首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Improved methods for the oxidation of primary and secondary alcohols
【24h】

Improved methods for the oxidation of primary and secondary alcohols

机译:伯醇和仲醇氧化的改进方法

获取原文
获取外文期刊封面目录资料

摘要

1614 J.C.S. Perkin IImproved Methods for the Oxidation of Primary and Secondary AlcoholsBy Derek H. R. Barton and Craig P. Forbes, Department of Chemistry, Imperial College, London SW7 2AYThe two-stage procedure for the oxidation of secondary alcohol chloroformates by treatment with dimethylsulphoxide and then with triethylamine has been much improved by the addition of an acid scavenger, conveniently1.2-epoxypropane, in the first stage of the sequence.In agreement with mechanistic considerations, treatment of cholestanol, or of its nitrite, with nitrosyl cationsin the presence of hexamethyldisiloxane as acid scavenger gave an excellent yield of cholestanone.SOME years ago we described a new procedure for theoxidation of alcohols (Scheme 1). The alcohol was con-verted into its chloroformate and the latter treated withdimethyl sulphoxide.After loss of carbon dioxide theintermediate alkoxydimethylsulphonium salt wastreated with triethylamine to give the carbonylcompound and dimethyl sulphide. This procedure gavebsol; COCl2 bsol;/ /CH-OH 4 CH-O-COCl-SCHEME 1good yields in the oxidation of primary alcohols toaldehydes, as further confirmed by a recent appli~ation.~The method has the advantage that the reagents arecheap and that all operations are carried out at roomtemperature or lower under near neutral conditions.Large-scale operations would be no problem.The mechanism by which the alkoxydimethyl-sulphonium salt eliminates dimethyl sulphide hassubsequently been clarified by isotope labelling experi-m e n t ~ .~ It is known that first the triethylamineabstracts a proton from one of the methyl groupsbonded to positive sulphur and then an intramolecularhydride transfer takes place.we found that a secondaryalcohol cholestanol (I) was oxidised to the ketone (11)in poor yield (20). We have now discovered that theyields of ketone can be improved remarkably by theaddition of a non-basic acid scavenger, suitably 1,2-epoxypropane, in the first stage of the reaction.When the oxidation of cholestanol (I) was attemptedin dry tetrahydrofuran in the usual way,l no cholestanone(11) was formed. The product was a mixture of un-changed alcohol (I) and 3p,3rsquo;p-methylenedioxydichole-stane (III).5 The structure of this acetal was confirmedIn our original workD.H. R. Barton, B. J. Garner, and R. H. Wightman, J .Chem. SOC., 1964, 1865.N. Kornblum, J. W. Powers, G. J. Anderson, W. J. Jones,H. 0. Larson, 0. Levand, and W. M. Weaver, J . Anzer. Ckem.SOG., 1957, 79, 6662; N. Kornblum, W. J. Jones, and G. J.Anderson, ibid., 1959, 81, 4113.N. Finch, J.J. Fitt, andI. H. S. Hsu, J . Org. Chem., 1975, 40,K. Torssell, Tetrahedrort Letters, 1966, 4445.J. E. Herz, J. Lucero, Y. Santoyo, andE. S. Waight, Canad.206.J . Chem., 1971, 49, 24181975 1615by n.m.r. spectroscopy, elemental analysis, and its readyhydrolysis to cholestanol. Its formation was favouredif the reaction was carried out in dichloromethane inthe presence of dissolved hydrogen chloride or phosgene.However, in the presence of a proton scavenger like(Yl1 ,2-epoxypropane, l-chloro-2,3-epoxypropane, or epoxy-ethylbenzene, the oxidation proceeded smoothly toproduce a reasonable yield of the desired ketone.Foursteroidal chloroformates were oxidised in this way byusing epoxypropane. The results are given in theTable. The low yield of ll-oxoprogesterone mayindicate that even our modified procedure is not applic-able to the formation of hindered ketones.Oxidation of steroidal chloroformates by dimethylsulphoxideChloroformate of Product ()Pregnenolone Progesterone 73YieldCholestanol Cholestanone 80Cholesterol Cholest-4-enone 711 la-Hydroxyprogesterone 1 l-Oxoprogesterone 24The other products of the oxidation were the alcoholfrom which the chloroformate was derived and a lowyield of a sulphur-containing steroid, probably themethylthiomethyl ether.The initial oxidation productsfrom cholesterol and pregnenolone chloroformates werethe amp;-unsaturated ketones. Isomerisation to theconjugated ketones by oxalic acid and ethanol wascarried out with scrupulous exclusion of oxygen prior towork-up. In one case, concentration and crystallisationof the crude product from cholesterol chloroformateafforded cholest-5-en-3-one in 47 yield, but generallythe product mixtures contained too much alcohol forpurification by crystallisation and the oxidation productswere isolated by column or preparative thin-layerchromatography.Despite variation of solvent, relative concentrations ofreactants, reaction times, and the absence or presence ofmoisture, some alcohol was always re-formed.Thisalcohol formation does not appear to be occurring in thefinal step of the reaction because the decomposition ofthe intermediate alkoxydimethylsulphonium salt (IV)was found to proceed in high yield without any alcoholformation. Furthermore, the presence of alcohol in thereaction mixtures was shown by t.1.c. in all cases priorto addition of triethylamine. It seems that alcoholformation is occurring primarily in the rearrangementof the intermediate (V).The salt (IV) formed a crystalline precipitate whichcould be isolated in analytically pure state by filtrationin a sealed system. It was unstable in air and meltedwith decomposition over the range 90-120 ldquo;C.Re-duction with sodium borohydride in bis- (2-methoxy-ethyl) ether gave 3@-cholestanol, with no detectable3a-cholestanol. This excludes the possibility that theintermediate (V) suffers an SN2 inversion by dimethylsulphoxide to give the salt (VI) prior to elimination.Such a mechanism could have explained the loss ofcarbon dioxide from the intermediate (V) and the pooryield in the formation of 1 l-oxoprogesterone.H + Y bsol;/ . / +/ + /CH-O-N=O lsquo;CH-O-N=Ovlsquo;CH-O-N-o -+ lsquo;CH-OH + NO+y=0lsquo;CH-O-N=O + NO+ bsol;CH---O-y=O/ /lsquo;C=O t H++ 2NO/SCHEME 2In a previous paper6 we proposed a mechanism(Scheme 2) for the acid-catalysed decomposition ofnitrites. If this mechanism is correct, treatment of analcohol or nitrite with a source of nitrosyl cations in thepresence of a proton scavenger should favour theformation of a ketonic product. This was found to bethe case.Treatment of cholestanol with nitrosyl tetra-fluoroborate in methylene chloride-acetonitrile in thepresence of hexamethyldisiloxane as scavanger produceda nearly quantitative yield of cholestanone. Benzylalcohol was similarly oxidised to benzaldehyde in 90yield. This is an interesting result because the chloro-formate method of oxidation of benzyl alcohol gave onlybenzyl chloride. The formation of ketone by nitrosationof nitrite supports our Scheme 2.We also examined the alkylation of nitrites as acomparable source of carbonyl compounds. Treatmentof cholest any1 nitrite with triethyloxonium tetrafluoro-borate gave cholestanone (50).EXPERIMENTALM.p.s were carried out on a Kofler hot-stage apparatus.Optical rotations were measured for solutions in chloroform.1.r.spectra were obtained on a Unicam SP 200 spectro-photometer. N.m.r. spectra (solutions in CDCI,) wereobtained on a Varian T60 spectrometer. Qualitative andpreparative t.1.c. was carried out on silica gel (G254)D. H. R. Barton, G. C. Ramsey, and D. Wege, J . Chem. SOC.(C), 1967, 19151616 J.C.S. Perkin Ideveloped with 20 ethyl acetate in light petroleum orbenzene. Column chromatography was carried out withgrade I11 alumina eluted with increasing proportions ofmethylene chloride in light petroleum. All solvents werepurified by standard procedures. Light petroleum refersto the fraction of b.p.60-80". All chloroformates wereprepared as in our previous publicati0n.lOxidation of Cholestan-3P-yZ Chloroformate.-(i) Cholestan-3p-yl chloroformate (2.15 g, 5 mmol) in dry tetrahydrofuran(10 ml) was treated with dimethyl sulphoxide (1.56 g,20 mmol) and stirred a t room temperature for 20 h.Triethylamine (0.8 g, 8 mmol) was added and the mixturewas stirred for 30 min, diluted with methylene chloride,washed with water, and dried (Na,SO,). T.1.c. indicatedthe presence of a mixture of cholestanol and a compoundof higher RF values.(ii) The reaction was repeated in methylene chloride(10 ml) containing dissolved hydrogen chloride (1 mmol) .After work-up t.1.c. indicated the presence of the same twocompounds but a greater amount of the high RF com-ponent.P.1.c. produced 3~,3'~-methylenedioxycholestane(111) (1.1 g), m.p. 203-206" (from acetone) (lit.,6 206-207"), 6 (CDCl,) 3.6 (2 H, s), and 4.9 (2 H, s) (Found: C,83.55; H, 12.0. Calc. for C,,H,,O,: C, 83.7; H, 12.25).(iii) The reaction was repeated in tetrahydrofuran in thepresence of 1,2-epoxypropane (480 mg, 8.3 mmol). T.1.c.indicated the presence of cholestanol and cholestanone (bycomparison with authentic samples). A minor high l i psulphur-containing steroid (palladium chloride spray re-agent) was also present but none of the acetal (111).Column chromatography gave pure cholestan-3-one ( 1.55 g,4 mmol), m.p. 130-132', mixed m.p. 130-132', a,3-44.5" (c 1.86).(iv) Cholestan-3P-yl chloroformate (670 mg, 1.5 mmol)in methylene chloride (4 ml) was treated with 1,2-epoxy-propane (140 mg, 2.5 mmol) and dimethyl sulphoxide(1 ml) and the solution was left a t room temperature for20 h.The crystals of choZestan-3~-yloxydimethylsul~honiumchloride (V) were filtered off in a Craig tube, washed fivetimes with small volumes of dry ether and dried undervacuum for 4 h; m.p. 90-120" (decomp.) (Found: C,71.6; H, 10.85; C1, 7.0; S, 6.3. Camp;amp;1OS requires C,71.75; H, 11.0; C1, 7.3; S, 6.6).The reaction was repeated and without removing thesalt the suspension was cooled to 0 "C, treated with sodiumborohydride (250 mg, 6.6 mmol) in bis-(2-methoxyethyl)ether (5 ml), and left for 3 h to warm to room temperature.It was diluted with 0.5~-hydrochloric acid and extractedwith ether.The organic phase was washed, dried, andconcentrated to leave a crystalline solid. T.1.c. showed thepresence of only cholestan-3P-01. No cholestan-3a-01 waspresent (comparison with an authentic specimen).Oxidation of Cholesterol ChZmoformate.-(i) Cholesterolchloroformate (10 g, 22.3 mmol) in tetrahydrofuran (60 ml)was treated with 1,2-epoxypropane (2.5 g, 44 mmol) anddimethyl sulphoxide (16 g, 200 mmol) and the mixture wasstirred under nitrogen for 20 h. Triethylamine (3 g, 30No ketone was formed.mmol) was added and stirring was continued for 30 min.The mixture was concentrated to 20 ml, treated withethanol (25 ml) and oxalic acid (2.0 g) and refluxed undernitrogen for 2 h. The solution was diluted with waterand extracted with methylene chloride, and the organicphase was dried and concentrated to a solid.Chromato-graphy gave pure cholest-4-en-3-one (6.0 g, 15.6 mmol).(ii) The reaction was repeated with cholesteryl chloro-formate (4.52 g, 10 mmol). The solution was concentratedto dryness without work-up. The residue in ether (30 ml)was treated with methanol (15 ml), concentrated to halfits volume, and cooled, to give cholest-5-en-3-one (180 mg,4.7 mmol), m.p. 119-124' (from ethanol), a, -4.4'(c 1.96).Oxidation of Pregnenolone Chloroformate.-The oxidationwas carried out with pregnenolone chloroformate (6.3 g,16.7 mmol) exactly as for cholesterol chloroformate. Afterisomerisation and work-up, chromatography gave pro-gesterone (3.76 g, 12.4 mmol), m.p.129-132' (fromethanol), aID +216" (c 2.4). An authentic sample crystal-lised in the same way had the same m.p. and a, f214"(c 1.08).Oxidation of 1 lu-Hydroxyprogesterone ChZo7oformate.-The oxidation was carried out with 1 la-hydroxyprogesteronechloroformate (490 mg, 1.25 mmol) exactly as for cholestan-3p-yl chloroformate. After work-up and concentration,p.1.c. gave 11-oxoprogesterone (100 mg, 0.32 mmol),identical with an authentic specimen.Oxidations with NitrosyZ Tetvufluorobwate.-Cholestan-3p-01 (883 mg, 1.5 mmol) in acetonitrile (12 ml) andmethylene chloride (3 ml) was treated with hexamethyl-disiloxane (2.9 g, 18 mmol) and nitrosyl tetrafluoroborate(1.10 g, 9.0 mmol) and stirred a t 0 "C for 2 h. The solutionwas washed with aqueous 5 sodium disulphite and water,dried, and concentrated to a crystalline solid (540 mg).Crystallisation from acetone gave pure cholestan-3-one,m.p. 128-130", a, +44" (c 1.8).(ii) Benzyl alcohol (326 mg, 3.0 mmol) in methylenechloride ( 15 ml) was treated with hexamethyldisiloxane(900 mg, 5.6 mmol) and nitrosyl tetrafluoroborate (670 m,5.5 mmol). The suspension was stirred for 15 min a t roomtemperature, worked up as above, and added to methanolic2,4-dinitrophenylhydrazine. The precipitated benzalde-hyde 2,4-dinitrophenylhydrazone (820 mg, 2.7 mmol),crystallised from benzene-ethanol, was identical with anauthentic specimen.AlkyZation of Cholestan-3P-yZ Nitrite.-Cholestan-3P-y1nitrite (417 mg, 1 mmol) in methylene chloride (5 ml) wastreated with triethyloxonium tetrafluoroborate (569 mg,3 mmol) and stirred under nitrogen a t room temperaturefor 50 min. The solution was washed with water, dried,and concentrated to leave a solid. Column chromato-graphy gave cholestan-amp;one (187 mg, 0.5 mmol).support and for gifts of chemicals.We thank the Schering-Plough Corporation for financial6/494 Received, 13th March, 1976
机译:1614 J.C.S. Perkin IImproven Methods for the Oxidation of Primary and Secondary Alcohols作者:Derek H. R. Barton and Craig P. Forbes, Department of Chemistry, Imperial College, London SW7 2AY通过添加酸清除剂,先用二甲基亚砜和三乙胺处理氯甲酸乙酯氧化仲醇的两阶段程序已大大改进, 方便地1.2-环氧丙烷,在序列的第一阶段。与机理考虑一致,用亚硝基阳离子处理胆甾烷醇或其亚硝酸盐时,存在六甲基二硅氧烷作为酸清除剂,可获得极好的胆甾烷酮。几年前,我们描述了一种醇氧化的新程序(方案1)。将醇转化为氯甲酸盐,后者用二甲基亚砜处理。二氧化碳失失后,将中间烷氧基二甲基磺酸盐用三乙胺处理,得到羰基化合物和二甲基硫醚。该方法给出了\ COCl2 \/ /CH-OH 4 CH-O-COCl-SCHEME 1在伯醇甲醛氧化中产率高,最近的应用进一步证实了~~该方法的优点是试剂价格便宜,并且所有操作均在室温或接近中性的条件下在室温或更低的条件下进行。大规模操作不会有问题。烷氧基二甲基磺酸盐消除二甲基硫化物的机理随后通过同位素标记实验阐明-m e n t ~ .~ 已知三乙胺首先从与正硫键合的甲基之一中提取质子,然后发生分子内氢化物转移,我们发现仲醇[胆甾醇(I)]被氧化为酮(11),收率低(20%)。我们现在发现,通过在反应的第一阶段添加非碱性酸清除剂(适当的 1,2-环氧丙烷)可以显着提高酮的产率。当以通常的方法在干燥的四氢呋喃中尝试氧化胆甾醇(I)时,l没有形成胆甾烷酮(11)。该产物是未改变的醇(I)和3p,3'p-亚甲基二氧基二氯烷(III)的混合物.5该缩醛的结构在我们的原始工作中得到证实D.H.R. Barton, B. J. Garner, and R. H. Wightman, J .Chem. SOC., 1964, 1865.N. Kornblum, J. W. Powers, G. J. Anderson, W. J. Jones,H. 0.拉尔森,0。Levand 和 WM Weaver,J .安泽尔。Ckem.SOG., 1957, 79, 6662;N. Kornblum, W. J. Jones, and G. J.Anderson, 同上, 1959, 81, 4113.N. Finch, J.J. Fitt, andI.H. S. Hsu, J .Org. Chem., 1975, 40,K. Torssell, Tetrahedrort Letters, 1966, 4445.J. E. Herz, J. Lucero, Y. Santoyo, andE.S.怀特,加拿大.206.J。Chem., 1971, 49, 24181975 1615by n.m.r. 光谱学、元素分析及其现成水解为胆甾烷醇。如果在溶解的氯化氢或光气存在下在二氯甲烷中进行反应,则有利于其形成。然而,在质子清除剂如(Yl1,2-环氧丙烷、l-氯-2,3-环氧丙烷或环氧乙苯)存在下,氧化顺利进行以产生所需酮的合理产率。使用环氧丙烷以这种方式氧化四甾体氯甲酸酯。结果在表中给出。ll-氧代孕酮的低产率可能表明,即使我们修改了程序也不适用于受阻酮的形成。二甲基亚砜氧化甾体氯甲酸酯产物氯甲酸酯 (%) 孕烯醇酮 黄体酮 73产量胆甾烷醇 胆甾酮 80胆固醇胆甾烷-4-烯酮 711 la-羟孕酮 1 l-氧代孕酮 24氧化的其他产物是衍生氯甲酸酯的醇和含硫类固醇(可能是甲硫基甲醚)的低产率。胆固醇和氯甲酸孕烯醇酮的初始氧化产物为&-不饱和酮。通过草酸和乙醇异构化为共轭酮,在检查前严格排除氧气。在一种情况下,氯甲酸胆固醇粗产物的浓缩和结晶使胆甾-5-烯-3-酮的收率为47%,但通常产物混合物中含有过多的醇,无法通过结晶纯化,氧化产物通过柱或制备薄层色谱分离。尽管溶剂、反应物的相对浓度、反应时间以及水分的缺失或存在变化,但一些醇总是会重新形成。这种醇的形成似乎没有发生在反应的最后一步,因为发现中间烷氧基二甲基磺酸盐(IV)的分解在没有任何醇形成的情况下以高产率进行。此外,t.1.c显示了在起作用的混合物中存在酒精。在添加三乙胺之前的所有情况下。似乎醇的形成主要发生在中间体(V)的重排中。盐(IV)形成结晶沉淀物,可通过在密封系统中过滤以分析纯状态分离。它在空气中不稳定,在90-120“范围内熔化分解,在双-(2-甲氧基乙基)醚中用硼氢化钠还原得到3@-胆甾烷醇,未检测到3a-胆甾烷醇。这排除了中间体 (V) 在消除之前被二甲基亚砜转化产生盐 (VI) 的可能性。这种机制可以解释中间体(V)中二氧化碳的损失和1-氧代孕酮形成的低产量。H + Y \/ ./ +/ + /CH-O-N=O 'CH-O-N=Ov'CH-O-N-o -+ 'CH-OH + NO+y=0'CH-O-N=O + NO+ \CH---O-y=O/ /'C=O t H++ 2NO/SCHEME 2在之前的论文6中,我们提出了酸催化分解亚硝酸盐的机理(方案2)。如果这种机制是正确的,那么在质子清除剂存在下,用亚硝基阳离子源处理厌醇或亚硝酸盐应该有利于酮产物的形成。发现情况确实如此。在六甲基二硅氧烷存在下,用亚硝酰基四氟硼酸在二氯甲烷-乙腈中处理胆甾醇,产生几乎定量的胆甾酮产量。苯甲醇以90%的收率与苯甲醛相似地氧化。这是一个有趣的结果,因为苯甲醇氧化的氯甲酸酯方法只得到氯化苄。亚硝酸盐亚硝化形成酮支持我们的方案2.我们还研究了亚硝酸盐的烷基化作为羰基化合物的可比来源。用四氟硼酸三乙基氧铵处理胆汁 any1 亚硝酸盐得到胆甾烷酮 (50%)。EXPERIMENTALM.p.s在Kofler热台设备上进行。测量氯仿溶液的旋光度.1.r.光谱是在Unicam SP 200分光光度计上获得的。N.m.r.(英语:N.M.R.)光谱(CDCI 中的溶液)是在瓦里安 T60 光谱仪上获得的。定性和制备性 t.1.c.在硅胶 (G254) 上进行 D. H. R. Barton, G. C. Ramsey, and D. Wege, J .Chem. SOC.(C), 1967, 19151616 J.C.S. Perkin I用20%乙酸乙酯在轻质石油或苯中开发。用I11级氧化铝在轻质石油中用增加比例的二氯甲烷洗脱进行柱层析。所有溶剂均通过标准程序纯化。轻质石油是指b.p.60-80“的分数。(i)胆甾烷-3P-基氯甲酸酯(2.15 g,5 mmol)在干燥的四氢呋喃(10 ml)中用二甲基亚砜(1.56 g,20 mmol)处理,室温搅拌20 h,加入三乙胺(0.8 g,8 mmol),搅拌30 min,用二氯甲烷稀释,用水洗涤,干燥(Na,SO,)。T.1.c.表示存在胆甾醇和较高RF值的化合物的混合物。(ii)在含有溶解氯化氢(1mmol)的二氯甲烷(10ml)中重复反应。体检后 t.1.c.P.1.c.产生3~,3'~-亚甲基二氧基胆甾烷(111)(1.1 g),熔点203-206“(来自丙酮)(lit.,6 206-207”),6(CDCl,)3.6(2 H,s)和4.9(2 H,s)(发现:C,83.55;H,12.0。C,,H,,O,: C, 83.7;H,12.25%)。(iii)在1,2-环氧丙烷(480 mg,8.3 mmol)存在下,在四氢呋喃中重复反应。T.1.c.表明存在胆甾醇和胆甾烷酮(通过与真实样品进行比较)。还存在少量高含硫类固醇(氯化钯喷雾试剂),但不含乙缩醛(111)。柱层析得到纯胆甾烷-3-酮(1.55 g,4 mmol),熔点130-132',混合熔点130-132',[a],3-44.5“(c 1.86)。(iv)用1,2-环氧丙烷(140 mg,2.5 mmol)和二甲基亚砜(1 ml)处理胆甾烷-3P-基氯甲酸酯(670 mg,1.5 mmol)的二氯甲烷溶液(4 ml),溶液在室温下放置t20 h,在Craig管中滤去choZestan-3~-yloxydimethylsul~honiumchloride(V)的晶体,用少量干燥乙醚洗涤5次,真空干燥4 h;熔点 90-120“ (分解)(实测值:C,71.6;H, 10.85;C1, 7.0;小号,6.3。C&&1OS 需要 C,71.75;H, 11.0;C1, 7.3;S,6.6%)。重复反应,在不除去盐的情况下,将悬浮液冷却至0“C,用硼氢化钠(250mg,6.6mmol)在双(2-甲氧基乙基)醚(5ml)中处理,并放置3小时至升温至室温。用0.5~-盐酸稀释,用乙醚萃取。将有机相洗涤、干燥、浓缩,留下结晶固体。T.1.c.显示仅存在胆甾烷-3P-01。不存在胆甾烷-3a-01(与真实标本比较)。胆固醇ChZmoformate的氧化.-(i)胆固醇氯甲酸酯(10 g,22.3 mmol)在四氢呋喃(60 ml)中的处理用1,2-环氧丙烷(2.5 g,44 mmol)和二甲基亚砜(16 g,200 mmol)处理,并将混合物在氮气下搅拌20小时。加入三乙胺(3g,30未形成酮.mmol),继续搅拌30分钟。将混合物浓缩至20ml,用乙醇(25ml)和草酸(2.0g)处理,并在氮气下回流2小时。溶液用水稀释并用二氯甲烷萃取,有机相干燥浓缩成固体。色谱图得到纯胆甾-4-烯-3-酮(6.0 g,15.6 mmol)。(ii)用氯甲酸胆固醇酯(4.52g,10mmol)重复反应。将溶液浓缩至干,无需后处理。将乙醚(30ml)中的残留物用甲醇(15ml)处理,浓缩至其体积的一半,并冷却,得到胆甾-5-烯-3-酮(180mg,4.7mmol),熔点119-124'(来自乙醇),[a],-4.4'(c 1.96)。氯甲酸孕烯醇酮的氧化-用氯甲酸孕烯醇酮(6.3g,16.7mmol)进行氧化,与胆固醇氯甲酸酯完全相同。异构化后和后处理,色谱法得到孕酮原(3.76 g,12.4 mmol),m.p.129-132'(来自乙醇),[aID +216“(c 2.4)。以相同方式结晶的真实样品具有相同的 m.p. 和 [a],f214“(c 1.08)。1-lu-羟孕酮ChZo7o甲酸酯的氧化。-用1la-羟孕酮氯甲酸酯(490mg,1.25mmol)进行氧化,与胆甾烷-3p-基氯甲酸酯完全相同。检查和集中注意力后,p.1.c.给予11-氧代孕酮(100mg,0.32mmol),与真实标本相同。用六甲基二硅氧烷(2.9 g,18 mmol)和四氟硼酸亚硝酰基(1.10 g,9.0 mmol)处理NitrosyZ Tetvufluorobwate.-胆甾烷-3p-01(883 mg,1.5 mmol)在乙腈(12 ml)和二氯甲烷(3 ml)中的氧化反应,并在t 0“C下搅拌2 h。溶液用5%二亚硫酸钠水溶液和水洗涤,干燥,浓缩成结晶固体(540mg)。丙酮结晶得到纯胆甾烷-3-酮,熔点128-130“,[a],+44”(c 1.8)。(ii)苯甲醇(326 mg,3.0 mmol)在二氯甲烷(15 ml)中的溶液用六甲基二硅氧烷(900 mg,5.6 mmol)和四氟硼酸亚硝酰酯(670 m,5.5 mmol)处理。将悬浮液在室温下搅拌15分钟/t,同上所述,加入甲醇2,4-二硝基苯肼中。由苯-乙醇结晶而出的苯甲醛-2,4-二硝基苯腙(820 mg,2.7 mmol)与真品相同。胆甾烷-3P-yZ亚硝酸盐-胆甾烷-3P-y1亚硝酸盐(417mg,1mmol)在二氯甲烷(5ml)中的烷基化用四氟硼酸三乙基氧铵(569mg,3mmol)处理,并在室温下氮气搅拌50分钟。将溶液用水洗涤,干燥,浓缩,留下固体。柱色谱图得到胆聚糖-&酮(187mg,0.5mmol).支持和化学品的礼物。我们感谢先灵葆雅公司的财务[6/494 收稿日期, 13th March, 1976

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号