首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Biosynthesis of vitamin B6. Incorporation of glycolaldehyde into pyridoxal
【24h】

Biosynthesis of vitamin B6. Incorporation of glycolaldehyde into pyridoxal

机译:维生素B6的生物合成。将乙醇醛掺入吡哆醛中

获取原文
获取外文期刊封面目录资料

摘要

1622 J.C.S. Perkin IBiosynthesis of Vitamin B6. Incorporation of Glycolaldehyde into Pyri-doxalBy Robert E. Hill, Peter Horsewood, and Ian D. Spenser,rdquo; Department of Chemistry, McMaster University,Hamilton, Ontario L85 4M1, Canada(in part) Yoshiki Tani, Department of Agricultural Chemistry, Kyoto University, Kyoto, JapanRadioactivity from 14Cglycolaldehyde enters pyridoxal phosphate specifically, and is confined to the two-carbonunit C(5)-C(5rsquo;). Glycolaldehyde enters as an intact two-carbon unit, the aldehyde carbon atom supplying C-5,and the carbinol carbon atom C-5lsquo; of the vitamin. These observations are interpreted in terms of the early stagesof the biosynthesis of vitamin B6.WE have demonstrated l-3 that radioactivity fromspecifically labelled D-glUCOSe and glycerol is incorpor-ated non-randomly into pyridoxol, biosynthesized byEscherichia coli B mutant WG2.The data are con-sistent with the hypothesis that the eight-carbonskeleton of pyridoxol is generated from three precursorunits. Two of these, giving rise to the C, fragments ofpyridoxol, C(4rsquo;)-C(4)-C(3) and C(5rsquo;)-C(5)-C(6), arethree-carbon compounds closely related to triose phos-phate, whereas the third, which yields the C, fragment ofpyridoxol, C(2rsquo;)-C(Z), is a two-carbon compoundderivable from glycolytic intermediates or from pyruvate.We inferred1*, on mechanistic grounds that this two-carbon compound was an aldehyde, and suggested thatit might be at the oxidation level of acetaldehyde3 orof gly~olaldehyde.~The notion that glycolaldehyde might be implicatedin the biosynthesis of vitamin B6 was first mooted5 onthe basis of the finding6 that this compound replacedvitamin B, in promoting the growth of two B,-requiringstrains of E.coli. Recently Dempsey characterizedan E. coli B mutant, WG3, with a nutritional require-ment for pyridoxol which was satisfied by glycol-aldehyde,lsquo; and isolated radioactive samples of thevitamin from cultures of the mutant which had beenincubated with 1,2-14C2- and with 2-14C-glycol-aldehyde.* Glycolaldehyde thus apparently served as aprecursor of vitamin B,. Degradation of the labelledsamples of pyridoxol obtained from these experimentsshowed that, contrary to prediction, little, if any,radioactivity was present at the C, fragment, C(2rsquo;)-C(2),of these samples.4 This indicated non-random distri-bution of label, but the location of labelling was notdetermined.We now provide evidence that glycol-aldehyde is incorporated as an intact unit into the C,fragment, C(Srsquo;)-C(5), of pyridoxol and that C-5rsquo; isspecifically derived from the carbinol carbon atom andC-5 from the carbonyl carbon atom of glycolaldehyde.RESULTS AND DISCUSSIONRadioactive samples of pyridoxol hydrochloride,obtained by Tani and Dempsey from pyridoxal phos-phate which they had isolated from cultures of E. coli Bstrain WG3 after incubation with l ,2-14CJglycol-aldehyde (ref. 8, expts. 111-6, 111-9) or with 2-14Cglycol-aldehyde (ref. 8, expts. 111-5, III-S), were diluted withinactive carrier and degraded, by the reactions shownin Scheme 1, to locate the sites of labelling.The specificactivities of the degradation products are listed inTable 1.Within experimental error, all activity of the pyridoxolhydrochloride derived from 2-14Cglycolaldehyde t wasThis sample, prepared by oxidative decarboxylation of recovered in benzoic acid, representing C-5rsquo; of pyridoxol.3-14Cserine, was assumed to be labelled solely at the carbinolcarbon atom on the basis of its mode of preparation, but rigorousevidence proving the position of 1 was not secured.* 4 R. E. ill and 1. D. spenser, Canad. J . ~ i ~ ~ h ~ ~ . , 1973, 51,6 J. G. Morris, J . Gen. Microbial., 1969, 20, 697.6 J. G. Morris and D. D. Woods, J . Gen. Micvobiol., 1969, 20,7 W.B. Dempsey, J . Bucteriol., 1971, 108, 1001.8 Y . Tani and W. B. Dempsey, J . Bucteriol., 1973, 116, 341.1412.R. E. Hill and I. D. Spenser, Science, 1970, 169, 773.R. E. Hill, R. N. Gupta, F. J. Rowell, and I. D. Spenser,8 R. E. Hill, F. J. Rowell, R. N. Gupta, and I. D. Spenser,J . Amer. Chem. Soc., 1971, 93, 618.J . Biol. Chem., 1972,247, 1869.6761975 1623The benzoic acid, i.e. C-5rsquo;, from the pyridoxol derivedfrom 1 ,2-14C,amp;lycolaldehyde,* on the other hand,I 0 I lK+ -N*05 rsquo;H 0 2 C( Y ) 0SCHEME 1 Chemical degradation of pyridoxol, permittingisolation of C-5rsquo; and C-6contained only half the label of the intact vitamin. Theother half must be located at C-5, since the phthaloyl-glycine (i.e. C-5 plus C-5rsquo;) obtained from this sample ofpyridoxol accounted for all its activity.It follows thatglycolaldehyde enters the two-carbon unit, C(5rsquo;)-C(5), ofpyridoxol as an intact unit, the aldehyde carbon atom(i.e. C-1) supplying C-5, and the carbinol carbon atom(i.e. C-2) C-5rsquo; of pyridoxol.?* This was prepared by oxidative decarboxylation of U-14Cserine, and was assumed to have activity equally distributedbetween the carbinol and the carbonyl carbon atoms. Rigorousproof for equal distribution of label was not obtained, however.8 t These results also show that the two carbon atoms of glycol-aldehyde maintain their chemical indivlduality in the course ofmetabolism, i.e. that equilibration of label, by way of enolization(i) (ii) (iii), does not take place.HO-CH,-CH=W-HO-CH=CH-OH~O=CH-CH2-OH(0 (ii) (iii)Growth of E.coli B WG3, a pyridoxol-requiringmutant, can be maintained only if minimal medium,containing either 0.2 glucose 739 or 0.2 glycerol * asgeneral carbon source, is supplemented by pyridoxol, orby gly~olaldehyde.~ It follows that this mutant cannotbiosynthesize glycolaldehyde from glucose or fromglycerol. Since specific incorporation of glycolaldehydeinto pyridoxal phosphate is now demonstrated, and it isshown that a single glycolaldehyde unit enters thepyridoxal molecule, it follows that the samples ofpyridoxal phosphate, produced by E. coli B WG3cultures on incubation with labelled glycolaldehyde,must show a molar specific radioactivity (mCi mmol-l)identical with that of the samples of 14Cglyc~laldehydefrom which they are derived.That is, the specificradiochemical yield (= 100 x molar specific radioactivityof product/molar specific radioactivity of precursor)must be 100. Published data8 tend to bear out thisprediction. $Failure to recognize that in these experimentsmaintenance within the product of the molar specificactivity of the precursor was a consequence of the experi-mental conditions prompted the conclusion in a recentreview lo that whereas lsquo; 14Cglycolaldehyde served as ahighly efficient precursor of labelled pyridoxol,rsquo; theimportance of glycerol and glucose in pyridoxol bio-synthesis was questionable, since in experiments with14C-labelled samples of these substrates lsquo; the total in-corporation $ of radioactivity into pyridoxol wasslight .rsquo; loBefore attempting an interpretation of the mode ofincorporation of glycolaldehyde into vitamin B,, it isnecessary to correct the impression conveyed by thismisleading comparison.Non-random incorporation of radioactivity fromspecifically labelled radiomers of glycerol into pyridoxolwas demonstrated by chemical degradati~n-l-~ It wasshown that approximately one third of the molarspecific activity of pyridoxol derived from 2-14C-glycerol was located at each of C-2 and C-4.Theremaining third was predicted to reside at C-5 ofpyridoxol. This prediction is now confirmed. Whereasbenzoic acid (i.e. C-5rsquo;) obtained from 2-14Cglycerol-derived pyridoxol was devoid of radioactivity, phthaloyl-glycine (i.e.C-5rsquo; plus C-5) accounts for one-third of its$ The apparent discrepancies in the molar specific activities ofglycolaldehyde and of pyridoxal phosphate observed in severalexperiments (Table 2 of ref. 8) (specific radiochemical yieldsreported for four experiments with 2-14Cglycolaldehyde 80, 100,90, 50 and for three experiments with l, 2-14C,glycolaldehyde114, 86, 66) are a measure of the accuracy of the radioactivitydeterminations on which these data are based.The two low values (50 and 66) were obtained in cultures ofWG3 which had undergone partial reversion to wild type.8The reduction in the specific radiochemical yields in these experi-ments indicates that, in wild type cultures, 14Cglycolaldehyde orone of its metabolites encounters a corresponding unlabelled poolprior to incorporation into the product.9 i.e.the percentage incorporation (= 100 x total activityrecovered in product/total activity administered in precursor).9 W. B. Dempsey, J . Bacteriol., 1969, 100, 295.lo G. W. E. Plaut, C. M. Smith, and W. L. Alworth, Ann. Rev.Biochem., 1974, 43, 8991624label, which is therefore located at C-5, as predicted(Table 2).Similarly, it is now shown that C-6 of the pyridoxolderived from 1-14Cglycerol is devoid of activityJ.C.S. Perkin Iand C(5rsquo;)(5)(6) are incorporated intact, The third,giving rise to the C, unit, C(2lsquo;)-C(2), suffers loss of aterminal carbon atom.Since specific incorporation of glycerol into pyridoxolTABLE 1Incorporation of glycolaldehyde into pyridoxolSubstrater 2-1PCGlycolaldehyde 1,2-14C.JGlycolaldehydeL c r t Products C Atoms of Pyridoxol SA RSA SA 0 RSAPyridoxol hydrochloride (I) All 1.18 f 0.04 0 100 amp; 3 1.11 f 0.03d 100 f 2Isopropylidenepyridoxol (11) All 1.20 f 0.04 102 f 4Isopropylideneisopyridoxal (VI) All 1.23 f 0.03 106 f 4 1.07 f 0.03 97 f 4Isopropylidene-6rsquo;-phenylpyridoxol (VII) All 1.16 f 0.04 99 f 4 1.11 f 0.04 looamp; 4Benzoic acid C-6rsquo; 1.11 f 0.02 94f 3 0.68 f 0.01 62 f 2Isopyropylidenep yridoxol (11) AllIsopropylidenephthaloylisopyridoxamine AllPhthaloylglycine (V)Phthaloylglycine minus benzoic acidC-6rsquo;.-6(Iv)C-6 (by difference)0.96 f 0.03 * 100 5 30.91 f 0.06 9 6 k 60.91 f 0.03 97 * 446 f 6Pyridoxol hydrochloride All 0.69 f 0.02f*h 100 f 3 0.76 f 0.03 v p A 100 f 3Isoprop ylidenep yridoxol All 0.70 f 0.02 101 f 4K/R acetate from pyridoxol c-2lsquo;, 2 0.01 amp; 0.003 2 amp; 0.4 0.02 f 0.02 3 f 3K/R acetate from 4lsquo;-deoxypyridoxol C-2rsquo;, -2, -4!, -4 0.001 f 0.01 0.1 f 24rsquo;-Deoxypyridoxol All 0.66 f 0.03 96 amp; 6Specific activity (disint.min-l mmol-1) x b Relative specific activity () (pyridoxol hydrochloride = 100). Obtainedfrom pyridoxd phosphate (expt. 111-8, ref. 8) by conversion into pyridoxol hydrochloride Is and dilution with inactive carrier.d As c, but expt. 111-9, ref. 8. 6 As c. but expt. 111-9. ref. 8, and followed by conversion to the isopropylidene derivative. f As c,but expt. 111-6, ref. 8. As c, but-expt. 111-6, ref. 8. Cf. ref.4.TABLE 2Degradation t o locate label at C-5 of pyridoxol derived from l-14Cglycerol and from 2-*4CglycerolSubstrateA t *f I -l l-14CGlycerol 2-W GlycerolA AProducts C Atoms of Pyridoxol SA RSA SA 0 RSAPyridoxol hydrochloride (I) All 6.16 f 0.04 0 100 f 1 3.16 f 0.02 100 f 1Isoprop ylidenephthalo ylisop yridoxamine All 6.00 f 0.04 97f 1 3.04 f 0.02 96 f 1C-6rsquo;, -5 1.02 f 0.01 20 f 0.3 1.07 f 0.01 34 f 0.3 Phthaloylglycine (V)Benzoic acid C-6rsquo; 22f 1 6 0.6 f. 0.2Phthaloylglycine minus benzoic acid C-6 (by difference) Inactive 33 f 0.4Isopropylidenepyridoxol (11) All 6.03 f 0.04 98 f 1 3.21 f 0.03 102 amp; 1(IV)As Table 1. Portion of the sample of pyridoxol hydrocyloride isolated in expt. 16, ref. 3. As c, but expt. 16, ref.3.Quoted from Table IV of ref. 3.(Table 2). This is also according to prediction, whichplaced one-fifth of the molar specific activity of pyridoxolderived from l-14Cglycerol at each of C-2lsquo;, -3, -4rsquo;, -5rsquo;,and -6. It is thus established1-3 that one-fifth of themolar specific activity does indeed reside at each ofC-2rsquo;, -4rsquo;, and -5rsquo;. It is also established that C-2, -4,and -5 are free of activity. This leaves two carbonatoms, C-3 and C-6, to accommodate two-fifths of themolar specific activity. It is a plausible assumptionthat each of these two carbon atoms, like the other threelabelled centres, contains one-fifth of the total label.These conclusions are summarized in Scheme 2.The eight carbon atoms of pyridoxol are thusaccounted for by three glycerol units which are incorpor-ated non-randomly into the vitamin.Two of theseglycerol units, giving rise to the C, units C(4lsquo;)-euro;(4)(3)is demonstrated and it is shown that three glycerol units=-one terminal carbon atom) enter the pyridoxolLlsquo;A CH2OH2rsquo;SCHEME 2 Mode of incorporation of glycerol into pyridoxol; sitesof activity derived from l-14Cglycerol (A, A) relative specificactivity ca. 20) and from 2-14Cglycerol 0 ) relative specificactivity ca. 33) shown by degradation (A 0 ) or inferred (A)molecule, and account for all its carbon atoms, it followsthat a sample of pyridoxol synthesized by E . coli B WG1975 1625cultures on incubation with 2-14Cglycerol, in thepresence of glycerol as the sole general carbon source,must show a molar specific radioactivity (mCi mmol-l)three times that of the labelled precursor, i.e.thespecific radiochemical yield must be 300. It followsalso that a sample of pyridoxol produced similarly onincubation with chemically labelled l-14Cglycerol (k.an equimolar mixture of sn-l-14C- and sn-3-14C-glycerol) must show a molar specific radioactivity 2.5times that of the labelled precursor, i.e. a specific radio-chemical yield of 250. Since the distribution patternof label within pyridoxol derived from 14Cglucose 394 isnot as simple as that within glycerol-derived pyridoxol,the specific radiochemical yield cannot be predicted onthe basis of existing evidence. Nor is there a simplerelationship between molar specific activity of precursorand product when labelled precursor ( e g .14Cglycerol)has to compete for incorporation into product withanother, unlabelled substrate (e.g. glucose) which servesas the general carbon source and is present in large excess.Our experiments, in which 1-14C- and 2-14C-glycerolwere tested as a precursor of pyridoxol in cultures ofE. coli B WG2, with glycerol as the sole carbon source(ref. 3, expts. 2, 15, IS), were designed solely with aview to establishing the distribution of radioactivitywithin the newly synthesized pyridoxol. To achievethis purpose it was not essential to know the amount ofpyridoxol formed or its specific radioactivity, and thesevalues were not determined. Precise data to confirmthe above predictions that glycerol-derived pyridoxolshould have a molar specific activity 3 times or 2.5 timesthat of the precursor, are therefore lacking.However, from data which are available it can becalculated,* that the predicted specific radiochemicalyield of 300 in the experiment with 2-14Cglycerol(expt.16) and of 250 in those with l-14Cglycerol(expts. 2 and 15) would obtain if 60, 75, and 72 pg,respectively, of pyridoxol had been synthesized de novoin the course of these experiments. These values areindeed within the expected order of magnitude, 60-180 pg 1-1 of bacterial culture.11J2It is evident from the foregoing discussion that acomparison of specific radiochemical yields obtained inexperiments with glycolaldehyde and with glycerol doesnot serve as a fruitful basis on which conclusions regard-ing their position in the biosynthetic pathway leadingto pyridoxol can be drawn.It remains to examine whether a comparison ofpercent incorporation of radioactivity in the variousexperiments leads to useful conclusions.For nineexperiments with labelled glycerol ,, glucose ,33 and* E.g. for expt. 16, specific activity (nominal) of 2-14C-glycerol : 0.091 mCi mmol-l; weight of pyridoxol added ascarrier 1000 mg; specific activity of pyridoxol isolated aftercarrier dilution 1.09 x lo" counts min-l mmol-1; efficiency ofcounting system ca. 30; 1 mCi = 2.22 x lo9 disint. min-l;weight (mg) of newly synthesized pyridoxol. of specific activity3 x 0.091 mCi mmol-l:= 0.06.1-09 x lo4 : 1000 x - 100 I3 x 0.091 30 2.22 x 109pyruvate the percent incorporation (100 x totalactivity recovered within pyridoxol ?/total activity inprecursor added to the medium) ranged from 2 xto 8 x 10".For six experiments with labelled glycolaldehydethe percent incorporation ranged from 3.5 x lo9 to9.5 x lo-,.One experiment gave an exceptionally highyield of product and thus an exceptionally high value of1.6 xThe recovery of radioactivity within the products ofthe two series of experiments is thus of the same loworder of magnitude. This is hardly surprising. Ineach case the molar amount of product formed isseveral orders of magnitude lower than the molaramount of labelled substrate which is available. In theexperiments with E.coli B WG2 ca. 0.3 pmol ofpyridoxol per litre was formed whereas ca. 5 mmol ofsubstrate per litre (glucose, expt. 14), ca. 11 mmol ofsubstrate per litre (glycerol, expts. 15, 16), and ca. 22mmol of substrate per litre (glycerol, expt. 2), wereavailable. In the experiments with E. coli B WG3,8ca. 0.03 pmol of pyridoxal per litre was formed whereasca. 0.4 mmol of glycolaldehyde per litre was available.Neither percent incorporation nor specific radio-chemical yield thus serves as a guide to precursor statusin this instance. The only reliable guide is distributionof label within the product.We have reported the pattern of labelling withinpyridoxol generated from a number of 14C-labelledsubstrates.l+ This established the distribution andaccounted for all the radioactivity within samples ofpyridoxol derived from 2-14C- and 3-14C-pyruvateand from 1-14C- and 6-14C-glucose. Our publishedwork, together with results reported here, similarlyclarify the quantitative distribution of label withinpyridoxol derived from 2-14Cglycerol and, with aplausible assumption (see above), from l-14Cglycerol.These results are entirely consistent with the hypo-thesis which is referred to in the Introduction.Thenon-random and specific incorporation of glycolaldehydeinto pyridoxal, now demonstrated, must be reconcilablewith this hypothesis. Any attempt to interpret therole of glycolaldehyde in pyridoxol biosynthesis mustbe tentative, because of the dearth of knowledge con-cerning the metabolism of this simple two-carboncompound.In attempting to account for the position of glycol-aldehyde in pyridoxal biosynthesis (Scheme 3), relevantavailable evidence must be reviewed.In E .coli mutant WG2 the eight carbon atoms ofpyridoxol are derived from two C, precursors and one C,precursor. All three are generated from glycolyticintermediates, presumably trioses, related to glucosefor the percent incorporation.t Cf. footnote t and ref. 3, Table 1: total activity recoveredwithin pyridoxol = total activity (counts min-l) recovered per100 1 0.1 mCi of substrate x - xl1 W. B. Dempsey, J . Bacteriol., 1966, 92, 333.l2 W. B. Dempsey, J . Bacteriol., 1967, 95, 1179.30 2.22 x 1091626 J.C.S. Perkin Iand glycerol.That the three precursors are closelyrelated to each other is shown by the observation that,when derived from 2-14Cglycerol, each of the fragmentswithin pyridoxol, corresponding to the three precursors,contained the same molar specific activity. That thethree precursors are all different is shown by the facts(i) that pyruvate supplies the C, unit, C(2rsquo;)-C(2) ofpyridoxol, but neither of the C, units, C(4rsquo;)(4)-C(3)and C(5rsquo;)-C(5)-C(6), and (ii) that these two C, unitsshow different molar specific activities when 14Cglucoseis the labelled substrate. Finally, the C, precursor is-5, then leads to the inference that, even though glycol-aldehyde metabolism excludes its conversion intoglycolytic intermediates, it leads to a C, unit whichserves as the precursor of the pyridoxal unit C(5rsquo;)-C(5)-C(6).This chain extension might involve a one-carbonunit, but this is unlikely since one-carbon donors do notparticipate in pyridoxol biosynthesis in E. coli B WGZ3A possible pathway for such a chain elongation, re-presented in general terms as glycolaldehyde + C, +C, + Cn-l, might proceed by a three-step sequence,involving a ketolase, a kinase, and an aldolase reaction.t r i o s eC3 precursor pyruvate C3 precursorof u n i t o f u n i tC ( 4 lsquo; 1- C ( 4 1 -C(3) C(5rsquo;)-C(5)-C(61C lC 2 Profc(24ec u rsorlsquo;)-C( 2 1u n i t ______9*JJtlsquo; Cn-1 CnC H 2 O HICHOSCHEME 3 Route of precursor fragments into pyridoxol; A and B denote possible sites of the genetic glock in E.coli B mutant WG3the arrows showing the paths from the C , and C , precursors are intended to indicate the sites of entry of these units; it is notimplied that these units are the immediate precursors of pyridoxol (cf. ref. 3)more closely related to the precursor of the C, unitC(4rsquo;)-C(4)-C(3), than to that of the C,unit C(Srsquo;)-C(5-C(6)since, in two samples of glucose-derived pyridoxol themolar specific activity of the C, unit was identical withthat of the C, unit C(4rsquo;)-C(4)-C(3) but different fromthat of C(5rsquo;)-C(5)-C(6).It is two carbon atoms of the precursor of this C,unit, C(5rsquo;)-C(5)-C(6), which in E. coli B mutant WG3are generated from glycolaldehyde. Since glycerolserved as the general carbon source in these experimentsit must have supplied the other six carbon atoms ofpyridoxal.The mode of entry of glycerol carbon intothese sites has not yet been investigated. For purposesof the present discussion we will assume, in the absenceof evidence to the contrary, that the origin of the C,unit C(Brsquo;)-C(2) and the C,-unit C(4rsquo;)-C(4)-C(3) of thepyridoxal generated in mutant WG3 follows the patterndemonstrated for the origin of pyridoxol in mutant WG2.The mode of incorporation of glycolaldehyde intopyridoxal, exclusively into two carbon atoms, C-5lsquo; andMulder l3 has reported the production of erythrulose incultures of E. coli mutant B 166 growing on a glycol-aldehyde-enriched medium.The entry of glycolaldehyde into the precursor of theC, unit C(5rsquo;)-C(5)-C(6) may be dictated by the natureof the genetic block in mutant WG3.If the directroute to this precursor from glycerol and the trioseintermediates of glycolysis were blocked in WG3(Scheme 3, block A), an irreversible route via glycol-aldehyde may be induced, and in the absence of adequatede novo biosynthesis of glycolaldehyde, this compoundmust be supplied to support pyridoxal biosynthesis andgrowth of the mutant.Alternatively, glycolaldehyde may be a mandatoryintermediate on the route to the precursor of the C,unit C(5rsquo;)-C(5)-C(6) whose formation from glycolyticintermediates, in an irreversible step, has been blockedin the mutant (Scheme 3, block B).l3 C. Mulder, D.Phi1. Thesis, University of Oxford, 1959;personal communication1975 1627It may be significant in this context that reduction ofglycolic acid to glycolaldehyde, a process which occursin wild type E.coli, is blocked in mutant WG3.14These possibilities are open to independent experi-mental test. Thus, if glycolaldehyde were a mandatoryintermediate, its addition to the culture medium ofE. coZi B mutant WG2 should lead to a change in thedistribution of label in pyridoxol derived from 2-14C-glycerol. Incorporation of label into C-5 should besuppressed, leading, in the limit, to a sample of pyridoxolcontaining 50 of its molar specific activity at each ofC-2 and C-4, and 0 at C-5. If incorporation ofglycolaldehyde into pyridoxal in mutant WG3 ismutation-induced, addition of carrier glycolaldehyde tothe culture medium of WG2 would leave the distributionof label in pyridoxol, derived from 2-14Cglycerol,unchanged, with 33 of the molar specific activity ateach of C-2, C-4, and C-5.This, and other experiments designed to clarify thefunction of glycolaldehyde in pyridoxal biosynthesis areunder way.EXPERIMENTALThe conditions for bacterial growth, and the proceduresfor the isolation of pyridoxol hydrochloride from E.coli Bstrain WG3 after incubation with 14Cglycolaldehyde 8* l5and from E. coli B strain WG2 after incubation withglycerol have been described, as have the methodsemployed in the systematic degradation of l4C-labelledsamples of pyridoxol, permitting assay of radioactivity a tindividual carbon atoms (C-2', C-2, C-4, C-4', C-5').3 Anew method, permitting determination of label a t C-5 ofpyridoxol, is now reported.Radioactivity was assayed byliquid scintillation counting (Mark 1 liquid scintillationcomputer, model 6860 Nuclear Chicago). Samples weredissolved in water or methanol and dispersed in Aquasol(New England Nuclear). Triplicate samples of eachcompound were counted under comparable conditions ofquenching. Confidence limits shown in the Tables arestandard deviations of the mean.Isolation of Carbon Atoms 5 and 5' of Pyridoxol asPhthaloylglycine (Scheme 1) .-5-Chloromethyl-2,2,8-trimethyl-4H-m-dioxino 4,5-cpyridine hydrochloride (111) Thionylchloride (0.055 ml) was added to a cold (0 "C) stirredsuspension of 3,4'-O-isopropylidenepyridoxol hydrochloride(11) (70 mg) in chloroform (1.0 ml).A clear solutionwas obtained after stirring for ca. 5 min a t room tem-perature. Stirring was continued for a further 1 h. Whenl4 Y. Tani, H. Morita, and K. Ogata, Agric. and Biol. Chem.(Japan), 1974, 38, 2057.l5 W. B. Dempsey, Biochim. Biophys. Acta, 1972, 284, 344.the solution was evaporated under reduced pressure, thehydrochloride (111) was obtained as a white crystallinesolid (73 mg, 98), m.p. 186-189" (1it.,l6 191-192"). Toobtain the corresponding free base the hydrochloride,dissolved in water, was basified with solid sodium hydrogencarbonate and extracted with ether (3 x 8 ml). When theextract was dried (Na,SO,) and evaporated the productwas obtained as a pale yellow oil.2,2,8- Trimethyl- 5-phthalimidomethyl-4H-m-dioxin0 4,5-c -pyridine (isopropylidenephthaloylisopyridoxamine) (IV) .The free base obtained from (111) (73 mg) was dissolved indry dimethylformamide (1 ml) .N-Potassiophthalimide(60 mg) was added and the solution was heated withstirring a t 130-140 "C for 2 h and then allowed to cool toroom temperature. When water (10 ml) was added, andthe solution stirred a t room temperature, the phthalimido-derivative (IV) crystallized (75 mg, 80) ; m.p. 140-142".Recrystallization from 95 ethanol gave a sample of m.p.147-148" (Found: C, 67.7; H, 5.35; N, 8.25. C,,H,,N,O,requires C , 67.45; H, 5.35; N, 8.3); vmx. 1777 and1715 cm-l; 6 (CDC1,) 1.55 (6 H, s), 2.37 (3 H, s), 4.67(2 H, s), 5.08 (2 H, s), 7.75 (4 H, m), and 8.11 (1 H, s).Phthaloylglycine (V) by Oxidation of the Phthalimido-derivative (IV). The phthalimido-derivative (IV) (65 mg)was dissolved in dilute sulphuric acid (3 ml; 1 ~ ) ; thesolution was heated on a steam-bath for 20 min and thenallowed to cool to room temperature. Potassium per-manganate (150 mg) was added in small portions withstirring over 1 h, and stirring was then continued for afurther 1 h. Precipitated manganese dioxide was dissolvedby addition of sodium hydrogen sulphite and the resultingturbid solution was extracted with ethyl acetate (3 x 8 ml).The extract was dried (Na,SO,) and evaporated underreduced pressure to give a cream-coloured residue (40 mg).This was dissolved in saturated aqueous sodium hydrogencarbonate (1 ml), the solution was washed with chloroform(2 x 1 ml), and the aqueous layer was acidified with a fewdrops of 6~-hydrochloric acid. The phthaloylglycine(21 mg, 53) which crystallized was sublimed at lo-, mm Hgand 120 "C; m.p. 193-194" (lit.,l7 191-192"). The i.r.spectrum was identical with that of an authentic sampleobtained by fusion of glycine with phthalic anhydride.17We are indebted to Dr. W. B. Dempsey for makingavailable to us labelled samples of pyridoxol from experi-ments with 14Cglyc~laldehyde. This work was supportedby grants from the Ministry of Health, Province of Ontario(to R. E. H.) and the National Research Council of Canada(to I. D. S.).5/104 Received, 17th January, 19751l6 I. Tomita, H. G. Brooks, and D. E. Metzler, J . Heterocyclicl7 J. H. Billman and W. F. Harting, J . Amer. Chem. SOC., 1948,Chem., 1966, 3, 178.70, 1473
机译:1622 J.C.S. Perkin 维生素 B6 的合成。将乙醇醛掺入吡喃多沙尔作者:Robert E. Hill、Peter Horsewood 和 Ian D. Spenser,“加拿大安大略省汉密尔顿麦克马斯特大学化学系 L85 4M1(部分) Yoshiki Tani,日本京都大学农业化学系[14C]乙醇醛的放射性特异性进入磷酸吡哆醛,并仅限于双碳单元 C(5)-C(5')。乙醇醛以完整的双碳单元形式进入,醛碳原子供应维生素的C-5,甲醇碳原子供应维生素的C-5'。这些观察结果根据维生素B6生物合成的早期阶段进行解释。我们已经证明 l-3 来自特异性标记的 D-glUCOSe 和甘油的放射性被非随机掺入吡哆醇中,由大肠杆菌 B 突变体 WG2 生物合成。这些数据与吡哆醇的八碳骨架由三个前体单元产生的假设一致。其中两种产生吡哆醇的C片段,C(4')-C(4)-C(3)和C(5')-C(5)-C(6),是与磷酸丙糖密切相关的三碳化合物,而第三种产生C,吡哆醇片段C(2')-C(Z),是一种可由糖酵解中间体或丙酮酸衍生的双碳化合物。我们根据机制推断1*,这种双碳化合物是一种醛,并表明它可能处于乙醛3或gly~olaldehyde的氧化水平。~乙醇醛可能与维生素 B6 的生物合成有关的概念最初是基于这一发现 6 的发现 6 替代维生素 B,促进两种 B 族的生长,需要大肠杆菌。最近,Dempsey 表征了一种大肠杆菌 B 突变体 WG3,其对吡哆醇的营养需求由乙二醇-醛满足,并从与 [1,2-14C2]- 和 [2-14C]-乙二醇-醛一起孵育的突变体培养物中分离出维生素的放射性样品。从这些实验中获得的吡哆醇标记样品的降解表明,与预测相反,这些样品的 C、片段 C(2')-C(2) 中几乎没有放射性(如果有的话)4,这表明标记的非随机分布,但标记的位置尚未确定。我们现在提供的证据证明乙二醇-醛作为一个完整的单元掺入吡哆醇的C,片段C(S')-C(5)中,并且C-5'是从乙醇的甲醇碳原子和C-5从乙醇醛的羰基碳原子特异性衍生的。结果与讨论Tani和Dempsey从大肠杆菌菌株WG3培养物中分离得到的盐酸吡哆醇样品,在与[l,2-14CJ乙二醇醛(参考文献8,预期111-6,111-9)或[2-14C]乙二醇醛(参考文献8,预期。111-5,III-S),在无活性载体中稀释,并通过方案1所示的反应降解,以定位标记位点。降解产物的具体活性见表1.在实验误差范围内,由[2-14C]乙醇醛衍生的盐酸吡哆醇的所有活性均为本样品,经氧化脱羧制备,在苯甲酸中回收,代表吡哆醇的C-5'。[3-14C]丝氨酸,根据其制备方式,被假定仅在甲醇碳原子上标记,但证明 1% 位置的严格证据没有得到保证。D.斯宾塞,加拿大。~我~~h~~。, 1973, 51,6 J. G. Morris, J .Gen. Microbial., 1969, 20, 697.6 J. G. Morris 和 D. D. Woods, J .Micvobiol., 1969, 20,7 W.B. Dempsey, J .Bucteriol., 1971, 108, 1001.8 Y .Tani 和 WB Dempsey,J .Bucteriol., 1973, 116, 341.1412.R. E. Hill and I. D. Spenser, Science, 1970, 169, 773.R. E. Hill, R. N. Gupta, F. J. Rowell, and I. D. Spenser,8 R. E. Hill, F. J. Rowell, R. N. Gupta, and I. D. Spenser,J .美国化学学报, 1971, 93, 618.J .Biol. Chem., 1972,247, 1869.6761975 1623苯甲酸,即C-5',从吡哆醇衍生自[1,2-14C,&lycolaldehyde,*另一方面,I 0 I lK+ -N*05 'H 0 2 C( Y ) 0方案 1 吡哆醇的化学降解,允许分离 C-5' 和 C-6 仅含有完整维生素标记的一半。另一半必须位于C-5,因为邻苯二甲酰甘氨酸(即从该样品中获得的吡哆醇的C-5加C-5'占其全部活性。由此可见,乙醇醛作为完整单元进入吡哆醇的二碳单元C(5')-C(5),醛碳原子(即C-1)供应C-5,甲醇碳原子(即C-2)C-5'供应吡哆醇。*这是通过[U-14C]丝氨酸的氧化脱羧制备的,并假定其活性在甲醇和羰基碳原子之间均匀分布。然而,没有获得标签均匀分布的严格证明.8 t 这些结果还表明,乙二醇醛的两个碳原子在代谢过程中保持了它们的化学单元性,即通过烯醇化(i)(ii)(iii)的方式不发生标记的平衡。HO-CH,-CH=W-HO-CH=CH-OH~O=CH-CH2-OH(0 (ii) (iii)大肠杆菌B的生长 WG3是一种需要吡哆醇的突变体,只有在含有0.2%葡萄糖739或0.2%甘油*作为一般碳源的最小培养基中辅以吡哆醇,或由甘氨酸~醇醛补充时才能维持~ 由此可见,该突变体不能从葡萄糖或甘油中生物合成乙醇醛。由于现在已经证明了乙醇醛特异性掺入磷酸吡哆醛中,并且表明单个乙醇醛单元进入吡哆醛分子,因此由E产生的磷酸吡哆醛样品。与标记的乙醇醛一起孵育的大肠杆菌B WG3培养物必须显示出与它们来源的[14C]glyc~laldehyde样品相同的摩尔比放射性(mCi mmol-l)。也就是说,比放射性化学产率(= 100 x 产物的摩尔比放射性/前驱体的摩尔比放射性)必须为 100%。已发表的数据8往往证实了这一预测。$Failure认识到,在这些实验中,前体的摩尔特异性活性在产物内保持是经验条件的结果,这促使在最近的一篇综述中得出结论,虽然“[14C]乙醇醛作为标记吡哆醇的高效前体”,但甘油和葡萄糖在吡哆醇生物合成中的重要性值得怀疑,因为在这些底物的14C标记样品的实验中,总掺入$在试图解释乙醇掺入维生素B的方式之前,有必要纠正这种误导性比较所传达的印象。通过化学降解~n-l-~ 表明,从 [2-14C]-甘油衍生的吡哆醇的摩尔特异性活性中约有三分之一位于 C-2 和 C-4 中。预计剩下的三分之一位于吡哆醇的C-5处。这一预测现已得到证实。鉴于从[2-14C]甘油衍生的吡哆醇中获得的苯甲酸(即C-5')没有放射性,邻苯二甲酰甘氨酸(即C-5'加C-5)占其三分之一$ 在几个实验中观察到乙醇醛和磷酸吡哆醛的摩尔比活性的明显差异(参考文献 8 的表 2)(比放射化学产率报告了 [2-14C]乙醇醛 80、100,90、50% 的四个实验和 [l, 2-14C,]乙醇醛114,86,66%)是这些数据所依据的放射性测定准确性的量度。两个低值(50%和66%)是在WG3的培养物中获得的,这些培养物经历了部分还原为野生型.8这些实验中特定放射化学产量的降低表明,在野生型培养物中,[14C]乙醇醛或其代谢物之一在掺入产品之前遇到相应的未标记池.9即掺入百分比(= 100 x 产品中回收的总活性/前体中施用的总活性).9 W. B. Dempsey, J .Bacteriol., 1969, 100, 295.lo G. W. E. Plaut, C. M. Smith, and W. L. Alworth, Ann. Rev.Biochem., 1974, 43, 8991624标签,因此位于C-5,如预测(表2)。同样,现在表明,从[1-14C]甘油衍生的吡哆醇的C-6没有活性J.C.S.Perkin I和C(5') I -l[ l-14C]甘油[ 2-W] 甘油A产品 吡哆醇的C原子 SA RSA SA 0 RSAPyridoxol hydrosol (I) 全部 6.16 f 0.04 0 100 f 1 3.16 f 0.02 100 f 1异丙亚基邻苯二甲酸基异价哆胺 全部 6.00 f 0.04 97f 1 3.04 f 0.02 96 f 1C-6', -5 1.02 f 0.01 20 f 0.3 1.07 f 0.01 34 f 0.3 邻苯二甲酰甘氨酸 (V)苯甲酸 C-6' 22f 1 6 0.6 f. 0.2邻苯二甲酰甘氨酸减去苯甲酸 C-6 (通过差异) 非活性 33 f 0.4异亚丙基吡哆醇 (11) 所有 6.03 f 0.04 98 f 1 3.21 f 0.03 102 & 1(IV)如表 1.在实验16中分离的吡哆醇氢化物样品的一部分,参考文献3。同c,但见第16条,参考文献3.引自参考文献3的表四。(表 2)。这也是根据预测,在C-2'、-3、-4'、-5'和-6中,由[l-14C]甘油衍生的吡哆醇的摩尔比活性为五分之一。因此可以确定1-3,五分之一的themolar特异性活动确实存在于C-2',-4'和-5'中的每一个。还确定 C-2、-4 和 -5 没有活性。这留下了两个碳原子,C-3和C-6,以容纳五分之二的themolar比活性。一个合理的假设是,这两个碳原子中的每一个,就像其他三个标记的中心一样,包含总标记的五分之一。这些结论总结在方案2中.吡哆醇的八个碳原子因此由三个甘油单元组成,这些甘油单元被非随机掺入维生素中。其中两个甘油单元产生C,单元C(4')-€(4): 1000 x - 100 I3 x 0.091 30 2.22 x 109丙酮酸 掺入百分比(100 x 在吡哆醇中回收的总活性?/添加到培养基中的总活性前体)范围为 2 x至 8 x 10”。对于标记乙醇醛的六个实验,掺入百分比范围为 3.5 x lo9 至 9.5 x lo-,.一个实验给出了异常高的产物产率,因此具有非常高的值,为1.6 x因此,两个系列实验的产物中放射性的回收率具有相同的低数量级。这并不奇怪。在每种情况下,形成的产物的摩尔量都比可用的标记基材的摩尔量低几个数量级。在大肠杆菌B WG2的实验中,每升形成约0.3 mmol的吡哆醇,而每升约5 mmol的底物(葡萄糖,有效期为14),每升约11 mmol的底物(甘油,有效期为15,16)和每升约22mmol的底物(甘油,有效期为2)。在大肠杆菌B的实验中,WG3,8ca.每升形成0.03 pmol的吡哆醛,而。每升可提供 0.4 毫摩尔的乙醇醛。因此,掺入百分比和具体放射性化学产率都不能作为本例中前体状态的指南。唯一可靠的指南是在产品内分发标签。我们已经报道了由许多 14C 标记的底物产生的吡哆醇内的标记模式.l+ 这建立了分布并解释了来自 [2-14C]- 和 [3-14C]-丙酮酸以及来自 [1-14C]- 和 [6-14C]-葡萄糖的吡哆醇样品中的所有放射性。我们发表的工作,连同这里报告的结果,同样阐明了标签在吡哆醇中的定量分布,这些吡哆醇来源于[2-14C]甘油,并且有合理的假设(见上文),来自[l-14C]甘油。这些结果与引言中提到的假设完全一致,那么现在证明的乙醇醛随机和特异性掺入吡哆醛必须与该假设相协调。任何解释乙醇醛在吡哆醇生物合成中的作用的尝试都必须是试探性的,因为缺乏关于这种简单的双碳化合物代谢的知识。在试图解释乙二醇-醛在吡哆醛生物合成中的位置(方案3)时,必须审查相关可用证据。在大肠杆菌突变体WG2中,吡哆醇的八个碳原子来源于两个C前体和一个C前体。这三者均由糖酵解中间体(推测为三糖)产生,与葡萄糖相关的掺入百分比.t 参见脚注 t 和参考文献 3,表 1:吡哆醇内回收的总活性 = 每 100 1 0.1 mCi 底物 x - xl1 回收的总活性(计数 min-l) W. B. Dempsey, J .细菌, 1966, 92, 333.l2 W. B. Dempsey, J .细菌, 1967, 95, 1179.30 2.22 x 1091626 J.C.S. Perkin Iand glycerol.这三种前体彼此密切相关,这三种前体之间密切相关,当衍生自[2-14C]甘油时,吡哆醇内对应于三种前体的每个片段都含有相同的摩尔比活性。以下事实表明,这三种前体都是不同的:(i) 丙酮酸提供吡哆醇的 C(2')-C(2) 单元,但 C(4')-C(6)相比,在两个葡萄糖衍生吡哆醇样品中,C的单位与C相同,单位C(4')-C(4)-C(3)但与C(5')-C(5)-C(6)不同。它是该 C,unit 的前体 C(5')-C(5)-C(6) 的两个碳原子,在大肠杆菌 B 突变体 WG3 中由乙醇醛生成。由于甘油在这些实验中作为一般碳源,因此必须提供吡哆醛的其他六个碳原子。甘油碳进入这些位点的方式尚未得到研究。出于本讨论的目的,在没有相反证据的情况下,我们将假设突变体WG3中产生的吡哆醛的C,单元C(B')-C(2)和C,-unit C(4')-C(4)-C(3)的起源遵循突变体WG2中吡哆醇起源的模式。将乙醇醛掺入吡哆醛中,专门掺入两个碳原子 C-5' 和 Mulder l3 的模式已经报道了在富含乙二醇醛的培养基上生长的大肠杆菌突变体 B 166 的红藓糖培养物的产生。乙醇醛进入C的前体,单元C(5')-C(5)-C(6)可能由突变体WG3中遗传块的性质决定。如果在WG3(方案3,A区)中阻断了从甘油和糖酵解的三糖中间体到该前体的直接途径,则可能会诱导通过乙二醇-醛的不可逆途径,并且在乙醇醛没有充分的从头生物合成的情况下,必须提供该化合物以支持吡哆醛的生物合成和突变体的生长。或者,乙醇醛可以是通往C,单元C(5')-C(5)-C(6)前体的途径上的强制性中间体,其由糖酵解中间体形成,在不可逆的步骤中,已被阻断在突变体中(方案3,blockB).l3 C. Mulder, D.Phi1.牛津大学论文,1959年;个人交流1975 1627在这种情况下,乙醇酸还原为乙醇醛(一种发生在野生型大肠杆菌中的过程)在突变体WG3.14中被阻断可能具有重要意义这些可能性对独立的经验心理测试开放。因此,如果乙醇醛是强制性的中间体,则将其添加到培养基中。coZi B 突变体 WG2 应导致源自 [2-14C]-甘油的吡哆醇中标记分布的变化。将标记掺入 C-5 中应受到抑制,导致吡哆醇样品在 C-2 和 C-4 中各含有 50% 的摩尔比活性,在 C-5 中含有 0%。如果突变体WG3中将乙醇醛掺入吡哆醛中是突变诱导的,则在WG2的培养基中加入载体乙醇醛将使源自[2-14C]甘油的吡哆醇中标记的分布保持不变,C-2,C-4和C-5的摩尔比活性各为33%。这个,以及其他旨在阐明乙醇醛在吡哆醛生物合成中的作用的实验正在进行中。实验已经描述了细菌生长的条件,以及与[14C]乙醇醛8* l5孵育后从大肠杆菌菌株WG3中分离盐酸吡哆醇以及与甘油孵育后从大肠杆菌B菌株WG2中分离的程序,以及用于系统降解l4C标记的吡哆醇样品的方法,允许测定放射性单个碳原子(C-2', C-2, C-4, C-4', C-5').3 现在报道了一种新方法,允许测定吡哆醇的标记 a t C-5。放射性通过液体闪烁计数(Mark 1液体闪烁计算机,型号6860 Nuclear Chicago)进行测定。将样品溶解在水或甲醇中,并分散在Aquasol(New England Nuclear)中。在可比的淬灭条件下对每种化合物的一式三份样品进行计数。表中显示的置信限是平均值的标准差。吡哆醇碳原子5和5'的分离为邻苯二甲酰甘氨酸(方案1)。将-5-氯甲基-2,2,8-三甲基-4H-间二氧代[4,5-c]吡啶盐酸盐(111)亚砜(0.055ml)加入到3,4'-O-异亚丙基吡哆醇盐酸盐(11)(70mg)的氯仿(1.0ml)中搅拌悬浮液中。在室温下搅拌约5分钟后得到澄清溶液。继续搅拌1小时l4 Y. Tani, H. Morita, and K. Ogata, Agric. and Biol. Chem.(Japan), 1974, 38, 2057.l5 W. B. Dempsey, Biochim.生物物理学。Acta, 1972, 284, 344.减压蒸发溶液,得到盐酸盐(111),为白色结晶固体(73mg,98%),熔点186-189“(1it.,l6 191-192”)。为了获得相应的游离碱,将盐酸盐溶于水中,用固体碳酸氢钠碱化并用乙醚(3×8ml)萃取。2,2,8-三甲基-5-邻苯二甲酰亚胺甲基-4H-间-二噁英0[4,5-c]-吡啶(异亚丙基邻苯二甲酰异吡哆胺)(IV)时,得到淡黄色油状物。将从(111)(73mg)得到的游离碱溶解于干二甲基甲酰胺(1ml)中。加入N-邻苯二甲酰亚胺钾(60mg),在130-140“C搅拌下加热溶液2小时,然后冷却至室温。当加入水(10ml)时,溶液在室温下搅拌t,使邻苯二甲酰亚胺衍生物(IV)结晶(75mg,80%);MP 140-142”。用95%乙醇重结晶得到m.p.的样品。147-148“ (发现值: C, 67.7;H, 5.35;N,8.25。C,,H,,N,O,需要C,67.45;H, 5.35;N, 8.3%);VMX. 1777 和 1715 cm-L;6 (CDC1,)、1.55(6 小时、秒)、2.37(3 小时、秒)、4.67(2 小时、秒)、5.08(2 小时、秒)、7.75(4 小时,米)和 8.11(1 小时,秒)。邻苯二甲酰甘氨酸 (V) 通过邻苯二甲酰亚胺衍生物 (IV) 的氧化。将邻苯二甲酰亚胺衍生物(IV)(65mg)溶于稀硫酸(3ml;1~)中;将溶液在蒸汽浴上加热20分钟,然后冷却至室温。将锰酸钾(150mg)分成小份加入,在1小时内搅拌,然后继续搅拌1小时。通过加入亚硫酸氢钠溶解沉淀的二氧化锰,并用乙酸乙酯(3×8ml)萃取所得浑浊溶液。将提取物干燥(Na,SO,)并在减压下蒸发,得到奶油色残留物(40mg)。将其溶于饱和碳酸氢钠水溶液(1ml)中,溶液用氯仿(2×1ml)洗涤,水层用几滴6~盐酸酸化。结晶的邻苯二甲酰甘氨酸(21 mg, 53%)在lo-, mm Hgand 120“C下升华;MP 193-194“(lit.,l7 191-192”)。i.r.谱图与通过甘氨酸与邻苯二甲酸酐融合获得的真实样品相同.17我们感谢W. B. Dempsey博士为我们提供了来自[14C]glyc~laldehyde的实验的吡哆醇标记样品。这项工作得到了安大略省卫生部(给 R. E. H.) 和加拿大国家研究委员会(给 I. D. S.) 的资助。[5/104 收稿日期,19751l6 I. Tomita, H. G. Brooks, and D. E. Metzler, J .杂环 7 J. H. Billman 和 W. F. Harting, J .美国化学学报, 1948,化学, 1966, 3, 178.70, 1473

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号