter and C. D. Simon, Tetrahedron Lett., 1986, 27, 1385; (f)Y.Kita, 0.Tamura, F. Itoh, H. Yasuda, T. Miki and Y. Tamura, Chem. Pharm. Bull., 1987, 35, 562; (g) T. Iishihara, T. Shinozaki and M. Kuroboshi, Chem. Lett., 1989, 1369; (h) R. Hunter, L. Carlton, P. F. Cirillo, J. P. Michael, C. D. Simon and D. S. Walter, J. Chem. Soc., Perkin Trans. I, 1989, 1631; (i) J. CHEM. SOC. PERKIN TRANS. I 1995 R. Hunter, J. P. Michael, C. D. Siomn and D. S. Walter, Tetrahedron, 1994,50,9365. 4 H. Kosugi, H. Uda and S. Yamagiwa, J. Chem. Soc., Chem. Commun., 1975, 192; S. Yamagiwa, H. Sato, N. Hoshi, H. Kosugi and H. Uda, J. Chem. Soc., Perkin Trans. 1, 1979, 570. 5 E. J. Corey and D. J. Hoover, Tetrahedron Lett., 1982,23,3463. 6 R. B. Morin, D. 0.Spry and R. A. Mueller, Tetrahedron Lett., 1969, 849; R.B. Morin and D. 0. Spry, J. Chem. Soc., Chem. Commun., 1970,335; F. Chioccara, L. Oliva and G. Prota, Synthesis, 1978,744; M. Hori, T. Kataoka, H. ShimizuandY. Imai, Chem. Pharm. Bull., 1979, 27, 1982; M. Hori, T. Kataoka, H. Shimizu and N. Ueda, Tetrahedron Lett., 1981,22, 1701; H. Shimizu, N. Ueda, T. Kataoka and M. Hori, Chem. Pharm. Bull., 1984,32,2571. 7 H. Tawada, Y. Sugiyama, H. Ikeda, Y. Yamamoto and K. Meguro, Chem. Pharm. Bull., 1990,38,1238. 8 (a) H. Ishibashi, M. Okada, H. Nakatani and M. Ikeda, J. Chem. SOC.,Perkin Trans. I, 1986,1763;(b)T. Kataoka, unpublished work. 9 E. J. Corey and S. W. Walinsky, J. Am. Chem. SOC.,1972,94,8932; K. Fuji, S. P. Khanapure, M. Node, T. Kawabata, A. Itoh and Y. Masaki, Tetrahedron, 1990, 46,7393; H. Shimizu, S. Miyazaki, T. Kataoka and M. Hori, Tetrahedron Lett., 1991, 32, 5571; H. Shimizu, S. Miyazaki, T. Kataoka and M. Hori, J. Chem. Sac., Chem. Commun., 1992,1586. 10 Y. Tamura, H. Maeda, S. Akai and H. Ishibashi, Tetrahedron Lett., 1982,23,2209; H. Ishibashi, M. Okada, H. Komatsu, M. Ikeda and Y. Tamura, Synthesis, 1985, 643; H. Ishibashi, H. Ozeki and M. Ikeda, J. Chem. Soc., Chem. Commun., 1986,654; H. Ishibashi, S. Harada, M. Okada, M. Ikeda, K. Ishiyama, H. Yamashita and Y. Tamura, Synthesis, 1986,847. Paper 5/00407A Received 24th January 1995 Accepted 7th February 1995
机译:J. CHEM. SOC. PERKIN TRANS. 1 1995 2-乙烯基环丙基亚砜在Pummerer条件下丁二烯基硫离子的生成和反应 片冈忠(Tadashi Kataoka),* 松本春俊(Harutoshi Matsumoto)、岩间哲夫(Tetsuo Iwama)、伊藤泰三(Taizo Ito)和清水浩(Hiroshi Shimizu) 岐久药科大学, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan 用酸酐处理缺乏a-氢的2-乙烯基环丙基亚砜,生成丁二烯基硫离子中间体,得到环状或无环共轭二烯烃。亚砜的Pummerer反应[方程(l)]是合成a-取代或a,p-不饱和硫化物的有用方法,从R1-s-m2R2 + R3-C-O-C-R3 I1 I1+ II 000 R1S-CH-O-C-R3 + R3C02H II A2 0机理和合成角度进行了大量研究。该反应的一般机理被认为由涉及钬离子中间体的四个连续步骤组成。乙烯基硫离子的生成已在 ally1 亚砜的 Pummerer 反应 3 和乙烯基亚砜的乙烯基 Pummerer 反应中得到了广泛的研究.3c*e*4 相比之下,亚砜的 Pummerer 反应产生丁二烯基硫离子很少受到关注。丁二烯基硫离子在合成官能化共轭二烯方面用途广泛,我们打算探索一种生成它们的新方法。已知缺乏a-氢和携带p-一的亚砜通过p-氢提取和C-S键断裂形成的亚磺酸衍生物发生异常的Pummerer反应.6如果用酸酐处理不含a-氢的2-乙烯基环丙基亚砜I,则通过破坏环丙烷环并消除P-氢而产生丁二烯基硫离子II(方案1, 路线a)0 A2JJyt Ac~O -0Ac R2 __c I1RqI而不是乙烯基环丙烯,由于三元环的能量含量高,因此由异常的Pummerer反应(路线b)产生。对于该策略,我们选择了不含a-氢的1,4-苯并噻嗪-3-酮1-氧化物作为底物,因为它们很容易由4-甲基-1,4-苯并噻嗪-3-酮通过乙烯基环丙烷化*和间氯过苯甲酸(MCPBA)氧化制备,收率很高。在本通讯中,我们报告了通过缺乏a-氢的2-乙烯基环丙基亚砜与酸酐反应产生的新型丁二烯基硫离子中间体。几种2-乙烯基环丙基亚砜1在Pummerer条件下处理:方法A,2相当于三氟乙酸Me a R1=R2=Me b R'=R2=Ha;pR2cR1=H,R2=Me-i d R1=Me,R2=H R' e R1=R2=Ph 0 f R1 = R2 =p-CC& 1 2 3 + 4 X=H 5 X-Ac 方案 2 试剂和条件:i,方法 A:2 相当于 TFAA、CH、CI,,室温,2 h;方法 B:5 相当于 Ac、O、p-Me-C、H、SO、H(货号。),苯,85 OC,密封管,在CH2C12中24小时酸酐(TFAA)在室温下2小时;方法B:5当量的Ac20和p-MeC,H,SO,H在苯中的催化量,在85°C的密封管中放置24 h(方案2)。结果总结在表1中。二取代乙烯基环丙烷 la (R' = R2 = Me)、le (R' = R2= Ph) 和 If (R'= R2= p-Cl-C6H,) 与 2 当量的 TFAA(方法 A)反应,分别以中等收率得到环状二烯 2a 和 3a、2e 和 Zf(条目 1、7 和 8)。另一方面,处理未取代或单取代的乙烯基环丙烷,lb (R' = R2 = H)、lc (R' = H, R2 = Me) 和 ld (R'= Me, R2 = H),分别提供无环共轭二烯、4b 或 5b、4c 和 4d(条目 3-6)。二苯酚 4 是通过水解最初在后处理过程中形成的相应二烯基三氟乙酸盐获得的。lc和Id(约2:1)tvSb的混合物,当通过方法A反应时,以70%的收率提供4c。然而,在粗产物的'H NMR谱图中观察到的4,由于其对硅胶的不稳定性而无法分离(条目5)。无环二烯4和5 t的C(2')--C(3')双键(A2'g3')处的几何形状 2-乙烯基环丙基亚砜lc和Id(约2:1)的混合物如下:4-甲基-l,4-苯并噻嗪-3-酮用N-氯琥珀酰亚胺氯化,所得a-氯硫化物用AgClO处理,在异戊二烯和三乙胺存在下,然后进行MCPBA氧化。表1 2-乙烯基环丙基亚砜1与酸酐的反应 产品入门亚砜 条件 a (% 产率) la 2a (25), 3a (46) la 2a (21), 3a (19) lb 4b (E, 81)dlb 5b (E, 39)d lc:ld(ca.2:l)' 4c (E, 70),' 4d (-)' 同上 4d(E:Z = 1:1, 62)g le 2e (54)如果 2f (60) 方法A: 2 相当于 TFAA、CH、Cl、室温、2 h;方法 B:5 当量的 Ac、O、p-MeC、H、SO、H(货号)、苯、85 OC、密封管、24 小时。除非另有说明,否则为孤立的产量。“该比率由”H NMR“确定。A2'q3的几何形状由'H NMR中的耦合常数确定。没有分离出几何异构体。“的几何形状是由NOE决定的。没有分离出几何异构体。在粗产物的H NMR谱图中观察到化合物4d,但在硅胶上制备TLC纯化过程中分解。原油产量。A2'v3'的几何形状由NOE确定,比值由'H NMR'估计,由'H NMR谱图或NOE技术(4c,a)中2'-H和3'-H(4b:J 15,5b:J 15)之间的耦合常数确定,A'的几何形状为4和5,由单个异构体组成, 目前无法确认。在任何情况下,均未分离出任何异常的Pummerer型产品。方案 3 说明了这种 Pummerer 反应的可能机制。丁二烯基硫离子 B,由环丙烷环的开环与氧锍盐 A 中的环质子消除而产生,氧化锍盐 A 最初由亚砜 1 与酸酐反应形成。在 R' 和/或 R2 = H 的情况下,中间体 B 可能遵循两种途径中的任何一种产生无环二烯。一种是XO-在B的&-碳处的亲核攻击过程(a)以提供三氟乙酸盐4',其在后处理过程中水解为相应的二烯醇4,或乙酸盐5.另一种是分子内[2'+41极性环加成'v9过程(b)。生成的双环锍盐C与XO-反应生成无环二烯,其双键在反应条件下可异构化。在其他情况下(R' = R2 = Me 或 Ar),环状二烯 2 通过由铥离子 B 的烯烃环化产生的碳正离子 D 形成。当 R' 和 R2 都是甲基时,甲基氢从碳正离子 D 的去质子化得到另一个环二烯 3。二烯 3 可以通过氧锍盐 A' 的开环过程以及甲基-质子提取、硫离子 E 的烯烃环化和碳正离子 F 的去质子化得到。总之,缺乏a-氢的2-乙烯基环丙基亚砜与酸酐(如TFAA或Ac,O)的反应通过丁二烯硫离子提供环状或无环共轭二烯烃,对各种2-乙烯基环丙基亚砜的这种反应的广泛研究正在进行中。实验 Pummerer反应方法A的一般程序。在室温下向2-乙烯基环丙基亚砜1(0.5 mmol)的干燥CH,CI,(5 cm3)溶液中加入TFAA(210 mg,1.0 mmol)。2小时后,将饱和NaHCO水溶液加入到反应混合物中。分离有机层,用CH2C12(2×5cm3)萃取水层。将合并的有机层和提取物干燥(MgSOJ并浓缩。将残留物纯化为J. CHEM. SOC. PERKIN TRANS.I 1995 B1 3 I x20 -1-2H c', -.'H ox A' e f 方案3通过制备TLC在硅胶上用己烷-乙酸乙酯(4:1,v/v)洗脱,得到共轭的二烯2和3或4,如表1所示。方法 B。将化合物1(0.5 mmol)、Ac20(255 mg,2.5 mmol)和p-TsOH-H,O(10 mg,0.05 mmol)在苯(10 cm3)中的混合物在85“C下在密封管中加热24小时。将反应混合物冷却浓缩,残余物在硅胶上用己烷-乙酸乙酯(4:1,v/v)洗脱纯化,得到2和3或5,如表1所示。Lee, Elsevier, 纽约, 1980,5, 45;S. Oae, T. Numata 和 T. Yoshimura, in The Chemistry of the Sulfonium Group, ed. C. J. M. Stirling and S. Patai, Wiley, New York, 1981, 2, 571;0.D. Lucchi、U. Miotti 和 G. Modena,组织反应。(纽约),1991,40, 157.2 C. R. Johnson、J. C. Sharp 和 W. G. Phillips,Tetrahedron Lett.,1967,5299。3 (a)G. A. Koppel 和 L. J. McShane, J. Am. Chem. SOC.,1978,100, 288;(b) I. Cutting 和 P. J. Parsons,Tetrahedron Lett.,1981 年,22 年,2021 年;(c) R.D.Miller和D.R.McKean,Tetrahedron Lert.,1983年,24,2619;(d)R. D. Miller 和 R. Hassig, Tetrahedron Lett., 1984,25, 5351;(e)R. Hunter 和 C. D. Simon, Tetrahedron Lett., 1986, 27, 1385;(六)Y.Kita, 0.Tamura, F. Itoh, H. Yasuda, T. Miki and Y. Tamura, Chem. Pharm. Bull., 1987, 35, 562;(g) T. Iishihara、T. Shinozaki 和 M. Kuroboshi, Chem. Lett., 1989, 1369;(h) R. Hunter, L. Carlton, P. F. Cirillo, J. P. Michael, C. D. Simon and D. S. Walter, J. Chem. Soc., Perkin Trans.I,1989年,1631年;(I) J. CHEM. SOC. PERKIN TRANS.I 1995 R. Hunter, J. P. Michael, C. D. Siomn 和 D. S. Walter, 四面体, 1994,50,9365.4 H. Kosugi, H. Uda 和 S. Yamagiwa, J. Chem. Soc., Chem. Commun., 1975, 192;S. Yamagiwa, H. Sato, N. Hoshi, H. Kosugi 和 H. Uda, J. Chem. Soc., Perkin Trans. 1, 1979, 570.5 E. J. Corey 和 D. J. Hoover,Tetrahedron Lett.,1982,23,3463。6 R. B. Morin, D. 0.Spry 和 R. A. Mueller, Tetrahedron Lett., 1969, 849;RB Morin 和 D. 0。Spry, J. Chem. Soc., Chem. Commun., 1970,335;F.基奥卡拉,L.Oliva 和 G. Prota,综合,1978,744;M.堀,T.片冈,H.清水和Y。Imai, Chem. Pharm. Bull., 1979, 27, 1982;M. Hori, T. Kataoka, H. Shimizu 和 N. Ueda, Tetrahedron Lett., 1981,22, 1701;H. Shimizu, N. Ueda, T. Kataoka 和 M. Hori, Chem. Pharm. Bull., 1984,32,2571.7 H. Tawada, Y. Sugiyama, H. Ikeda, Y. Yamamoto and K. Meguro, Chem. Pharm. Bull., 1990,38,1238.8 (a) H. Ishibashi, M. Okada, H. Nakatani and M. Ikeda, J. Chem. SOC.,Perkin Trans. I, 1986,1763;(b)T. Kataoka,未发表的著作。9 E. J. Corey 和 S. W. Walinsky, J. Am. Chem. SOC.,1972,94,8932;K. Fuji, S. P. Khanapure, M. Node, T. Kawabata, A. Itoh 和 Y. Masaki, 四面体, 1990, 46,7393;H. Shimizu, S. Miyazaki, T. Kataoka 和 M. Hori, Tetrahedron Lett., 1991, 32, 5571;H. Shimizu, S. Miyazaki, T. Kataoka 和 M. Hori, J. Chem. Sac., Chem. Commun., 1992,1586.10 Y. Tamura, H. Maeda, S. Akai and H. Ishibashi, Tetrahedron Lett., 1982,23,2209;H. Ishibashi, M. Okada, H. Komatsu, M. Ikeda and Y. Tamura, Synthesis, 1985, 643;H. Ishibashi, H. Ozeki and M. Ikeda, J. Chem. Soc., Chem. Commun., 1986,654;H. Ishibashi, S. Harada, M. Okada, M. Ikeda, K. Ishiyama, H. Yamashita and Y. Tamura, 综合, 1986,847.论文 5/00407A 收稿日期 1995 年 1 月 24 日 录用日期 1995 年 2 月 7 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号