...
首页> 外文期刊>Analytical and bioanalytical chemistry >Smartphone-enabled field monitoring tool for rapid hexavalent chromium detection in water
【24h】

Smartphone-enabled field monitoring tool for rapid hexavalent chromium detection in water

机译:Smartphone-enabled field monitoring tool for rapid hexavalent chromium detection in water

获取原文
获取原文并翻译 | 示例
           

摘要

Chromium contamination of soil and water is a serious environmental and public health concern as the hexavalent form of chromium [Cr(VI)] is readily soluble in water and is a confirmed carcinogen. There is an imminent need for a robust, low-cost, and simple analytical technique to facilitate in situ monitoring of Cr(VI) in water. Current quantitative methods of Cr(VI) detection are largely laboratory-based, time-consuming, expensive, and require training for implementation. In this contribution, a portable, easy-to-use, and compact measuring tool is presented that provides Cr(VI) concentration within 10 min of water sampling over a linear range of 0-3 mg L-1. This tool utilizes a relatively inexpensive camera-enabled smartphone with a custom-made test chamber attachment to seamlessly perform Cr(VI) measurements on water samples in the field. For analysis, an android-based software application was developed that directs the user to perform a simple series of steps following the diphenylcarbazide-based colorimetric method prescribed by the American Public Health Association. The tool was validated against a standard UV-visible spectrophotometer for a variety of synthetic and naturally contaminated water samples, with correlation factors greater than 0.993 (p < .001). The colorimetric method was also validated against a non-colorimetric Cr(VI) detection technique-ion chromatography-inductively coupled plasma mass spectrometry. Furthermore, Cr(VI) detection limits for the smartphone-enabled colorimetric method were found to be within 1.3-11.6 mu g L-1, which were significantly better than reported for commercially available field test kits, and even surpassed the limits exhibited by a typical spectrophotometer (25-50 mu g L-1). Finally, real-time mapping of source waters at a contaminated site was demonstrated by remote logging of Cr(VI) water quality data and corresponding GPS coordinates into a cloud server. This study highlights the potential role of smartphone-based monitoring tool in providing information to the affected community and enabling safe access to drinking water.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号