首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Elimination and addition reactions. Part XXVII. Addition of amides to electrophilic alkenes
【24h】

Elimination and addition reactions. Part XXVII. Addition of amides to electrophilic alkenes

机译:消除和加成反应。第二十七部分.在亲电烯烃中添加酰胺

获取原文
获取外文期刊封面目录资料

摘要

1976Elimination and Addition Reactions. Part XXVIIJ Addition of Amidesto Electrophilic AlkenesBy John W. Batty, I.C.I., Organics Division, Blackley, Manchester M9 3DAPeter D. Howes and Charles J. M. Stirling," School of Physical and Molecular Sciences, University Collegeof North Wales, Bangor, Gwynedd LL57 2UWTreatment of amides from primary amines with strong bases and electrophilic alkenes (acrylonitrile or p-tolyl vinylsulphone) gives products derived from N-alkylation of the amide. When amides without an N-H bond are used,no reaction occurs unless the amide gives a stabilised carbanion on proton abstraction ; C-alkylation then occurs.When N- and C-alkylation can compete, N-alkylation i s preferred.Dialkylation of diamides occurs readily, and evidence for alkylation of a low molecular weight polyamide has beenobtained.Alkylation of Nylon 6 and Nylon 66, however, does not occur to an appreciable extent under the condi-tions used for the other amides.NUCLEOPHILIC addition to electrophilic alkenes is an im-portant and versatile reaction 2*3 and is particularly suc-cessful when the alkene bears a cyano- or sulphonyl 4*5group. Addition of amides to electrophilic alkenes has,however, received only scant attention6-* and we nowreport on the reactivity of simple mono-, di-, and poly-amides towards p-tolyl vinyl sulphone and acrylonitrile.Part XXVI, M. J. van der Sluijs and C. J. M. Stirling, J.C.S.P. F. Butskus. Russ. Chem. Rev., 1961, 30, 583; H. ,4.a H. 0. House, ' Modern Synthetic Reactions,' 2nd edn.,A.T. Kader and C. J. M. Stirling, J . Chem. SOC., 1962, 3686,S. M. McDowell and C. J. amp;I. Stirling, J . Chewz. SOC. (B),Pevkin 11, 1974. 1268.Bruson, Org. Reactions, 1949, 5, 79.Benjamin, New York, 1972.and references cited therein,1967, 343.Neutral amides show only very restricted nucleo-philicity; the site of protonation is variable9 and ininter- lo and intra-molecular l1 nucleophilic displace-ments in which the neutral amido-group is the nucleo-philic centre, oxygen is the nucleophilic site.Simple amides which possess an ionisable N-H bondare weak acids12 with pK, values in the region of 15.Under suitable basic conditions, nitrogen anions derivedR. P. hiaridla and R. J. Johauskas, J . Opg. Chew., 1958, 23,923.euro;3.P. 875,135 (Chem. Abs., 1963,59,6420).B. P. 920,213 (Chem. Abs., 1962, 58, 14148).M. Liler, Adv. Plzys. 0p.g. Chem., 1975, 11, 267.l o M. G. Ahmed, R. W. Alder, G. H. James, M. L. Sinnott, andl1 C. J. M. Stirling, J . Chem. Soc., 1960, 255.l2 S. Kaae and -4. Senning, Acta Chem. Scand., 1968, 22, 2400.M. C. Whiting, Chem. Comm., 1968, 1533J.C.S. Perkin Ifrom amides can take part in intra-l1,l3 or inter-molecular l4 nucleophilic displacements with halides.Addition of simple amides of aromatic carboxylic acids toacrylonitrile under catalysis by Triton B has been accom-plishedJ6 and alkoxide-catalysed addition of lactams toseveral electrophilic alkenes has been claimed.' In base-catalysed nucleophilic addition of amides to electrophilicalkenes, the base used to generate the anion must notitself compete in the addition process. In the presentwork we have mainly employed potassium t-butoxide int-butyl alcohol as the solvent-base system.Thismedium is sufficiently basic to give significant equilib-rium concentrations of ions derived from the amidesused, and t-butoxide ion is feebly nucleophilic towardselectrophilic alkenes.Yields of adducts obtained from simple mono-amidcsand either $-tolyl vinyl sulphone or acrylonitrile aregiven in Table 1. In several reactions, separation of theAmideAcNHBu (3)AcNHBu (3)AcNHBu (3)AcNHBu ( 3 )AcNHBu (3)AcNHBu (3)AcNHBu (3)AcNHBu (3)(AcNHCH,), (7)(AcNHCH,), (7)PhCH,CO-NHMe (4)PhCH,CO.NMe, (5)AcNMe, (6)Alkene aArSO,*CH=CH,ArSO,CH=CH, cArSO,CH=CH, cArSO,CH=CH,NC*CH=CH,NCCHXH,ArSO,CH=CH, eArSO,CH=CH, eNCCH=CH,ArSO,CH=CH ~9 gArSO,CH=CH, cArSO,CH=CH, cArSO,CH=CH, eIn all amides which possess an N-H bond, alkylationoccurs at nitrogen.The acyl groups are clearly notsufficiently acidic to allow competitive reaction via acarbonyl-stabilised carbanion. This is true even ofN-methylphenylacetamide (4), in which the carbanionwould be additionally stabilised by the phenyl group;the products are solely derived from N-alkylation. Inan NN-dialkylamide, such as dimethylacetamide (6) noreaction occurs under conditions in which N-mono-substituted amides are alkylated. In NN-dimethyl-phenylacetamide ( 5 ) , however, C-alkylation occursreadily.Recent 1 y , C-alkylation of dimethylace t amideby P-nitrostyrene in the presence of lithium amides hasbeen a~conip1ished.l~Yields of N-alkylated product in all reactions aremodest. In recent work,16 reactivity of amido-groups asleaving groups in activated P-eliminations has been deter-mined. The amide (8) reacts slowly with ethanolicTABLE 1Addition of amides to alkenesCatalyst bButOK (0.2)RutOK (1.0)ButOK (1.5)NsOH (0.8)NaOH (1.0)ButOK (0.5)ButOK (0.26)ButOK (0.26)ButOK (0.15)ButOK (0.25)ButOK (0.5)ButOK (0.8)ButOK (0.8)SolventButOHButOHButOHPhHPhHButOHDMA jButOHButOHButOHButOHButOHDMA-But OH ( 1) bYield ofadduct38 d42 Ether ( 2 8 ) , alcohol (20), amide (59)375640 h Amide (43)31 Amide (48)11 hIk2937 Amide (57)4343650Other products (yo) (IAmide (57), alcohol (35,) ether (16)Alcohol (61), ether (30) Jamide (77)J4 Molar proportions (amide : alkene) 1 : 1 unless otherwise stated.b Molar proportions in parentheses. Ar = fi-tolyl. 'HN.m.r. analysis of adduct-alcohol mixture. e ArSO,CH,CH,.OBut. f ArSO,CH,CH,*OH. 2 mol per mol of amide. 'HN.m.r. analysis of amide-adduct mixture. I1H N.m.r. analysis of adduct-ethermixture. * C-Alkylated product.f Dimethylacetamide. k No proton donor.amide-alkene adduct either from t-butoxide-alkeneadducts or from unchanged amide was not attempted;such product mixtures were analysed by lH n.m.r.spectroscopy. In reactions with p-tol~7l vinyl sulphone,the ether (1) and the alcohol (2) were usually formed.The alcohol (2) presumably arises by p-elimination in theether (1) derived from the addition of t-butoxide ion tothe alkene.ArSO2*CH2*CH2-O -CMe2 4 ArSO2*CHfCH2*OHrJ(1 1 ( 2 )The structures of alkene-amide adducts were authen-ticated by syntheses involving acylation of the readilyformed amine-alkene adducts .5l3 M.S. Manahas and S. J. Jeng, J . Org. Ckeriz., 1967, 32, 1246.l4 J. D. Park, R. D. Englert, and J. S. Meek, J. Amev. Chenz.Soc., 1952, 74, 1010.sodium ethoxide (Kelim = 2.3 x 1 mol-l s-l at 40 "C)to give the products (9) and (10) derived from initialelimination of the corresponding amide anion. In theamide alkylation reactions, therefore, equilibration prob-ably occurs between adduct and free amide, and part ofthe electrophilic alkene is diverted to addition reactionswith the base-solvent system.Support for this view isfound in the observation that when C-alkylation occurs,yields are substantially higher than in the N-alkylationreactions (Table 1). Elimination of carbon leavinggroups in activated p-eliminations occurs only slowly,and diversion of the electrophilic alkene to other productsis therefore disfavoured.Alkylation of the diamide (7) (Table 1) occurs at bothnitrogen atoms, but surprisingly yields of dialkylatedproduct were not sensitive to the alkene-amide ratiowhen this was varied from 2 : 1 to 1 : 1.l5 D. Seebach and H. F. Leitz, Angow. Chem. Internat. Edn.,l6 D. R. Marshall, P. J. Thomas, and C.J. M. Stirling, J.C.S.1971, 7, 501.Chem. Conatn., 1975, 9401976 1545Formation of a stable addition product in these re-actions requires the presence of a proton donor. Thusalkylation of N-butylacetamide in dimethylacetamidewith t-butoxide as base but without added proton donorgives a yield of alkylated product only one-third of thatobtained in the presence of an equimolar proportion ofReactions with Polymeric Amides.-Reactions withcommercial polymers, even to very limited extents, mayproduce technologically valuable changes such as modi-fication of surface properties. We were interested todiscover whether such changes could be effected byt-butyl alcohol.decomposition. The importance of a proton donor isclearly seen in reactions with polymers also; in theabsence of t-butyl alcohol, the degree of sulphur in-corporation in t-butoxide-catalysed reactions is reducedby 90.Reactions with polyamides of much higher molecularweight (Nylon 6 and Nylon 66) were not successful.Calculated values for complete sulphonylet hylation arehigher but extents of incorporation were small as onsublimation most of the sulphur incorporated was lost,suggesting that little alkylation occurs. Mutual solubil-isation of the reagents under conditions in which a protonPhS02*CH2*CH2*NMeAc - PhS02*CH=CH2 + HNMeAc(8) (9) (10)N-alkyIation of polymeric amides with electrophilicalkenes.The only reported example of this type ofreaction is the cyanoethylation of Nylon 6 catalysed bysodium hydroxide in dioxan.8 No proof of chemical in-corporation was given.Two difficulties arise in re-actions with polymers; mutual solubilisation of the re-agents and proof of chemical rather than purely physicalincorporation of the reagent.Preliminary work was carried out with a simple poly-amide, Ultramid lC, which(11)-(14) in a polymer ofPolymerUltramid 1C{ Kylon 66Xylon 6contains the four componentsmolecular weight ca. 20 000.donor is present constitutes a severe problem and thetightly hydrogen-bonded structure of the polymers prob-ably contributes to their low reactivity.EXPERIMENTALReagents.-+-Tolyl vinyl sulphone had m.p. 64" (lit.,1763-66'), N-butylacetamide had b.p. 118" at 10 Torr., n, l71.4417 (1it.,l8 b.p. 135' at 18 Torr., nDZ0 1.4412) ; "'-ethyl-enediacetamide had m.p.173" (lit.,l9 173") ; N-methyl-cc-phenylacetamide had m.p. 57" (lit.,20 57") ; NN-dimethyl-a-phenylacetamide had m.p. 42-43' (lit.,21 43.5").TABLE 2p-Tolylsulphonylethylation a of polyamidesSolvent Proton donor BaseDMA C-ButOH (10 : 1) ButOH KOButDMA e-ButOH (4 : 1) ButOH KOButDMA Et,NDMA KOButButOH ButOH KOButButOH KOButPhCH,*OH PhCH,*OH NaO.CH,PhPhCH,.OH-ButOH PhCH,*OH KOButButOH-DMSO S Incorporated2.2,2.6, 1.5 d2.90.00.28.6,e 1.26.1,g 2.0(0.20.2j C O . 2 ka Sulphone : amide group ratio 1 : 1. 0.1-0.2~. Dimethylacetamide. After sublimation at 21OOC and 0.1 Torr. e At b.p.Dimethyl sulphoxide. g 4 h at 140 "C. 6 h a t 135 "C. j 5 h at 175 "C. At b.p.The polymer is soluble in dimethylacetamide and theresults of reactions with p-tolyl vinyl sulphone are shownin Table 2.The extent of reaction is gauged by thedegree of incorporation of sulphur into the recoveredpolymer. The calculated value for complete sulphonyl-The extent of sulphur in-corporation is reduced only slightly by reprecipitationTypical AZkyZation Procedures.-(a) AlkyZution of N-butyl-acetumide with p-tolyl vinyZ suZphone in t-butyl alcohol. Theamide (1.15 g, 10 mmol) was added to solution of potassium(O.39 gJ 10 mg atom) in t-buql alcohol (50 ml). P-TolYlsulphone (10 mmol)j in t-butyl alcohol (50 ml), wasadded with stirring. After 6 h, the mixture was neutralised(AcOH) and water (200 ml) was added. The product was is about lo yo.-~and by sublimation under Severe Conditions.In the IS w. E. Backmann, w. J. Horton, E. L. ~ e n ~ e r , N. w. Mac-latter case, some loss of sulphur Content may be due to Naughton, and C. E. Maxwell, J . Amer. Chern. SOC., 1950, 72,3132.G. D. Buckley, J. L. Charlish, and J. D. Rose, J . Chem. SOL, 2o F. F. Blicke and H. Zinnes, J . A w w . Chew. Soc., 1955, 77,1947, 1514. 4849.21 H. J. Taverne, Rec. Trav. chim., 1897, 16, 33. l 8 M. V. LockandB. F. Sager, J . Chem. SOC. (B), 1966, 6901546 J.C.S. Perkin Iextracted with dichloromethane and distilled to give threefractions: (i) N-butylacetamide (59y0), nD1*.5 1.4422, b.p.73' at 0.05 Torr, (ii) 2-t-butoxyethylp-tolyl sulphone (28) ,nD22 1.5131, b.p. 133' at 0.01 Torr (Found: C, 60.6; H, 7.9.C13H2,03S requires C, 60.9; H, 7.8), vmx 1 320 and 1 145cm-1 (SO,), z (CC1,) 2.15-2.8 (4 H, m), 6.2-6.95 (4 H, m),7.6 (3 H, s), and 9.0 (9 H, s); (iii) a mixture of 2-p-tolyl-sulphonylethanol and N-butyl-N-p-tolylsulphonylethylacet-amide (1.56 g), b.p.181-184' a t 0.05 Torr (1: 3 by lHn.m.r.).(b) NN'-Etlzylenediacetamide and acrylonitrile. Acrylo-nitrile (20 mmol) in t-butyl alcohol (10 ml) was added drop-wise with stirring to potassium (6.4 mg atom) and the di-amide (10 mmol) in t-butyl alcohol (100 ml). After 3 days,neutralisation with acetic acid, concentration, and filtrationgave the biscyanoethylamide (37y0), m.p. and mixed m.p.NCCHsCH,*NHBu t ArSO,.CHz.CHa~NH-CH,),NC.CHsCHs*NH.CH2)2ArSO,-CH,-CH,.NHMeNC.CH,-CH,-NAcBuArSO,CH,.NAcBunD'O1.43791.47841.54271.46281.5275and the precipitated polymer was taken up in methanol andreprecipitated with acetone.The analytical figures for theproduct (1.2 g) were: C, 67.6; H, 9.5; S, 2.9. The poly-mer was then kept a t 210 "C and 0.1 mmHg for 3 h. Afterthis time the S content had fallen to 1.5. An attempt toobtain recognisable fragments from the N-alkylated poly-mer by acidic hydrolysis (~M-HC~; 8 h; 130 "C) andchromatography of the hydrolysate failed.Sodium (0.3 g) and Nylon 6 (2.5 g) weredissolved in benzyl alcohol and the mixture was kept at120 "C to dissolve the nylon. p-Tolyl vinyl sulphone (3.6 g)in benzyl alcohol (75 ml) was added, and the mixture waskept a t 135 "C for 6 h. Neutralisation was carried out withacetic acid, and after steam distillation of the mixtureaddition of dichloromethane to the residue gave a solid(2.3 g) (Found: S 0.2).(b) Nylon 6.TABLE 3Properties of amine- and amide-alkene adductsFound () Required ()M.p.("C) Yield ,-----h---bsol; -7B.p./Torr () C H N Formula C H N115/18 82 (1it.p b.p. 103" a t 10 Torr)152/19 80 (lit.,a b.p. 152' a t 20 Torr)86 88 56.4 6.4 15.3 c C2,,HZ8N,O,S2 56.6 6.6 1 5 . 1 ~150/0.15 99 56.9 6.8 C1,Hl,N02S 56.4 7.0106/0.05 83 64.4 9.4 16.8 C,H,,N,O 64.3 9.5 16.5192/0.1 62 60.3 7.6 C,,H,,O,NS 60.6 7.7lH N.m.r. (7)2.1-2.7 (4 H, m), 6.6-7.2 (4 H, m),7.4 (2 H, s), 7.6 (3 H, s), 8.35 (1 H, s)2.0-2.6 ( 4 H, m), 6.5-7.15 (4 H, m),7.55 ( 3 H,s), 7.6 (3 H, s), 8.0 (1 H, s)6.6(4H,q,J6Hz),7.4(2H,t,J6Hz),8.0 (3 H, s), 8.3-9.2 (7 H, m)2.1-2.7 (4 H, m), 6.4-6.9 (6 H, m),7.6(3H,s),8.2(3H,s),8.4-9.4(7H,m)(NC.CH,CH2.NAcCH,), 143 57 57.2 7.0 CI2Hl8N,O, 57.6 7.2 6.3 ( 4 H, m), 7.2 (2 H, m), 7.7 (3 H, s)(ArSO,-CH,CH,.NAc.CH ,) 191 78 56.5 6.2 12.9C C,,H,,NOamp; 56.7 6.3 12.6 2.0-2.6(4H,m),6.0-6.9(6H,m),7.5( 3 H, s), 8.0 (3 H, s)PhCH,CO.NMeCH,*CH,.SO,Ar 83 99 65.0 6.1 C,8H,lN0,S 65.3 6.3 2.0-2.8 ( 3 H, m), 6.2-6.6 (2 H, m),6.95 (1 H, s), 7.5 (1 H, s)ArSOI*CH9CHsCHPhC0.NMe, 121 65 d 66.6 6.8 C1,H,,NO3S 66.1 6.7 2.1-2.7 (9 H, m), 5.9 (1 H , t, J 7 Hz),6.75-7.2 (8 H, m), 7.55 (3 H, s),7.8 (2 H, m)b A.E. Martell and S. Chaberek, J. Antar. Chem. SOC., 1950, 72, 5375. c S Analysis. d From vinyl sulphone a A.E. Frost and A. E. Martell, J . Org. Chem., 1950,15,51.and amide.141-143". The mother liquors yielded unchanged amidePreparation of Authentic Amide-Alkene Adducts.-Thegeneral procedure is illustrated for NN'-bis-p-tolylsulphon-ylethyl-NN'-ethylenediacetamide. p-Tolyl vinyl sulphone(20 mmol) in benzene (75 ml) was treated dropwise with1,2-diaminoethane (10 mmol) in benzene (25 ml). After24 11, evaporation gave the amino-sulphone (87), m.p.85-86' (from ethanol) (details in Table 3). The amino-sulphone (5.6 mmol) in acetic acid (25 ml) was treated withacetic anhydride (9 mmol). After being kept a t 25 "C for1 h and at l0O'C for 1 h, the mixture was poured intoaqueous sodium hydrogen carbonate and extraction withdichloromethane gave the diamide, m.p. 190-192" (detailsin Table 3).Examples of Reactions with Polyaunides.-(a) (with R.PEAK) Ultramid 1C. The polymer (1.6 g) in dimethylacet-amide (320 ml) at 70 "C was treated with p-tolyl vinyl sul-phone (4.6 g), t-butyl alcohol (32 ml), and then potassiumt-butoxide (2.8 g). The mixture was kept at 65-70 "C for20 h and was then added to aqueous 4 acetic acid (500 ml),(57).(c) Nylon 66. The polymer (4.0 g) was stined underreflux with t-butyl alcohol (100 ml) for 18 h, then potassiumt-butoxide from potassium (0.9 g) in t-butyl alcohol (100ml) was added. After 1 h, p-tolyl vinyl sulphone (6.3 g,1 equiv. per amide group) in t-butyl alcohol was added, andafter a further 4 h refluxing the mixture was cooled andneutralised with acetic acid. Decantation left a residuewhich was washed with t-butyl alcohol (150 ml) and thenwith acetone (2 x 150 ml). The remaining solid (4.05 g)(Found: N, 10.3; S, 8.6) was sublimed at 160 'C and 0.01Torr; the S content of the residue was 1.2. The residuefrom evaporation of the decantate and washings combined(5.8 g), on extraction with dichloromethane, left a residue(2.2 g) (Found: S, 6.9; N, 0.5). Evaporation of theextracts gave a mixture (3.6 g) of the alcohol (2) and theether (1).We thank the S.R.C. for a C.A.S.E. studentship (toP. D. H.) and Mr. R. Peak for the experiments with Ultra-mid 1C.6/062 Received, 9th January, 1976
机译:1976消除和加成反应。第二十七部分 酰胺亲电烯烃的添加作者:John W. Batty, I.C.I., Organics Division, Blackley, Manchester M9 3DAPeter D. Howes and Charles J. M. Stirling,“ School of Physical and Molecular Sciences, University College of North Wales, Bangor, Gwynedd LL57 2UW从具有强碱和亲电烯烃(丙烯腈或对甲苯基乙烯基砜)的伯胺中提取酰胺,得到由酰胺的 N-烷基化衍生的产物。当使用没有N-H键的酰胺时,除非酰胺在质子提取时产生稳定的碳离子,否则不会发生反应;然后发生 C-烷基化。当N-和C-烷基化反应可以竞争时,N-烷基化反应是首选。二酰胺的二烷基化很容易发生,并且已经获得了低分子量聚酰胺烷基化的证据。然而,尼龙 6 和尼龙 66 的烷基化在用于其他酰胺的条件下不会发生明显程度的烷基化。亲电烯烃的亲核加成是一种重要且用途广泛的 2*3 反应,当烯烃带有氰基或磺酰基 4*5 基团时,该反应尤其成功。然而,在亲电烯烃中添加酰胺只受到很少的关注6-*,我们现在报道了简单的单酰胺、二酰胺和聚酰胺对对甲苯基乙烯基砜和丙烯腈的反应性。第二十六部分,M.J.van der Sluijs和C.J.M.Stirling,J.C.S.P.F.Butskus。Russ. Chem. Rev., 1961, 30, 583;H. ,4.a H. 0.豪斯,“现代合成反应”,第 2 版,A.T. Kader 和 C. J. M. Stirling,J .Chem. SOC., 1962, 3686,S. M. McDowell 和 C. J. &I. Stirling, J .丘兹。(B),Pevkin 11, 1974.1268.Bruson, Org. Reactions, 1949, 5, 79.Benjamin, New York, 1972.and references in, 1967, 343.中性酰胺仅显示出非常有限的亲核性;质子化位点是可变的9和分子间和分子内L1亲核置换,其中中性酰胺基团是亲核中心,氧是亲核位点。具有可电离N-H键的简单酰胺是pK为弱酸12,值在15左右。P. hiaridla 和 RJ Johauskas, J .Opg的。Chew., 1958, 23,923.€3.P. 875,135 (Chem. Abs., 1963,59,6420).B. P. 920,213 (Chem. Abs., 1962, 58, 14148).M. Liler, Adv. Plzys.0p.g. Chem., 1975, 11, 267.l o M. G. Ahmed, R. W. Alder, G. H. James, M. L. Sinnott, andl1 C. J. M. Stirling, J .Chem. Soc., 1960, 255.l2 S. Kaae 和 -4.Senning, Acta Chem. Scand., 1968, 22, 2400.M. C. Whiting, Chem. Comm., 1968, 1533J.C.S. Perkin Ifrom 酰胺可以参与卤化物的 l1,l3 或分子间 l4 亲核置换。在Triton B的催化下,芳香族羧酸甲苯丙烯腈的简单酰胺的添加已经被伴随J6,并且已经声称在醇盐催化下将内酰胺添加到几种亲电烯烃上。在碱催化的酰胺与亲电烯烃的亲核加成中,用于生成阴离子的碱本身不得在加成过程中竞争。目前,我们主要采用叔丁醇钾和内丁醇作为溶剂基体系。这种介质具有足够的碱性,可以产生来自酰胺的离子的显着平衡浓度,并且叔丁醇离子对亲电烯烃具有微弱的亲核性。从简单的单酰胺和$-甲苯基乙烯基砜或丙烯腈中获得的加合物的产率见表1。在几个反应中,分离出酰胺AcNHBu(3)AcNHBu(3)AcNHBu(3)AcNHBu(3)AcNHBu(3)AcNHBu(3)AcNHBu(3)AcNHBu(3)(AcNHCH),(7)(AcNHCH,),(7)PhCH,CO-NHMe(4)PhCH,CO。NMe, (5)AcNMe, (6)烯烃aArSO,*CH=CH,ArSO,CH=CH, cArSO,CH=CH, cArSO,CH=CH,NC*CH=CH,NCCHXH,ArSO,CH=CH, eArSO,CH=CH, eNCCH=CH,ArSO,CH=CH ~9 gArSO,CH=CH, cArSO,CH=CH, cArSO,CH=CH, e在所有具有NH键的酰胺中,烷基化发生在氮下。酰基的酸性显然不足以通过羰基稳定的碳酸酮进行竞争反应。即使是N-甲基苯乙酰胺(4)也是如此,其中碳离子会被苯基额外稳定;这些产品完全来自N-烷基化。吲哚NN-二烷基酰胺,如二甲基乙酰胺(6)在N-单取代酰胺烷基化的条件下发生不反应。然而,在NN-二甲基苯乙酰胺(5)中,C-烷基化很容易发生。最近1年,在锂酰胺存在下,二甲基乙酰酰胺的C-烷基化反应已a~conip1ished.l~N-烷基化产物在所有反应中的收率都适中。在最近的工作中,16 在活化的 P 消除中,氨基基团和裂解基团的反应性已被阻止。酰胺(8)与乙醇反应缓慢表1酰胺加成烯烃催化剂bButOK(0.) 2)RutOK (1.0)ButOK (1.5)NsOH (0.8)NaOH (1.0)ButOK (0.5)ButOK (0.26)ButOK (0.26)ButOK (0.15)ButOK (0.25)ButOK (0.5)ButOK (0.8)ButOK (0.8)溶剂ButOHButOHPhHPhHButOHutOHDMA jButOHButOHButOHButOHButOHButOHDMA-But OH ( 1) b加合物的产量38 d42 醚 ( 2 8 ) , 醇 (20), 酰胺 (59)375640 h 酰胺 (43)31 酰胺 (48)11 hIk2937 酰胺 (57)4343650其他产品 (yo) (%亚酰胺 (57), 醇 (35,) 乙醚 (16)醇 (61), 乙醚 (30) [Jamide (77)J4 摩尔比例(酰胺:烯烃)1:1,除非另有说明。Ar = fi-甲苯基。'HN.m.r.加合醇混合物的分析。e ArSO,CH,CH,.OBut。f ArSO,CH,CH,*OH。每摩尔酰胺 2 mol。'HN.m.r.酰胺-加合物混合物的分析。加合-醚混合物的I1H N.m.r.分析。* C-烷基化产物.f 二甲基乙酰胺。k 没有尝试从叔丁醇-烯烃加合物或未改变的酰胺中加入质子供体酰胺-烯烃加合物;这些产物混合物通过lH n.m.r.光谱法进行分析。在与p-tol~7l乙烯基砜反应中,通常生成乙醚(1)和醇(2)。醇(2)可能是由于在烯烃中加入叔丁醇离子而衍生的醚(1)中的p-消除而产生的。ArSO2*CH2*CH2-O -CMe2 4 ArSO2*CHfCH2*OHrJ(1 1 ( 2 )烯烃-酰胺加合物的结构通过易于形成的胺-烯烃加合物的酰化合成而自动化.5l3 M.S. Manahas 和 S. J. Jeng, J . Org. Ckeriz., 1967, 32, 1246.l4 J. D. Park, R. D. Englert, and J. S. Meek, J. Amev.Chenz.Soc., 1952, 74, 1010.乙醇钠(Kelim=2.3×1mol-l s-l,在40“C时)得到产物(9)和(10)衍生的相应酰胺阴离子的初始消除。因此,在茶酰胺烷基化反应中,加合物和游离酰胺之间可能发生平衡,部分亲电烯烃被转移到与碱溶剂体系的加成反应中。当C-烷基化发生时,产率大大高于N-烷基化反应(表1),这支持了这一观点。活化对消除中离碳基团的消除速度很慢,因此不赞成将亲电烯烃转移到其他产物中。二酰胺(7)(表1)的烷基化发生在两个氮原子上,但令人惊讶的是,二烷基化产物的产率对烯烃-酰胺比不敏感,当烷烃-酰胺比从2:1到1:1.l5变化时,D. Seebach和H. F. Leitz,Angow。国际化学Edn.,l6 D.R. Marshall, P. J. Thomas, and C.J. M. Stirling, J.C.S.1971, 7, 501.Chem. Conatn., 1975, 9401976 1545在这些反应中形成稳定的加成产物需要质子供体的存在。因此,以叔丁醇为碱但不添加质子供体的二甲基乙酰胺中正丁基乙酰胺的烷基化产物的产率仅为烷基化产物的三分之一,在与聚合物酰胺反应的等摩尔比例存在下,与商业聚合物的反应,即使在非常有限的程度上,也可能产生技术上有价值的变化,例如表面性能的改性。我们有兴趣发现这种变化是否可以通过丁醇分解来实现。质子供体的重要性在与聚合物的反应中也很明显;在没有叔丁醇的情况下,叔丁醇催化反应中的硫掺入度降低了90%。与分子量高得多的聚酰胺(尼龙6和尼龙66)反应不成功。完全磺酰水化的计算值较高,但掺入范围较小,因为升华时掺入的硫大部分丢失,表明几乎没有烷基化发生。试剂在质子PhS02*CH2*CH2*NMeAc -% PhS02*CH=CH2 + HNMeAc(8) (9) (10)N-烷基化聚合物酰胺与亲电烯烃的条件下的相互溶解。唯一报道的此类反应的例子是尼龙6在二氧六环中氢氧化钠催化的氰乙基化反应.8没有提供化学掺入的证据。与聚合物的再反应会出现两个困难;试剂的相互溶解和化学证明,而不是试剂的纯粹物理掺入。初步工作是用简单的聚酰胺Ultramid lC进行的,其(11)-(14)在聚合物Ultramid 1C{Kylon 66Xylon 6中含有分子量约为20 000的四种组分。实验性试剂.-+-甲苯基乙烯基砜有熔点64“ (lit.,1763-66'), N-丁基乙酰胺在10 Torr., n, l71.4417 (1it.,l8 b.p. 135' at 18 Torr., nDZ0 1.4412) ;“'-乙基二乙酰胺有 M.P.173” (lit.,l9 173“) ;N-甲基-cc-苯乙酰胺熔点为57“(lit.,20,57”);NN-二甲基-a-苯乙酰胺熔点为42-43'(lit.,21,43.5“)。表2p-甲苯基磺酰乙基化聚酰胺溶剂质子供体BaseDMA C-ButOH(10:1)ButOH KOButDMA e-ButOH(4:1)ButOH KOButDMA Et,NDMA KOButButOH ButOH KOButButOH KOButPhCH,*OH PhCH,*OH NaO.CH,PhPhCH,.OH-ButOH PhCH,*OH KOButButOH-DMSO% S Incorporated2.2,2.6, 1.5 d2.90.00.28.6,e 1.26.1,g 2.0(0.2<0.2j C O . 2 ka 砜 : 酰胺基比 1 : 1. 0.1-0.2~.二甲基乙酰胺。在 21OOC 和 0.1 Torr 下升华后。e 以b.p.二甲基亚砜计。g 4 h 在 140 “C. 6 h a t 135 ”C. j 5 h 在 175 “C. 在 b.p. 聚合物可溶于二甲基乙酰胺,与对甲苯基乙烯基砜的反应结果见表 2.反应程度通过硫掺入回收聚合物的程度来衡量。完全磺酰基的计算值-硫掺入的程度仅通过再沉淀略有降低典型的AZkyZation程序.-(a)N-丁基乙酰胺与对甲苯基vinyZ suZphone在叔丁醇中的烷基化。将茶酰胺(1.15 g,10 mmol)加入到钾(O.39 gJ,10 mg原子)的t-buql醇(50 ml)溶液中。P-TolYlSulphone(10mmol)j在叔丁醇(50ml)中的溶液,搅拌加入。6小时后,中和混合物(AcOH)并加入水(200ml)。该产物大约是loyo.-~并在严重 Conditions.In 下升华,IS w. E. Backmann, w. J. Horton, E. L. ~ e n ~ e r , N. w.在Mac-后一种情况下,硫含量的一些损失可能是由于Naughton和C. E. Maxwell, J.陈省身。SOC., 1950, 72,3132.G. D. Buckley, J. L. Charlish, and J. D. Rose, J .SOL, 2o F. F. Blicke 和 H. Zinnes, J .一个 w w .嚼。Soc., 1955, 77,1947, 1514.4849.21 H. J. Taverne, Rec. Trav. chim., 1897, 16, 33.l 8 M. V. LockandB.F.萨格,J .Chem. SOC. (B), 1966, 6901546 J.C.S. Perkin I用二氯甲烷萃取并蒸馏得到三馏分:(i)N-丁基乙酰胺(59y0),nD1*.5 1.4422,b.p.73'在0.05 Torr, (ii) 2-叔丁氧基乙基对甲苯基砜 (28%) ,nD22 1.5131, b.p. 133' at 0.01 Torr (Found: C, 60.6;H,7.9.C13H2,03S需要C,60.9;H, 7.8%), vmx 1 320 和 1 145cm-1 (SO,), z (CC1,) 2.15-2.8 (4 H, m), 6.2-6.95 (4 H, m), 7.6 (3 H, s), 和 9.0 (9 H, s);(iii)2-对甲苯基磺酰乙醇和N-丁基-N-对甲苯基磺酰乙基乙酰胺(1.56克)的混合物,b.p.181-184' a t 0.05 Torr(1:3 by lHn.m.r.)。(b) NN'-乙烯二乙酰胺和丙烯腈。在搅拌下将叔丁醇(10ml)中的丙烯腈(20mmol)滴加到钾(6.4mg原子)和叔丁醇(100ml)中的二酰胺(10mmol)中。3 d后,用醋酸中和、浓缩、过滤,得到双氰基乙酰胺(37y0)、熔点和混合物 m.p.NCCHsCH、*NHBu t ArSO、。CHz.CHa~NH-CH,),NC.CHsCHs*NH.CH2)2ArSO,-CH,-CH,.NHMeNC.CH,-CH,-NAcBuArSO,CH,.NAcBunD'O1.43791.47841.54271.46281.5275,将沉淀的聚合物吸收在甲醇中,并用丙酮再沉淀。产物(1.2 g)的分析数字为:C,67.6;H, 9.5;S,2.9%。然后将聚聚体保持在t 210“C和0.1 mmHg下3 h。在此之后,S含量下降到1.5%。试图通过酸性水解(~M-HC~;8小时;130“C)和水解产物的色谱法从N-烷基化聚聚体中获得可识别的片段失败。将钠(0.3g)和尼龙6(2.5g)溶于苯甲醇中,并将混合物保持在120“C以溶解尼龙。对甲苯基乙烯基砜(3.加入6克)苯甲醇(75毫升),并将混合物在t 135“C下保持6小时。用乙酸进行中和,在混合物中水蒸气蒸馏后,向残留物中加入二氯甲烷,得到固体(2.3 g)(发现:S < 0.2%)。(b) 尼龙 6.表 3胺和酰胺-烯烃加合物的性能发现 (%) 所需 (%)M.p.(“C) 收率 ,-----h---\ -7[B.p./Torr] (%) C H N 式 C H N[115/18] 82 (1it.p b.p. 103” a t 10 Torr)[152/19] 80 (lit.,a b.p. 152' a t 20 Torr)86 88 56.4 6.4 15.3 c C2,,HZ8N,O,S2 56.6 6.6 1 5 .1 ~[150/0.15] 99 56.9 6.8 C1,Hl,N02S 56.4 7.0[106/0.05] 83 64.4 9.4 16.8 C,H,,N,O 64.3 9.5 16.5[192/0.1] 62 60.3 7.6 C,,H,,O,NS 60.6 7.7lH N.m.r. (7)2.1-2.7 (4 H, m), 6.6-7.2 (4 H, m),7.4 (2 H, s), 7.6 (3 H, s), 8.35 (1 H, s)2.0-2.6 ( 4 H, m)、6.5-7.15 (4 H, m)、7.55 ( 3 H,s)、7.6 (3 H, s)、8.0 (1 H, s)6.6(4H,q,J6Hz)、7.4(2H,t,J6Hz)、8.0 (3 H, s)、8.3-9.2 (7 H, m)2.1-2.7 (4 H, m)、6.4-6.9 (6 H, m)、7.6(3H,s)、8.2(3H,s)、8.4-9.4(7H,m)(NC.CH,CH2.NAcCH,), 143 57 57.2 7.0 CI2Hl8N,O, 57.6 7.2 6.3 ( 4 H, m), 7.2 (2 H, m), 7.7 (3 H, s)(ArSO,-CH,CH,.NAc.CH ,) 191 78 56.5 6.2 12.9C C,,H,,NO& 56.7 6.3 12.6 2.0-2.6(4H,m),6.0-6.9(6H,m),7.5( 3 H, s), 8.0 (3 H, s)PhCH,CO.NMeCH,*CH,.SO,Ar 83 99 65.0 6.1 C,8H,lN0,S 65.3 6.3 2.0-2.8 ( 3 H, m), 6.2-6.6 (2 H, m),6.95 (1 H, s), 7.5 (1 H, s)ArSOI*CH9CHsCHPhC0.NMe, 121 65 d 66.6 6.8 C1,H,,NO3S 66.1 6.7 2.1-2.7 (9 H, m), 5.9 (1 H , t, J 7 Hz),6.75-7.2 (8 H, m), 7.55 (3 H, s),7.8 (2 H, m)b A.E. 马爹利和 S.沙贝雷克,J.安塔尔。化学学报, 1950, 72, 5375.c S 分析。d 来自乙烯基砜 A A.E. Frost 和 A. E. Martell, J .Org. Chem., 1950,15,51.and amide.141-143“.母液中产生不变的酰胺正宗酰胺-烯烃加合物的制备-NN'-双对甲苯基磺酸-基乙基-NN'-乙烯二乙酰胺的一般程序。用苯(25ml)中的1,2-二氨基乙烷(10mmol)滴加苯(75ml)中的对甲苯基乙烯基砜(20mmol)。24 11后,蒸发得到氨基砜(87%),熔点85-86'(来自乙醇)(详见表3)。氨基砜(5.6mmol)在乙酸(25ml)中的溶液用乙酸酐(9mmol)处理。在t25“C下保持1小时,在l0O'C下保持1小时后,将混合物倒入碳酸氢钠水中,并用二氯甲烷萃取得到二酰胺,熔点190-192”(详见表3)。与Polyaunides反应的例子.-(a)(与R.PEAK)Ultramid 1C。将聚合物(1.6克)在二甲基乙酰胺(320毫升)中,在70“C下用对甲苯基乙烯基磺酸酯(4.6克)、叔丁醇(32毫升)和丁醇钾(2.8克)处理。将混合物在65-70“C下保持20小时,然后加入到4%乙酸水溶液(500毫升),(57%)中。(c) 尼龙66。将聚合物(4.0g)用叔丁醇(100ml)进行回流18小时,然后加入叔丁醇钾[来自叔丁醇(100ml)中的钾(0.9g)]。1小时后,对甲苯基乙烯基砜(6.3g,1当量。每个酰胺基团)的叔丁醇中加入,再回流4小时后,将混合物冷却并用乙酸中和。倾析留下残留物,用叔丁醇(150ml)洗涤,然后用丙酮(2×150ml)洗涤。剩余固体(4.05 g)(发现:N,10.3;S,8.6%)在160'C和0.01Torr下升华;残留物的S含量为1.2%。用二氯甲烷萃取时,将滗出物和洗涤液蒸发后的残留物(5.8 g)留下残留物(2.2 g)(发现:S,6.9;N,<0.5%)。提取物的蒸发得到醇(2)和乙醚(1)的混合物(3.6g)。我们感谢 S.R.C. 提供 C.A.S.E. 奖学金 (toP. D. H.) 和 R. Peak 先生对超中 1C 的实验[6/062 收稿日期,1976 年 1 月 9 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号