首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthesis of 1,4-di(n-pyridyl)buta-1,3-diyne andformation of charge-transfer complexes. X-Ray structure of1,4-di(3-pyridyl)buta-1,3-diyne
【24h】

Synthesis of 1,4-di(n-pyridyl)buta-1,3-diyne andformation of charge-transfer complexes. X-Ray structure of1,4-di(3-pyridyl)buta-1,3-diyne

机译:1,4-二(n-吡啶基)丁-1,3-二炔的合成和电荷转移配合物的形成。1,4-二(3-吡啶基)丁-1,3-二炔的X射线结构

获取原文
获取外文期刊封面目录资料

摘要

J. Chem. Soc. Perkin Trans. 1 1997 709 Synthesis of 1,4-di(n-pyridyl)buta-1,3-diyne and formation of charge-transfer complexes. X-Ray structure of 1,4-di(3-pyridyl)buta-1,3-diyne J. Gonzalo Rodriacute;guez,*,a Rosa Martiacute;n-Villamil,a Felix H. Canob and Isabel Fonsecab a Departamento de Quiacute;mica Orgaacute;nica Universidad Autoacute;noma de Madrid Cantoblanco 28049-Madrid Spain b Departamento de Cristalografiacute;a C.S.I.C. Serrano 119 28006-Madrid Spain Ethynylpyridines have been satisfactorily prepared by two different routes (a) the Wittig reaction between chloromethylene(triphenyl)phosphine ylide and a pyridinecarbaldehyde followed by elimination of hydrogen chloride; (b) from the 2-methyl-4-(n-pyridyl)but-3-yn-2-ol intermediate by elimination of acetone. 1,4-Di(n-pyridyl)buta-1,3-diynes are obtained by oxidative dimerization in good yield.An X-ray structure of the 3-substituted dimer is reported. Mono- and di-methyl salts of the 3-substituted diyne have been obtained and the charge-transfer complexes with tetramethyl-p-phenylenediamine (TMPD) are formed. Introduction The use of molecular organic materials for conductor and nonlinear optics applications is an area of considerable recent activity. Interest in these materials is due to their inherent synthetic flexibility which permits the lsquo;designrsquo; of molecular properties. 1 Solid-state polymerization of 1,3-diynes to form crystalline conjugated polydiynes has attracted much attention.1,2 Some of the recent interest in poly-1,3-diynes is related to their large and fast nonlinear optical response making them good potential materials in ultrafast optical applications.3 Although the electronic and optical properties of poly-1,3-diynes are primarily dominated by the p-conjugated backbone the substituent groups markedly influence the topopolymerization behaviour of the 1,3-diynes and the physical and chemical properties of the crystalline conjugated poly-1,3-diynes.An aspect of the substituent effect that has received little attention is the influence of formally p-conjugated substituents on the electronic properties of poly-1,3-diynes because many of them are unreactive in the solid state,4ndash;6 although they may undergo liquid-crystalline polymerization to form polymers distinct from the solid-state polymers. However preliminary studies show that 4-amino-49-nitrodiphenyl-1,3-diyne is solid-state reactive.6 The discovery of a one-dimensional metallic state in the ionradical solid formed from the p-donor tetrathiafulvalene and the acceptor tetracyanoquinodimethane has stimulated interest in the structurendash;properties relationships of novel donors and acceptors.7 Metallic conductivity and superconductivity are the most important properties in these organic charge-transfer salts.Recently attention has also been directed to the novel magnetic and optical properties which they can display. Here we report the synthesis of the 1,4-di(n-pyridyl)buta-1,3- diynes 12 13 and 14 and the methylation of the 3-substituted derivative 13 to give molecules with acceptor characteristics which allow them to form charge-transfer complexes with donors. Results and discussion Synthesis of n-ethynylpyridines (a) By elimination of hydrogen chloride from the chlorovinyl derivatives.The starting acetylene derivatives 4ndash;6 were prepared in good yields from a mixture of the corresponding (E)- and (Z)-2-chlorovinylpyridines 1ndash;3 by dehydrochlorination with potassium tert-butoxide in tetrahydrofuran (THF) at different temperatures. In this elimination reaction we observed that the temperature had an influence on the yield and the reaction products. Furthermore the position of the vinyl group on the pyridine ring determined some of the necessary reaction conditions (Table 1 Scheme 1). The chlorovinyl derivatives were prepared by the Wittig reaction between chloromethylene(triphenyl)phosphine ylide 8 and Scheme 1 Reagents and conditions i Ph3P CHCl; ii ButO2K+ 25 8C (4ndash;6) or 70 8C (7a,b; 8) N C N CH=CHCl 1a,b 2-subst.Z and E 2a,b 3-subst. Z and E 3a,b 4-subst. Z and E i N CHO N CH=CHOBut ii 4 2-subst. 5 3-subst. 6 4-subst. ii CH 7a,b 2-subst. Z and E 8 4-subst. Table 1 Dehydrochlorination of 1ndash;3 with ButO2K+ in THF at different temperatures Chlorovinyl T/8C Elimination () Substitution () 1a 25 48 1a 70 50 E:Z = 1 1 1b 50 45 1b 70 40 E 2a + 2b 60 54 2a + 2b 70 25 3a + 3b 25 40 3a + 3b 70 20 710 J. Chem. Soc. Perkin Trans. 1 1997 the corresponding pyridinecarbaldehyde derivative in THF in good yield as a mixture of E:Z isomers (Scheme 1 Table 2). In the case of the 2-substituted derivative the main product is the Z isomer because the cis-1,2-oxaphosphetane precursor of this isomer is more stable. The ylide reacts on the face of the carbonyl group to give the oxaphosphetane intermediate with the dipolar moment of the CCl bond in the opposite direction to that of the NC dipole in the pyridine and this stereodisposition is the most stable.(b) From the n-halogenopyridines by insertion of the acetylene group catalysed by palladium. The low yield in the hydrogen chloride elimination step prompted us to carry out an alternative synthesis of the acetylene derivatives of pyridine using the coupling reaction between the bromopyridine and 2-methylbut- 3-yn-2-ol;9 the reaction is catalysed by palladium and the 2-methyl-4-(n-pyridyl)but-3-yn-2-ol derivatives 9ndash;11 were obtained in excellent yields. Finally the elimination of acetone gave the acetylene derivatives in moderate yield (Scheme 2 Table 3). Synthesis of 1,4-di(n-pyridyl)buta-1,3-diynes 12ndash;14 The title compounds were synthesized in good yield by oxidative dimerization 10 of the corresponding acetylene derivative with oxygen in pyridine in the presence of copper(I) iodide at 40 8C as solids which are stable to sunlight (Scheme 3).A single crystal of the 1,4-di(3-pyridyl)buta-1,3-diyne 13 was used for X-ray crystallographic analysis. The crystal was stable to Cu-Ka X-radiation and no topopolymerization to the monocrystalline poly-1,3-diyne was observed. Crystal structure analysis Compound 13 consists of a buta-1,3-diyne chain with 1,4- substitution at position 3 in both pyridine rings. Fig. 1 shows a view of the molecule with the atom numbering Scheme 2 Reagents and conditions i 2-methylbut-3-yn-2-ol Cl2Pd- (PPh3)2 Cu2I2 HNEt2; ii NaOH reflux N Br N C C C CH3 CH3 OH N C CH i ii 9 2-subst.10 3-subst. 11 4-subst. 4ndash;6 Scheme 3 Reagents Cu2CI2 O2 pyridine N C CH N C C C N C 4 2-subst. 5 3-subst. 6 4-subst. 12 2-subst. 13 3-subst. 14 4-subst. Table 2 Synthesis of 1ndash;3 via Wittig reaction Isomer Z () E () Yield () 1 84 16 77 2 50 50 90 3 50 50 84 scheme. A table of fractional atomic coordinates has been deposited as supplementary material,dagger; and in Table 4 are listed (a) the bond distances and (b) the bond angles. The molecule has a symmetry centre which coincides with a crystallographic one. The distances N(1)C(2) and N(1)C(6) of 1.338(3) and 1.325(3) Aring; respectively are similar to those found in pyridine. All distances and angles are within the expected values (Table 4). The pyridine ring is planar C(7) and C(8) deviating by 0.031(2) and 0.086(2) Aring; above this plane.Bond distances of the buta-1,3-diyne chain show normal values,11 with a C(7)C(8) triple bond distance of 1.199(3) Aring;. This chain is practically linear with a C(7)C(8)C(89) angle of 179.7(2)8. The crystal packs with the molecules in parallel columns (see Fig. 2) along the c-axis which defines the distance between the centroids of consecutive rings as being 3.87 Aring; forming with the c-axis an angle of 108. It can be seen in Fig. 2 that along the aaxis there are zones of neighbouring intermolecular rings and zones of intramolecular C CC C linear chains producing a so called lsquo;segregationrsquo; the overall least-squares planes through each molecule in the cell are parallel and within each column a stack is produced. Along the b-axis there are also chains of molecules in the so called lsquo;edge-to-edgersquo; mode with parallel molecules within a column but forming an angle of almost 908 between molecules of two neighbouring columns.In general in the reactive crystals of buta-1,3-diyne compounds the molecules are packed in a ladder-like fashion such that the ends of one triple-bond system approach an adjacent triple-bond system to a distance d 4 Aring; and the inclination angle formed with the translation axis is about 458.12 Charge-transfer complexes The p-electronic defect of the pyridine rings and the pextended conjugation to the diyne chain in 1,4-di(3-pyridyl)- buta-1,3-diyne 13 allowed it to take part in charge-transfer complexation with N,N,N9,N9-tetramethyl-p-phenylenediamine (TMPD) as donor. However the 1,4-di(n-pyridyl)buta-1,3- diyne derivative does not form charge-transfer complexes with Table 3 Yields of 9ndash;11 and 4ndash;6 Bromopyridine Alcohol () Acetylene () 2-subst.93 84 3-subst. 98 55 4-subst. 90 50 Table 4 Bond distances and angles for 13 (a) Bond distances (Aring;) N(1)C(2) 1.338(3) C(5)C(6) 1.394(3) N(1)C(6) 1.325(3) C(5)C(7) 1.431(3) C(2)C(3) 1.375(3) C(7)C(8) 1.199(3) C(3)C(4) 1.371(3) C(8)C(89) a 1.371(3) C(4)C(5) 1.392(3) (b) Bond angles (8) C(2)N(1)C(6) 117.3(2) C(4)C(5)C(6) 117.4(2) N(1)C(2)C(3) 123.1(2) C(6)C(5)C(7) 121.4(2) C(2)C(3)C(4) 119.2(2) N(1)C(6)C(5) 123.9(2) C(3)C(4)C(5) 119.0(2) C(5)C(7)C(8) 178.1(2) C(4)C(5)C(7) 121.2(2) C(7)C(8)C(89) a 179.7(2) a C(89) is related to C(8) by the symmetry operation (1 2 x 21 2 y 2 2 z). dagger; Supplementary material Tables of fractional atomic coordinates and thermal parameters and full bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC).See Instructions for Authors J. Chem. Soc. Perkin Trans. 1 1997 Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 207/78. J. Chem. Soc. Perkin Trans. 1 1997 711 some acceptors or donors so we carried out methylation of the pyridine rings to increase the acceptor character of these compounds (Scheme 4). The mono- and di-methylated salts of the meta diyne derivative were isolated pure and used to prepare charge-transfer complexes with the donor molecule TMPD. Thus slow evaporation of an equimolar mixture of the mono- or di-salt and TMPD in hot acetonitrile gave in both cases a metallic bright solid (black or green) (Fig.3). UV-Visible spectroscopy of the molecular complex of the monomethylated salt 15 and TMPD shows three chargetransfer bands at 543 565 and 615 nm. In the case of the molecular complex of the dimethylated salt 16 and TMPD the UV-visible spectrum also shows three charge-transfer bands at 594 617 and 642 nm. The IR spectra showed some differences between the complexes with TMPD and the free salts such that the intensity of the absorption for the C C conjugated bonds in the complexes is lower than that in the free salts. Experimental Mps were determined using a Reichert stage microscope and are uncorrected. IR Spectra were recorded using a Perkin-Elmer 681 spectrophotometer. NMR Spectra were recorded at 200 MHz using a Bruker WM-200-SY spectrometer; chemical shifts are given in d units using SiMe4 as internal reference; J values are given in Hz.UVndash;Visible spectra were recorded using a Perkin-Elmer Lambda 6 spectrophotometer. Mass spectra were recorded using a Hewlett-Packard SP85 spectrometer. Fig. 1 View of molecule 13 with the atom numbering scheme Scheme 4 Reagent MeI N C C N C C N C C N+Indash; C C CH3 ndash;I+N C C N+Indash; C C CH3 H3C 13 + 15 16 Preparation of ethynylpyridines by elimination of hydrogen chloride from the chlorovinyl derivatives 2-(2-Chlorovinyl)pyridine 1. To a suspension of chloromethyl- (triphenyl)phosphonium chloride (18.7 g 57 mmol) in dry THF (60 cm3) was slowly added a solution of butyllithium (1.6 M in hexane; 35.6 cm3 57 mmol) under argon at 210 8C. The solution acquired a red colour and after being stirred for 30 min was treated with pyridine-2-carbaldehyde (2 g 19 mmol).The mixture was stirred at room temperature for 10 h and then the solvent was removed to give a brown oil. Chromatography on silica gel with hexanendash;ethyl acetate afforded (Z)-2-(2-chlorovinyl) pyridine nmax(film)/cm21 3055 ( CH) 1620 (C C conj.) 1580 and 1560 (C C and C N) and 670 (Z); dH(200 MHz; CDCl3) 6.49 (1 H d J 8.3 CH CHCl) 6.86 (1 H d J 8.3 CH CHCl) 7.19 (1 H dd J 7.9 and 6.0 5-H) 7.70 (1 H t J 7.9 4-H) 8.02 (1 H d J 7.9 3-H) and 8.62 (1 H d J 6.0 6-H); m/z 141 (9) 139 (M+ 22) 104 (100) 84 (13) 78 (30) and 51 (27); and (E)-2-(2-chlorovinyl)pyridine nmax(film)/cm21 3070 ( CH) 1620 (C C conj.) 1580 and 1560 (C C and C N) and 970 (E); dH(200 MHz; CDCl3) 6.67 (1 H d J 13.3 CH CHCl) 7.20 (2 H m 3- and 5-H) 7.43 (1 H d J 13.3 CH CHCl) 7.63 (1 H m 4-H) and 8.53 (1 H br s 6-H); m/z 141 (9) 139 (M+ 27) 104 (100) 78 (25) and 51 (18).Fig. 2 Packing of the molecular crystal unit cells viewed down the baxis Fig. 3 N N CH3 CH3 H3C H3C N+Indash; C C C C N CH3 N N CH3 CH3 H3C H3C N+Indash; C C C C ndash;I+N CH3 H3C 712 J. Chem. Soc. Perkin Trans. 1 1997 3-(2-Chlorovinyl)pyridine 2. The same procedure was followed to prepare the 3-substituted derivative but with pyridine- 3-carbaldehyde. After purification by chromatography on silica gel the chlorovinyl derivative 2 was obtained as an oily mixture of E Z isomers (1 1) (2.38 g 90); nmax(film)/cm21 3050 ( CH) 1610 and 1605 (C C conj.) 1580 and 1560 (C C and C N) 970 (E) and 730 (Z); dH(200 MHz; CDCl3) 6.29 (1 H d J 8.2 CH CHCl Z) 6.69 (1 H d J 13.9 CH CHCl E) 6.74 (1 H d J 8.2 CH CHCl Z) 6.85 (1 H d J 13.9 CH CHCl E) 7.25 (1 H d J 8.0 5-H E) 7.32 (1 H dd J 8.0 and 5.4 5-H Z) 7.60 (1 H d J 8.0 4-H E) 8.13 (1 H d J 8.0 4-H Z) 8.49 (1 H br s 6-H E) 8.52 (1 H d J 5.4 6-H Z) 8.53 (1 H br s 2-H E) and 8.76 (1 H br s 2-H Z); m/z 141 (8) 139 (M+ 29) 104 (100) 86 (10) 77 (46) and 51 (64).4-(2-Chlorovinyl)pyridine 3. Following the same procedure we obtained the chlorovinyl derivative 3 from pyridine-4- carbaldehyde as an oily mixture of E Z isomers (1 1) (2.22 g 84); nmax(film)/cm21 3060 ( CH) 1610 (C C conj.) 1590 and 1540 (C C and C N) 960 (E) and 720 (Z); dH(200 MHz; CDCl3) 6.48 (1 H d J 8.2 CH CHCl Z) 6.60 (1 H d J 8.2 CH CHCl Z) 6.69 (1 H d J 13.8 CH CHCl E) 6.77 (1 H d J 13.8 CH CHCl E) 7.16 (2 H d J 4.8 3- and 5-H E) 7.52 (2 H d J 4.6 3- and 5-H Z) 8.56 (2 H d J 4.8 2- and 6-H E) and 8.62 (2 H d J 4.6 2- and 6-H Z); m/z 141 (8) 139 (M+ 29) 112 (29) 104 (38) 86 (84) 77 (36) 63 (16) and 51 (100).2-Ethynylpyridine 4. From the (Z)-2-(2-chlorovinyl)pyridine isomer 1a.mdash;To a solution of the (Z)-chlorovinyl derivative 1a (3 g 21 mmol) in dry THF (30 cm3) was slowly added potassium tert-butoxide (6 g 54 mmol) under argon at 0 8C. The mixture was stirred for 45 min at room temperature. Then the solution was poured onto icendash;water (150 cm3) and made alkaline (pH 8) with saturated aq. ammonium chloride. The mixture was extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown oil.Chromatography on silica gel with hexanendash; ethyl acetate (1 2) as eluent yielded the acetylene derivative 4 (1.04 g 48) as an orange oil bp 91ndash;92 8C/15 mmHg (lit.,9 85ndash; 86 8C/12 mmHg); nmax(film)/cm21 3260 ( CH) and 2114 (C C); dH(200 MHz; CDCl3) 3.25 (1 H s C CH) 7.21 (1 H dd J 7.7 and 5.1 5-H) 7.40 (1 H d J 7.7 3-H) 7.60 (1 H t J 7.7 4-H) and 8.54 (1 H d J 5.1 6-H); dC(200 MHz; CDCl3) 77.0 (PyC C) 82.5 (PyC C) 123.1 (C-5) 127.1 (C-3) 135.8 (C-4) 148.4 (C-2) and 149.5 (C-6); m/z 103 (M+ 100) 76 (46) and 50 (36). From the (E)-2-(2-chlorovinyl)pyridine isomer 1b.mdash;To a solution of the (E)-chlorovinyl derivative 1b (1 g 7.2 mmol) in dry THF (15 cm3) was slowly added potassium tert-butoxide (2 g 18 mmol) under argon at 0 8C. The mixture was stirred for 90 min at 50 8C.Then the solution was poured onto icendash;water (60 cm3) and made alkaline (pH 8) with saturated aq. ammonium chloride. The mixture was extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown oil. Chromatography on silica gel with hexanendash;ethyl acetate (1 2) as eluent yielded the acetylene derivative 4 (0.33 g 45) as an orange oil. 3-Ethynylpyridine 5. To a solution of the (Z,E)-chlorovinyl derivative 2 (3 g 21 mmol) in dry THF (30 cm3) was slowly added potassium tert-butoxide (6 g 54 mmol) under argon at 0 8C. The mixture was stirred for 60 min at 60 8C. Then the solution was allowed to cool and was poured onto icendash;water (150 cm3) and made alkaline (pH 8) with saturated aq. ammonium chloride. The mixture was extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown oil.Chromatography on silica gel with hexanendash;ethyl acetate (1 2) as eluent yielded the acetylene derivative 5 (1.17 g 54) as a yellow solid mp 35ndash;37 8C (lit.,13 39ndash;40 8C); nmax(film)/cm21 3280 ( CH) and 2120 (C C); dH(200 MHz; CDCl3) 3.30 (1 H s C CH) 7.25 (1 H ddd J 7.8 5.0 and 0.9 5-H) 7.70 (1 H dt J 7.8 and 2.0 4-H) 8.56 (1 H dd J 5.0 and 2.0 6-H) and 8.70 (1 H dd J 2.0 and 0.9 2-H); dC(200 MHz; CDCl3) 80.0 (PyC C) 80.6 (PyC C) 118.7 (C-3) 122.3 (C-5) 138.3 (C-4) 148.3 (C-6) and 151.9 (C-2); m/z 103 (M+ 100) 76 (38) and 50 (30). 4-Ethynylpyridine 6. Following the same procedure described to prepare 2-ethynylpyridine from the (Z)-chlorovinyl isomer 4-ethynylpyridine was obtained (40) as a solid from the 4-(chlorovinyl)isomer mp 63ndash;65 8C; nmax(film)/cm21 3270 ( CH) and 2100 (C C); dH(200 MHz; CDCl3) 3.40 (1 H s C CH) 7.35 (2 H d J 6.8 3- and 5-H) and 8.60 (2 H d J 6.8 2- and 6-H); dC(200 MHz; CDCl3) 80.6 (PyC C) 81.8 (PyC C) 129.9 (C-4) 125.7 (C-3 and -5) and 149.4 (C-2 and -6); m/z 103 (M+ 100) 76 (52) and 50 (41).Synthesis of ethynylpyridines by insertion of the acetylene group catalysed by palladium 2-Methyl-4-(2-pyridyl)but-3-yn-2-ol 9. Bis(triphenylphosphine) palladium(II) dichloride (220 mg 0.3 mmol) and copper( I) iodide (32 mg 0.2 mmol) were added successively to a solution of 2-bromopyridine (5 g 31.6 mmol) and 2-methylbut- 3-yn-2-ol (3.62 ml 37.3 mmol) in diethylamine (freshly distilled; 25 cm3) under argon at 0 8C.The mixture was stirred for 15 h at room temperature and then the diethylamine was removed under reduced pressure. The crude mixture was washed with water and extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown solid. Chromatography on silica gel with hexanendash;ethyl acetate as eluent yielded 2-methyl-4-(2- pyridyl)but-3-yn-2-ol 9 (4.76 g 93) as a yellow solid mp 60ndash; 62 8C (lit.,9 61ndash;63 8C); nmax(film)/cm21 3300 (OH) 2980 (CH) 2230 (C C) 1585 (C C conj.) 1380 and 1360 (CH3) 1170 (CO) 970 (Py) and 780 (PyH 2-subst.); dH(200 MHz; CDCl3) 1.70 (6 H s CH3 times; 2) 5.29 (1 H s OH) 7.20 (1 H dd J 6.7 and 5.0 5-H) 7.39 (1 H d J3,4 6.7 3-H) 7.62 (1 H td J4,3 = J4,5 6.7 and J4,6 0.8 4-H) and 8.59 (1 H br s 6-H); dC(200 MHz; CDCl3) 30.9 (CH3) 64.5 (COH) 80.6 (PyC C) 94.9 (PyC C) 122.5 (C-5) 126.7 (C-3) 136.0 (C-4) 142.6 (C-2) and 149.2 (C-6).2-Methyl-4-(3-pyridyl)but-3-yn-2-ol 10. Following the same procedure the 3-substituted derivative 10 was obtained (5 g 98) as a yellow solid from 3-bromopyridine mp 52ndash;54 8C; nmax(film)/cm21 3300 (OH) 2980 (CH) 2240 (C C) 1590 (C C conj.) 1380 and 1360 (CH3) 1170 (CO) 970 (Py) and 810 and 705 (PyH 3-subst.); dH(200 MHz; CDCl3) 1.58 (6 H s CH3 times; 2) 5.78 (1 H s OH) 7.15 (1 H dd J5,4 8.0 J5,6 6.4 5-H) 7.09 (1 H d J4,5 8.0 4-H) 8.38 (1 H s 6-H) and 8.60 (1 H s 2-H); dC(200 MHz; CDCl3) 31.1 (CH3) 64.3 (COH) 77.6 (PyC C) 98.6 (PyC C) 120.2 (C-3) 122.9 (C-5) 138.7 (C-4) 147.4 (C-6) and 151.3 (C-2).2-Methyl-4-(4-pyridyl)but-3-yn-2-ol 11. The preparation of the 4-substituted derivative 11 was carried out following the same procedure from 4-bromopyridine hydrochloride. Compound 11 was obtained (3.72 g 90) as a yellow solid mp 96ndash; 98 8C; nmax(film)/cm21 3350ndash;3040 (OH) 2980 (CH) 2230 (C C) 1600 (C C conj.) 1370 and 1360 (CH3) 1170 (CO) 970 (Py) and 840 (PyH 4-subst.); dH(200 MHz; CDCl3) 1.62 (6 H s CH3 times; 2) 3.10 (1 H s OH) 7.29 (2 H d J 8.1 3- and 5-H) and 8.59 (2 H s 2- and 6-H); dC(200 MHz; CDCl3) 31.0 (CH3) 64.5 (COH) 78.6 (PyC C) 100 (PyC C) 125.6 (C-3 and -5) and 148.8 (C-2 and -6). General procedure to prepare the ethynylpyridines from the 2-methyl-4-(n-pyridyl)but-3-yn-2-ols A solution of the alkynol (5 g 31 mmol) in dry toluene (30 cm3) was heated under reflux with pulverized sodium hydroxide (0.90 g) for 2 h.Then the solution was decanted and the solvent was evaporated under reduced pressure to give a brown solid. J. Chem. Soc. Perkin Trans. 1 1997 713 Chromatography on silica gel with hexanendash;ethyl acetate (1 2) yielded the ethynyl derivative 2-Ethynylpyridine (84) as an orange oil bp 90ndash;92 8C/15 mmHg; 3-ethynylpyridine (55) as a yellow solid mp 37ndash;39 8C and 4-ethynylpyridine (50) as a solid mp 63ndash;65 8C. Oxidative dimerization of ethynylpyridines. General procedure Oxygen was bubbled into a solution of copper(I) chloride (0.54 g 2.73 mmol) in pyridine (12 cm3) warmed to 40 8C after which the acetylene derivative (0.78 g 7.57 mmol) was added. The mixture was stirred for 3 h after which it was cooled and concentrated by removal of the pyridine by distillation.The crude mixture was washed with ammonium hydroxide until the blue colour disappeared after which it was extracted with dichloromethane. The extract was dried (MgSO4) filtered and evaporated to give a yellow solid chromatography of which on silica gel with hexanendash;ethyl acetate (1 2) as eluent yielded the diyne derivative. 3-Substituted product 13 (49) was a yellow solid mp 145ndash;146 8C; nmax(KBr)/cm21 1550 (C C conj.) 955 (Py) 800 and 700 (PyH 3-subst.); dH(200 MHz; CDCl3) 7.30 (2 H dd J 7.9 and 5.0 5-H) 7.82 (2 H dt J 7.9 and 1.7 4-H) 8.61 (2 H br s 6-H) and 8.78 (2 H br s 2-H); dC(200 MHz; CDCl3) 78.9 (C C) 118.5 (C-3) 122.7 (C-5) 139.1 (C-4) 149.2 (C-6) and 152.9 (C-2); m/z 204 (M+ 100) 177 (11) 151 (23) and 124 (8); lmax(CH2Cl2)/nm 229 (e/dm3 mol21 cm21 30 000) 244 (29 000) 292 (22 000) 319 (30 000) and 331 (26 000).4-Substituted product 14 (54) was a brown solid mp 198ndash; 201 8C; nmax(Nujol)/cm21 1580 (C C conj.) 980 (Py) and 810 (PyH 4-subst.); dH(200 MHz; CDCl3) 7.41 (4 H d J 7.2 3- and 5-H) and 8.67 (4 H br s 2- and 6-H); dC(200 MHz; CDCl3) 76.9 (PyC C) 79.9 (PyC C) 125.7 (C-3 and -5) 128.9 (C-4) and 149.6 (C-2 and -6); m/z 204 (M+ 100) 177 (13) 151 (14) and 124 (6). X-Ray crystallographic analysis of 1,4-di(3-pyridyl)buta-1,3- diyne 13 Yellow transparent plate-like crystals of 1,4-di(3-pyridyl)buta- 1,3-diyne 13 were grown by slow evaporation from an acetonitrile solution. A crystal of dimensions 0.29 times; 0.27 times; 0.18 mm3 was selected for X-ray diffraction analysis.Accurate cell dimensions were determined by least-squares analysis of setting angles of 40 reflections (15 2q 848) using graphite-monochromated Cu-Ka radiation (l = 1.5418 Aring;) automatically located and centred on a four-circle Philips PW1100 diffractometer. C14H8N2 M = 204.23 monoclinic a = 22.104(3) b = 6.017(1) c = 3.873(1) Aring; b = 91.48(1)8 V = 514.92(7) Aring;3 Z = 2 space group P21/n Dc = 1.317(3) g cm23 F(000) = 212 m = 6.253 cm21. Data collection. Two standard reflections were measured every 90 min to ascertain crystal stability; no significant variation was observed. The intensities were corrected for Lorentz and polarization effects. No corrections were made for absorption. For the intensity measurement reflections were surveyed in the range 2 q 658; from 975 independent reflections measured 778 were considered as observed satisfying the criterion I 2s(I) in the range h 227/27 k 0/8 l 0/5 and were used in the subsequent calculations.The structure was solved by direct methods using SIR92,14 and refined by anisotropic full-matrix least-squares.15 The H-atoms were located on a difference map and refined isotropically. After several cycles of mixed refinement (89 refined parameters) convergence was reached at R = 0.057 and Rw = 0.069 with a weighting scheme16 to prevent trends in middot;wD2FOgrave; vs. middot;verbar;Foverbar;Ograve; and middot;sinq/lOgrave;. The atomic scattering factors and the anomalous dispersion corrections were taken from the literature.17 Atomic coordinates bond distances and angles were calculated using the PARST program.18 1,4-Di(2-pyridyl)buta-1,3-diyne 12 To a suspension of copper(I) chloride (57 mg 0.58 mmol) and N,N,N9,N9-tetramethylethylenediamine (TMEDA) (0.11 cm3 0.75 mmol) in 1,2-dimethoxyethane (DME) (4 cm3) was added a solution of 2-ethynylpyridine 4 (0.3 g 2.9 mmol) in DME (1 cm3) previously heated for 10 min at 35 8C while oxygen was bubbled in.After 30 min the mixture changed in colour from green to brown and 15 min later the solvent was removed to give a brown solid chromatography of which on silica gel with hexanendash;ethyl acetate (2 3) as eluent yielded the diacetylene derivative 12 (150 mg 52) as a solid mp 120ndash; 122 8C (lit.,19 122ndash;123 8C); nmax(KBr)/cm21 1580 and 1560 (C C conj.) 990 (Py) 780 and 735 (PyH 2-subst.); dH(200 MHz CDCl3) 7.24 (2 H ddd J 7.6 4.8 and 1.1 5-H) 7.47 (2 H d J 7.7 3-H) 7.63 (2 H td J 7.7 and 1.7 4-H) and 8.55 (2 H d J 4.8 6-H); dC(200 MHz; CDCl3) 72.9 (PyC C) 80.7 (PyC C) 123.6 (C-5) 128.2 (C-3) 136.0 (C-4) 141.5 (C-2) and 150.2 (C-6); m/z 204 (M+ 100) 177 (14) 151 (14) 124 (5) 102 (6) and 78 (10); lmax(CH2Cl2)/nm 238 (e/dm3 mol21 cm21 23 600) 294 (18 400) 309 (24 000) and 330 (20 800).Methylation of the 1,4-di(3-pyridyl)buta-1,3-diyne 13 To a solution of the diyne derivative (100 mg 0.49 mmol) in ethanol (25 cm3) was added iodomethane (0.12 cm3 1.96 mmol). The mixture was stirred for 20 h at 50 8C. A yellow solid precipitated from the solution and was filtered off and identi- fied as the dimethylated derivative 16 (92 mg 38) mp 190 8C (decomp.). Then the mixture was allowed to cool and an orange solid precipitated out which was filtered off and identi- fied as the monomethylated derivative 15 (72 mg 42) mp 166 8C (decomp.).Dimethylated product 16 had nmax(KBr)/cm21 1620 and 1500 (C C and C N conj.) 1290 (NCH3) 1150 (Py+ndash;CH3) 810 and 665 (PyH 3-subst.); dH200 MHz; (CD3)2SO 4.37 (6 H s CH3 times; 2) 8.23 (2 H t 5-H) 8.91 (2 H d 4-H) 9.13 (2 H d 6-H) and 9.49 (2 H s 2-H); dC(200 MHz; CDCl3) 48.4 (CH3) 77.2 and 77.6 (PyC C) 120.1 (C-3) 127.7 (C-5) 146.4 (C-4) 147.9 (C-6) and 149.3 (C-2); m/z (FAB+) 234 (M+ 25) and 219 (52); lmax(CH2Cl2)/nm 237 (e/dm3 mol21 cm21 31 430) 290 (18 500) 308 (20 000) 330 (18 570) 345 (13 710) 354 (12 000) and 360 (11 430). Monomethylated product 15 had nmax(KBr)/cm21 1620 1580 and 1500 (C C and C N conj.) 1280 (NCH3) 1160 (Py+CH3) 830 800 700 and 675 (PyH 3-subst.); dH200 MHz; (CD3)2SO 4.31 (3 H s CH3) 7.50 (1 H m 5-H) 8.20 (2 H m 5-H in the methylated ring and 4-H) 8.70 (2 H m 2- and 6-H) 8.88 (1 H m 4-H in the methylated ring) 9.05 (1 H d 6-H in the methylated ring) and 9.42 (1 H br s 2-H in the methylated ring); dC(200 MHz; CDCl3) 48.4 (CH3) 77.2 and 77.6 (PyC C) 120.1 (C-3) 127.7 (C-5) 146.4 (C-4) 147.9 (C-6) and 149.3 (C-2); m/z (FAB+) 219 (M+ 100) and 205 (13); lmax(CH2Cl2)/nm 237 (e/dm3 mol21 cm21 40 250) 290 (17 750) 308 (22 500) 330 (24 000) and 345 (12 500).Charge-transfer complex of 1-(N-methylpyridinium-3-yl)-4-(3- pyridyl)buta-1,3-diyne iodide 15 with TMPD A hot solution of TMPD (24 mg 0.14 mmol) in acetonitrile (10 cm3) was added to a nearly boiling solution of the monomethylated buta-1,3-diyne derivative 15 (50 mg 0.14 mmol) in 100 cm3 of acetonitrile.The resulting dark violet solution was allowed to cool and then to evaporate slowly to yield a black solid with metallic lustre; nmax(Nujol)/cm21 1610 1580 and 1510 (C C and C N conj.) 1160 (Py+CH3) 950 (Py) 820 810 800 720 690 and 665 (PyH 3-subst.); lmax(CH2Cl2)/nm 238 309 330 350 543 565 and 615. Charge-transfer complex of 1,4-bis(N-methylpyridinium-3-yl)- buta-1,3-diyne diiodide 16 with TMPD The same procedure was followed to form the charge-transfer complex of the dimethylated buta-1,3-diyne derivative 16. 714 J. Chem. Soc. Perkin Trans. 1 1997 The complex was a green solid with a metallic lustre; nmax- (Nujol)/cm21 1620 and 1520 (C C and C N conj.) 1320 (NCH3) 1170 and 1150 (Py+CH3) 950 (Py) 815 720 and 665 (PyH 3-subst.); lmax(CH2Cl2)/nm 264 327 594 617 and 642.Acknowledgements We are indebted to the CAYCIT of Spain for financial support (project no. PB92-0142-C02-01). References 1 Polydiacetylenes ed. D. Bloor and R. R. Chance NATO ASI series E No. 102 Matinus Nijkoff Boston 1985; A. E. Stiegman E. Graham K. J. Perry R. Khundkard L. T. Cheng and J. W. Perry J. Am. Chem. Soc. 1991 113 1658 and references cited therein. 2 G. Wegner Z. Naturforsch. B Anorg. Chem. Org. Chem. 1969 24 824. 3 G. M. Carter Y. J. Chen M. F. Rubner D. J. Sandman M. K. Thakur and S. K. Tripathy in Nonlinear Optical Properties of Organic Molecules and Crystals ed. D. S. Chemla and J. Zyss Academic Press New York 1987 vol. 2 p. 85. 4 G. Wegner J. Polym. Sci. Part B Polym. Lett. 1971 9 133. 5 Y. Ozcayir J. Asrar and A. Blumstein Mol.Cryst. Liq. Cryst. 1984 110 1424. 6 G. H. Milburn A. R. Wernick J. Tsibouklis E. Bolton G. Thomson and A. Shand Polymer 1989 30 1004. 7 J. P. Ferraris D. O. Cowan V. Walatka and J. Perlstein J. Am. Chem. Soc. 1973 95 948. 8 G. Kouml;brig H. Trapp K. Flory and W. Drischel Chem. Ber. 1966 99 689. 9 D. E. Ames D. Bull and C. Takundwa Synth. Commun. 1981 364. 10 L. Brandsma Studies in Organic Chemistry Preparative Acetylenic Chemistry Elsevier Science Publishers B.V. Amsterdam 1988 vol. 34 p. 220. 11 J. G. Rodriacute;guez S. Ramos R. Martiacute;n-Villamil I. Fonseca and A. Albert J. Chem. Soc. Perkin Trans. 1 1996 541. 12 G. M. J. Schmidt Reactivity of the Photoexcited Organic Molecule Wiley New York 1967 p. 227. 13 S. D. Lrsquo;vova Y. P. Koslov and U. I. Gunar Zh. Obshch. Khim. 1977 47 1251. 14 A. Altomare G.Cascarano C. Giacovazzo and A. Guagliardi Dipartimento Geomineralogico University of Bari; M. Burla and G. Polidori Dipartimento Scienze della Terra University of Perugia; M. Camalli SIR92 Ist Strutt. Chimica CNR Monterrotondo Stazione Roma 1992. 15 J. M. Stewart F. A. Kundell and J. C. Badwin The XRAY80 System Computer Science Center University of Maryland College Park MD 1980. 16 M. Martinez-Ripoll and F. H. Cano PESOS A Computer Program for the Automatic Treatment of Weighting Schemes Instituto Rocasolano CSIC Madrid 1975. 17 International Tables for X-RAY Crystallography Kynoch Press Birmingham 1974 vol. 4. 18 M. Nardelli Comput. Chem. 1983 7 95. 19 U. Fritzsche and S. Hunig Tetrahedron Lett. 1972 4831. Paper 6/05468D Received 5th August 1996 Accepted 5th November 1996 J.Chem. Soc. Perkin Trans. 1 1997 709 Synthesis of 1,4-di(n-pyridyl)buta-1,3-diyne and formation of charge-transfer complexes. X-Ray structure of 1,4-di(3-pyridyl)buta-1,3-diyne J. Gonzalo Rodriacute;guez,*,a Rosa Martiacute;n-Villamil,a Felix H. Canob and Isabel Fonsecab a Departamento de Quiacute;mica Orgaacute;nica Universidad Autoacute;noma de Madrid Cantoblanco 28049-Madrid Spain b Departamento de Cristalografiacute;a C.S.I.C. Serrano 119 28006-Madrid Spain Ethynylpyridines have been satisfactorily prepared by two different routes (a) the Wittig reaction between chloromethylene(triphenyl)phosphine ylide and a pyridinecarbaldehyde followed by elimination of hydrogen chloride; (b) from the 2-methyl-4-(n-pyridyl)but-3-yn-2-ol intermediate by elimination of acetone. 1,4-Di(n-pyridyl)buta-1,3-diynes are obtained by oxidative dimerization in good yield.An X-ray structure of the 3-substituted dimer is reported. Mono- and di-methyl salts of the 3-substituted diyne have been obtained and the charge-transfer complexes with tetramethyl-p-phenylenediamine (TMPD) are formed. Introduction The use of molecular organic materials for conductor and nonlinear optics applications is an area of considerable recent activity. Interest in these materials is due to their inherent synthetic flexibility which permits the lsquo;designrsquo; of molecular properties. 1 Solid-state polymerization of 1,3-diynes to form crystalline conjugated polydiynes has attracted much attention.1,2 Some of the recent interest in poly-1,3-diynes is related to their large and fast nonlinear optical response making them good potential materials in ultrafast optical applications.3 Although the electronic and optical properties of poly-1,3-diynes are primarily dominated by the p-conjugated backbone the substituent groups markedly influence the topopolymerization behaviour of the 1,3-diynes and the physical and chemical properties of the crystalline conjugated poly-1,3-diynes.An aspect of the substituent effect that has received little attention is the influence of formally p-conjugated substituents on the electronic properties of poly-1,3-diynes because many of them are unreactive in the solid state,4ndash;6 although they may undergo liquid-crystalline polymerization to form polymers distinct from the solid-state polymers. However preliminary studies show that 4-amino-49-nitrodiphenyl-1,3-diyne is solid-state reactive.6 The discovery of a one-dimensional metallic state in the ionradical solid formed from the p-donor tetrathiafulvalene and the acceptor tetracyanoquinodimethane has stimulated interest in the structurendash;properties relationships of novel donors and acceptors.7 Metallic conductivity and superconductivity are the most important properties in these organic charge-transfer salts.Recently attention has also been directed to the novel magnetic and optical properties which they can display. Here we report the synthesis of the 1,4-di(n-pyridyl)buta-1,3- diynes 12 13 and 14 and the methylation of the 3-substituted derivative 13 to give molecules with acceptor characteristics which allow them to form charge-transfer complexes with donors. Results and discussion Synthesis of n-ethynylpyridines (a) By elimination of hydrogen chloride from the chlorovinyl derivatives.The starting acetylene derivatives 4ndash;6 were prepared in good yields from a mixture of the corresponding (E)- and (Z)-2-chlorovinylpyridines 1ndash;3 by dehydrochlorination with potassium tert-butoxide in tetrahydrofuran (THF) at different temperatures. In this elimination reaction we observed that the temperature had an influence on the yield and the reaction products. Furthermore the position of the vinyl group on the pyridine ring determined some of the necessary reaction conditions (Table 1 Scheme 1). The chlorovinyl derivatives were prepared by the Wittig reaction between chloromethylene(triphenyl)phosphine ylide 8 and Scheme 1 Reagents and conditions i Ph3P CHCl; ii ButO2K+ 25 8C (4ndash;6) or 70 8C (7a,b; 8) N C N CH=CHCl 1a,b 2-subst.Z and E 2a,b 3-subst. Z and E 3a,b 4-subst. Z and E i N CHO N CH=CHOBut ii 4 2-subst. 5 3-subst. 6 4-subst. ii CH 7a,b 2-subst. Z and E 8 4-subst. Table 1 Dehydrochlorination of 1ndash;3 with ButO2K+ in THF at different temperatures Chlorovinyl T/8C Elimination () Substitution () 1a 25 48 1a 70 50 E:Z = 1 1 1b 50 45 1b 70 40 E 2a + 2b 60 54 2a + 2b 70 25 3a + 3b 25 40 3a + 3b 70 20 710 J. Chem. Soc. Perkin Trans. 1 1997 the corresponding pyridinecarbaldehyde derivative in THF in good yield as a mixture of E:Z isomers (Scheme 1 Table 2). In the case of the 2-substituted derivative the main product is the Z isomer because the cis-1,2-oxaphosphetane precursor of this isomer is more stable. The ylide reacts on the face of the carbonyl group to give the oxaphosphetane intermediate with the dipolar moment of the CCl bond in the opposite direction to that of the NC dipole in the pyridine and this stereodisposition is the most stable.(b) From the n-halogenopyridines by insertion of the acetylene group catalysed by palladium. The low yield in the hydrogen chloride elimination step prompted us to carry out an alternative synthesis of the acetylene derivatives of pyridine using the coupling reaction between the bromopyridine and 2-methylbut- 3-yn-2-ol;9 the reaction is catalysed by palladium and the 2-methyl-4-(n-pyridyl)but-3-yn-2-ol derivatives 9ndash;11 were obtained in excellent yields. Finally the elimination of acetone gave the acetylene derivatives in moderate yield (Scheme 2 Table 3). Synthesis of 1,4-di(n-pyridyl)buta-1,3-diynes 12ndash;14 The title compounds were synthesized in good yield by oxidative dimerization 10 of the corresponding acetylene derivative with oxygen in pyridine in the presence of copper(I) iodide at 40 8C as solids which are stable to sunlight (Scheme 3).A single crystal of the 1,4-di(3-pyridyl)buta-1,3-diyne 13 was used for X-ray crystallographic analysis. The crystal was stable to Cu-Ka X-radiation and no topopolymerization to the monocrystalline poly-1,3-diyne was observed. Crystal structure analysis Compound 13 consists of a buta-1,3-diyne chain with 1,4- substitution at position 3 in both pyridine rings. Fig. 1 shows a view of the molecule with the atom numbering Scheme 2 Reagents and conditions i 2-methylbut-3-yn-2-ol Cl2Pd- (PPh3)2 Cu2I2 HNEt2; ii NaOH reflux N Br N C C C CH3 CH3 OH N C CH i ii 9 2-subst.10 3-subst. 11 4-subst. 4ndash;6 Scheme 3 Reagents Cu2CI2 O2 pyridine N C CH N C C C N C 4 2-subst. 5 3-subst. 6 4-subst. 12 2-subst. 13 3-subst. 14 4-subst. Table 2 Synthesis of 1ndash;3 via Wittig reaction Isomer Z () E () Yield () 1 84 16 77 2 50 50 90 3 50 50 84 scheme. A table of fractional atomic coordinates has been deposited as supplementary material,dagger; and in Table 4 are listed (a) the bond distances and (b) the bond angles. The molecule has a symmetry centre which coincides with a crystallographic one. The distances N(1)C(2) and N(1)C(6) of 1.338(3) and 1.325(3) Aring; respectively are similar to those found in pyridine. All distances and angles are within the expected values (Table 4). The pyridine ring is planar C(7) and C(8) deviating by 0.031(2) and 0.086(2) Aring; above this plane.Bond distances of the buta-1,3-diyne chain show normal values,11 with a C(7)C(8) triple bond distance of 1.199(3) Aring;. This chain is practically linear with a C(7)C(8)C(89) angle of 179.7(2)8. The crystal packs with the molecules in parallel columns (see Fig. 2) along the c-axis which defines the distance between the centroids of consecutive rings as being 3.87 Aring; forming with the c-axis an angle of 108. It can be seen in Fig. 2 that along the aaxis there are zones of neighbouring intermolecular rings and zones of intramolecular C CC C linear chains producing a so called lsquo;segregationrsquo; the overall least-squares planes through each molecule in the cell are parallel and within each column a stack is produced. Along the b-axis there are also chains of molecules in the so called lsquo;edge-to-edgersquo; mode with parallel molecules within a column but forming an angle of almost 908 between molecules of two neighbouring columns.In general in the reactive crystals of buta-1,3-diyne compounds the molecules are packed in a ladder-like fashion such that the ends of one triple-bond system approach an adjacent triple-bond system to a distance d 4 Aring; and the inclination angle formed with the translation axis is about 458.12 Charge-transfer complexes The p-electronic defect of the pyridine rings and the pextended conjugation to the diyne chain in 1,4-di(3-pyridyl)- buta-1,3-diyne 13 allowed it to take part in charge-transfer complexation with N,N,N9,N9-tetramethyl-p-phenylenediamine (TMPD) as donor. However the 1,4-di(n-pyridyl)buta-1,3- diyne derivative does not form charge-transfer complexes with Table 3 Yields of 9ndash;11 and 4ndash;6 Bromopyridine Alcohol () Acetylene () 2-subst.93 84 3-subst. 98 55 4-subst. 90 50 Table 4 Bond distances and angles for 13 (a) Bond distances (Aring;) N(1)C(2) 1.338(3) C(5)C(6) 1.394(3) N(1)C(6) 1.325(3) C(5)C(7) 1.431(3) C(2)C(3) 1.375(3) C(7)C(8) 1.199(3) C(3)C(4) 1.371(3) C(8)C(89) a 1.371(3) C(4)C(5) 1.392(3) (b) Bond angles (8) C(2)N(1)C(6) 117.3(2) C(4)C(5)C(6) 117.4(2) N(1)C(2)C(3) 123.1(2) C(6)C(5)C(7) 121.4(2) C(2)C(3)C(4) 119.2(2) N(1)C(6)C(5) 123.9(2) C(3)C(4)C(5) 119.0(2) C(5)C(7)C(8) 178.1(2) C(4)C(5)C(7) 121.2(2) C(7)C(8)C(89) a 179.7(2) a C(89) is related to C(8) by the symmetry operation (1 2 x 21 2 y 2 2 z). dagger; Supplementary material Tables of fractional atomic coordinates and thermal parameters and full bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC).See Instructions for Authors J. Chem. Soc. Perkin Trans. 1 1997 Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 207/78. J. Chem. Soc. Perkin Trans. 1 1997 711 some acceptors or donors so we carried out methylation of the pyridine rings to increase the acceptor character of these compounds (Scheme 4). The mono- and di-methylated salts of the meta diyne derivative were isolated pure and used to prepare charge-transfer complexes with the donor molecule TMPD. Thus slow evaporation of an equimolar mixture of the mono- or di-salt and TMPD in hot acetonitrile gave in both cases a metallic bright solid (black or green) (Fig.3). UV-Visible spectroscopy of the molecular complex of the monomethylated salt 15 and TMPD shows three chargetransfer bands at 543 565 and 615 nm. In the case of the molecular complex of the dimethylated salt 16 and TMPD the UV-visible spectrum also shows three charge-transfer bands at 594 617 and 642 nm. The IR spectra showed some differences between the complexes with TMPD and the free salts such that the intensity of the absorption for the C C conjugated bonds in the complexes is lower than that in the free salts. Experimental Mps were determined using a Reichert stage microscope and are uncorrected. IR Spectra were recorded using a Perkin-Elmer 681 spectrophotometer. NMR Spectra were recorded at 200 MHz using a Bruker WM-200-SY spectrometer; chemical shifts are given in d units using SiMe4 as internal reference; J values are given in Hz.UVndash;Visible spectra were recorded using a Perkin-Elmer Lambda 6 spectrophotometer. Mass spectra were recorded using a Hewlett-Packard SP85 spectrometer. Fig. 1 View of molecule 13 with the atom numbering scheme Scheme 4 Reagent MeI N C C N C C N C C N+Indash; C C CH3 ndash;I+N C C N+Indash; C C CH3 H3C 13 + 15 16 Preparation of ethynylpyridines by elimination of hydrogen chloride from the chlorovinyl derivatives 2-(2-Chlorovinyl)pyridine 1. To a suspension of chloromethyl- (triphenyl)phosphonium chloride (18.7 g 57 mmol) in dry THF (60 cm3) was slowly added a solution of butyllithium (1.6 M in hexane; 35.6 cm3 57 mmol) under argon at 210 8C. The solution acquired a red colour and after being stirred for 30 min was treated with pyridine-2-carbaldehyde (2 g 19 mmol).The mixture was stirred at room temperature for 10 h and then the solvent was removed to give a brown oil. Chromatography on silica gel with hexanendash;ethyl acetate afforded (Z)-2-(2-chlorovinyl) pyridine nmax(film)/cm21 3055 ( CH) 1620 (C C conj.) 1580 and 1560 (C C and C N) and 670 (Z); dH(200 MHz; CDCl3) 6.49 (1 H d J 8.3 CH CHCl) 6.86 (1 H d J 8.3 CH CHCl) 7.19 (1 H dd J 7.9 and 6.0 5-H) 7.70 (1 H t J 7.9 4-H) 8.02 (1 H d J 7.9 3-H) and 8.62 (1 H d J 6.0 6-H); m/z 141 (9) 139 (M+ 22) 104 (100) 84 (13) 78 (30) and 51 (27); and (E)-2-(2-chlorovinyl)pyridine nmax(film)/cm21 3070 ( CH) 1620 (C C conj.) 1580 and 1560 (C C and C N) and 970 (E); dH(200 MHz; CDCl3) 6.67 (1 H d J 13.3 CH CHCl) 7.20 (2 H m 3- and 5-H) 7.43 (1 H d J 13.3 CH CHCl) 7.63 (1 H m 4-H) and 8.53 (1 H br s 6-H); m/z 141 (9) 139 (M+ 27) 104 (100) 78 (25) and 51 (18).Fig. 2 Packing of the molecular crystal unit cells viewed down the baxis Fig. 3 N N CH3 CH3 H3C H3C N+Indash; C C C C N CH3 N N CH3 CH3 H3C H3C N+Indash; C C C C ndash;I+N CH3 H3C 712 J. Chem. Soc. Perkin Trans. 1 1997 3-(2-Chlorovinyl)pyridine 2. The same procedure was followed to prepare the 3-substituted derivative but with pyridine- 3-carbaldehyde. After purification by chromatography on silica gel the chlorovinyl derivative 2 was obtained as an oily mixture of E Z isomers (1 1) (2.38 g 90); nmax(film)/cm21 3050 ( CH) 1610 and 1605 (C C conj.) 1580 and 1560 (C C and C N) 970 (E) and 730 (Z); dH(200 MHz; CDCl3) 6.29 (1 H d J 8.2 CH CHCl Z) 6.69 (1 H d J 13.9 CH CHCl E) 6.74 (1 H d J 8.2 CH CHCl Z) 6.85 (1 H d J 13.9 CH CHCl E) 7.25 (1 H d J 8.0 5-H E) 7.32 (1 H dd J 8.0 and 5.4 5-H Z) 7.60 (1 H d J 8.0 4-H E) 8.13 (1 H d J 8.0 4-H Z) 8.49 (1 H br s 6-H E) 8.52 (1 H d J 5.4 6-H Z) 8.53 (1 H br s 2-H E) and 8.76 (1 H br s 2-H Z); m/z 141 (8) 139 (M+ 29) 104 (100) 86 (10) 77 (46) and 51 (64).4-(2-Chlorovinyl)pyridine 3. Following the same procedure we obtained the chlorovinyl derivative 3 from pyridine-4- carbaldehyde as an oily mixture of E Z isomers (1 1) (2.22 g 84); nmax(film)/cm21 3060 ( CH) 1610 (C C conj.) 1590 and 1540 (C C and C N) 960 (E) and 720 (Z); dH(200 MHz; CDCl3) 6.48 (1 H d J 8.2 CH CHCl Z) 6.60 (1 H d J 8.2 CH CHCl Z) 6.69 (1 H d J 13.8 CH CHCl E) 6.77 (1 H d J 13.8 CH CHCl E) 7.16 (2 H d J 4.8 3- and 5-H E) 7.52 (2 H d J 4.6 3- and 5-H Z) 8.56 (2 H d J 4.8 2- and 6-H E) and 8.62 (2 H d J 4.6 2- and 6-H Z); m/z 141 (8) 139 (M+ 29) 112 (29) 104 (38) 86 (84) 77 (36) 63 (16) and 51 (100).2-Ethynylpyridine 4. From the (Z)-2-(2-chlorovinyl)pyridine isomer 1a.mdash;To a solution of the (Z)-chlorovinyl derivative 1a (3 g 21 mmol) in dry THF (30 cm3) was slowly added potassium tert-butoxide (6 g 54 mmol) under argon at 0 8C. The mixture was stirred for 45 min at room temperature. Then the solution was poured onto icendash;water (150 cm3) and made alkaline (pH 8) with saturated aq. ammonium chloride. The mixture was extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown oil.Chromatography on silica gel with hexanendash; ethyl acetate (1 2) as eluent yielded the acetylene derivative 4 (1.04 g 48) as an orange oil bp 91ndash;92 8C/15 mmHg (lit.,9 85ndash; 86 8C/12 mmHg); nmax(film)/cm21 3260 ( CH) and 2114 (C C); dH(200 MHz; CDCl3) 3.25 (1 H s C CH) 7.21 (1 H dd J 7.7 and 5.1 5-H) 7.40 (1 H d J 7.7 3-H) 7.60 (1 H t J 7.7 4-H) and 8.54 (1 H d J 5.1 6-H); dC(200 MHz; CDCl3) 77.0 (PyC C) 82.5 (PyC C) 123.1 (C-5) 127.1 (C-3) 135.8 (C-4) 148.4 (C-2) and 149.5 (C-6); m/z 103 (M+ 100) 76 (46) and 50 (36). From the (E)-2-(2-chlorovinyl)pyridine isomer 1b.mdash;To a solution of the (E)-chlorovinyl derivative 1b (1 g 7.2 mmol) in dry THF (15 cm3) was slowly added potassium tert-butoxide (2 g 18 mmol) under argon at 0 8C. The mixture was stirred for 90 min at 50 8C.Then the solution was poured onto icendash;water (60 cm3) and made alkaline (pH 8) with saturated aq. ammonium chloride. The mixture was extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown oil. Chromatography on silica gel with hexanendash;ethyl acetate (1 2) as eluent yielded the acetylene derivative 4 (0.33 g 45) as an orange oil. 3-Ethynylpyridine 5. To a solution of the (Z,E)-chlorovinyl derivative 2 (3 g 21 mmol) in dry THF (30 cm3) was slowly added potassium tert-butoxide (6 g 54 mmol) under argon at 0 8C. The mixture was stirred for 60 min at 60 8C. Then the solution was allowed to cool and was poured onto icendash;water (150 cm3) and made alkaline (pH 8) with saturated aq. ammonium chloride.The mixture was extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown oil. Chromatography on silica gel with hexanendash;ethyl acetate (1 2) as eluent yielded the acetylene derivative 5 (1.17 g 54) as a yellow solid mp 35ndash;37 8C (lit.,13 39ndash;40 8C); nmax(film)/cm21 3280 ( CH) and 2120 (C C); dH(200 MHz; CDCl3) 3.30 (1 H s C CH) 7.25 (1 H ddd J 7.8 5.0 and 0.9 5-H) 7.70 (1 H dt J 7.8 and 2.0 4-H) 8.56 (1 H dd J 5.0 and 2.0 6-H) and 8.70 (1 H dd J 2.0 and 0.9 2-H); dC(200 MHz; CDCl3) 80.0 (PyC C) 80.6 (PyC C) 118.7 (C-3) 122.3 (C-5) 138.3 (C-4) 148.3 (C-6) and 151.9 (C-2); m/z 103 (M+ 100) 76 (38) and 50 (30). 4-Ethynylpyridine 6. Following the same procedure described to prepare 2-ethynylpyridine from the (Z)-chlorovinyl isomer 4-ethynylpyridine was obtained (40) as a solid from the 4-(chlorovinyl)isomer mp 63ndash;65 8C; nmax(film)/cm21 3270 ( CH) and 2100 (C C); dH(200 MHz; CDCl3) 3.40 (1 H s C CH) 7.35 (2 H d J 6.8 3- and 5-H) and 8.60 (2 H d J 6.8 2- and 6-H); dC(200 MHz; CDCl3) 80.6 (PyC C) 81.8 (PyC C) 129.9 (C-4) 125.7 (C-3 and -5) and 149.4 (C-2 and -6); m/z 103 (M+ 100) 76 (52) and 50 (41).Synthesis of ethynylpyridines by insertion of the acetylene group catalysed by palladium 2-Methyl-4-(2-pyridyl)but-3-yn-2-ol 9. Bis(triphenylphosphine) palladium(II) dichloride (220 mg 0.3 mmol) and copper( I) iodide (32 mg 0.2 mmol) were added successively to a solution of 2-bromopyridine (5 g 31.6 mmol) and 2-methylbut- 3-yn-2-ol (3.62 ml 37.3 mmol) in diethylamine (freshly distilled; 25 cm3) under argon at 0 8C.The mixture was stirred for 15 h at room temperature and then the diethylamine was removed under reduced pressure. The crude mixture was washed with water and extracted with dichloromethane; the extract was dried with magnesium sulfate and after filtration the solvent was removed to give a brown solid. Chromatography on silica gel with hexanendash;ethyl acetate as eluent yielded 2-methyl-4-(2- pyridyl)but-3-yn-2-ol 9 (4.76 g 93) as a yellow solid mp 60ndash; 62 8C (lit.,9 61ndash;63 8C); nmax(film)/cm21 3300 (OH) 2980 (CH) 2230 (C C) 1585 (C C conj.) 1380 and 1360 (CH3) 1170 (CO) 970 (Py) and 780 (PyH 2-subst.); dH(200 MHz; CDCl3) 1.70 (6 H s CH3 times; 2) 5.29 (1 H s OH) 7.20 (1 H dd J 6.7 and 5.0 5-H) 7.39 (1 H d J3,4 6.7 3-H) 7.62 (1 H td J4,3 = J4,5 6.7 and J4,6 0.8 4-H) and 8.59 (1 H br s 6-H); dC(200 MHz; CDCl3) 30.9 (CH3) 64.5 (COH) 80.6 (PyC C) 94.9 (PyC C) 122.5 (C-5) 126.7 (C-3) 136.0 (C-4) 142.6 (C-2) and 149.2 (C-6).2-Methyl-4-(3-pyridyl)but-3-yn-2-ol 10. Following the same procedure the 3-substituted derivative 10 was obtained (5 g 98) as a yellow solid from 3-bromopyridine mp 52ndash;54 8C; nmax(film)/cm21 3300 (OH) 2980 (CH) 2240 (C C) 1590 (C C conj.) 1380 and 1360 (CH3) 1170 (CO) 970 (Py) and 810 and 705 (PyH 3-subst.); dH(200 MHz; CDCl3) 1.58 (6 H s CH3 times; 2) 5.78 (1 H s OH) 7.15 (1 H dd J5,4 8.0 J5,6 6.4 5-H) 7.09 (1 H d J4,5 8.0 4-H) 8.38 (1 H s 6-H) and 8.60 (1 H s 2-H); dC(200 MHz; CDCl3) 31.1 (CH3) 64.3 (COH) 77.6 (PyC C) 98.6 (PyC C) 120.2 (C-3) 122.9 (C-5) 138.7 (C-4) 147.4 (C-6) and 151.3 (C-2).2-Methyl-4-(4-pyridyl)but-3-yn-2-ol 11. The preparation of the 4-substituted derivative 11 was carried out following the same procedure from 4-bromopyridine hydrochloride. Compound 11 was obtained (3.72 g 90) as a yellow solid mp 96ndash; 98 8C; nmax(film)/cm21 3350ndash;3040 (OH) 2980 (CH) 2230 (C C) 1600 (C C conj.) 1370 and 1360 (CH3) 1170 (CO) 970 (Py) and 840 (PyH 4-subst.); dH(200 MHz; CDCl3) 1.62 (6 H s CH3 times; 2) 3.10 (1 H s OH) 7.29 (2 H d J 8.1 3- and 5-H) and 8.59 (2 H s 2- and 6-H); dC(200 MHz; CDCl3) 31.0 (CH3) 64.5 (COH) 78.6 (PyC C) 100 (PyC C) 125.6 (C-3 and -5) and 148.8 (C-2 and -6). General procedure to prepare the ethynylpyridines from the 2-methyl-4-(n-pyridyl)but-3-yn-2-ols A solution of the alkynol (5 g 31 mmol) in dry toluene (30 cm3) was heated under reflux with pulverized sodium hydroxide (0.90 g) for 2 h.Then the solution was decanted and the solvent was evaporated under reduced pressure to give a brown solid. J. Chem. Soc. Perkin Trans. 1 1997 713 Chromatography on silica gel with hexanendash;ethyl acetate (1 2) yielded the ethynyl derivative 2-Ethynylpyridine (84) as an orange oil bp 90ndash;92 8C/15 mmHg; 3-ethynylpyridine (55) as a yellow solid mp 37ndash;39 8C and 4-ethynylpyridine (50) as a solid mp 63ndash;65 8C. Oxidative dimerization of ethynylpyridines. General procedure Oxygen was bubbled into a solution of copper(I) chloride (0.54 g 2.73 mmol) in pyridine (12 cm3) warmed to 40 8C after which the acetylene derivative (0.78 g 7.57 mmol) was added. The mixture was stirred for 3 h after which it was cooled and concentrated by removal of the pyridine by distillation.The crude mixture was washed with ammonium hydroxide until the blue colour disappeared after which it was extracted with dichloromethane. The extract was dried (MgSO4) filtered and evaporated to give a yellow solid chromatography of which on silica gel with hexanendash;ethyl acetate (1 2) as eluent yielded the diyne derivative. 3-Substituted product 13 (49) was a yellow solid mp 145ndash;146 8C; nmax(KBr)/cm21 1550 (C C conj.) 955 (Py) 800 and 700 (PyH 3-subst.); dH(200 MHz; CDCl3) 7.30 (2 H dd J 7.9 and 5.0 5-H) 7.82 (2 H dt J 7.9 and 1.7 4-H) 8.61 (2 H br s 6-H) and 8.78 (2 H br s 2-H); dC(200 MHz; CDCl3) 78.9 (C C) 118.5 (C-3) 122.7 (C-5) 139.1 (C-4) 149.2 (C-6) and 152.9 (C-2); m/z 204 (M+ 100) 177 (11) 151 (23) and 124 (8); lmax(CH2Cl2)/nm 229 (e/dm3 mol21 cm21 30 000) 244 (29 000) 292 (22 000) 319 (30 000) and 331 (26 000).4-Substituted product 14 (54) was a brown solid mp 198ndash; 201 8C; nmax(Nujol)/cm21 1580 (C C conj.) 980 (Py) and 810 (PyH 4-subst.); dH(200 MHz; CDCl3) 7.41 (4 H d J 7.2 3- and 5-H) and 8.67 (4 H br s 2- and 6-H); dC(200 MHz; CDCl3) 76.9 (PyC C) 79.9 (PyC C) 125.7 (C-3 and -5) 128.9 (C-4) and 149.6 (C-2 and -6); m/z 204 (M+ 100) 177 (13) 151 (14) and 124 (6). X-Ray crystallographic analysis of 1,4-di(3-pyridyl)buta-1,3- diyne 13 Yellow transparent plate-like crystals of 1,4-di(3-pyridyl)buta- 1,3-diyne 13 were grown by slow evaporation from an acetonitrile solution. A crystal of dimensions 0.29 times; 0.27 times; 0.18 mm3 was selected for X-ray diffraction analysis.Accurate cell dimensions were determined by least-squares analysis of setting angles of 40 reflections (15 2q 848) using graphite-monochromated Cu-Ka radiation (l = 1.5418 Aring;) automatically located and centred on a four-circle Philips PW1100 diffractometer. C14H8N2 M = 204.23 monoclinic a = 22.104(3) b = 6.017(1) c = 3.873(1) Aring; b = 91.48(1)8 V = 514.92(7) Aring;3 Z = 2 space group P21/n Dc = 1.317(3) g cm23 F(000) = 212 m = 6.253 cm21. Data collection. Two standard reflections were measured every 90 min to ascertain crystal stability; no significant variation was observed. The intensities were corrected for Lorentz and polarization effects. No corrections were made for absorption. For the intensity measurement reflections were surveyed in the range 2 q 658; from 975 independent reflections measured 778 were considered as observed satisfying the criterion I 2s(I) in the range h 227/27 k 0/8 l 0/5 and were used in the subsequent calculations.The structure was solved by direct methods using SIR92,14 and refined by anisotropic full-matrix least-squares.15 The H-atoms were located on a difference map and refined isotropically. After several cycles of mixed refinement (89 refined parameters) convergence was reached at R = 0.057 and Rw = 0.069 with a weighting scheme16 to prevent trends in middot;wD2FOgrave; vs. middot;verbar;Foverbar;Ograve; and middot;sinq/lOgrave;. The atomic scattering factors and the anomalous dispersion corrections were taken from the literature.17 Atomic coordinates bond distances and angles were calculated using the PARST program.18 1,4-Di(2-pyridyl)buta-1,3-diyne 12 To a suspension of copper(I) chloride (57 mg 0.58 mmol) and N,N,N9,N9-tetramethylethylenediamine (TMEDA) (0.11 cm3 0.75 mmol) in 1,2-dimethoxyethane (DME) (4 cm3) was added a solution of 2-ethynylpyridine 4 (0.3 g 2.9 mmol) in DME (1 cm3) previously heated for 10 min at 35 8C while oxygen was bubbled in.After 30 min the mixture changed in colour from green to brown and 15 min later the solvent was removed to give a brown solid chromatography of which on silica gel with hexanendash;ethyl acetate (2 3) as eluent yielded the diacetylene derivative 12 (150 mg 52) as a solid mp 120ndash; 122 8C (lit.,19 122ndash;123 8C); nmax(KBr)/cm21 1580 and 1560 (C C conj.) 990 (Py) 780 and 735 (PyH 2-subst.); dH(200 MHz CDCl3) 7.24 (2 H ddd J 7.6 4.8 and 1.1 5-H) 7.47 (2 H d J 7.7 3-H) 7.63 (2 H td J 7.7 and 1.7 4-H) and 8.55 (2 H d J 4.8 6-H); dC(200 MHz; CDCl3) 72.9 (PyC C) 80.7 (PyC C) 123.6 (C-5) 128.2 (C-3) 136.0 (C-4) 141.5 (C-2) and 150.2 (C-6); m/z 204 (M+ 100) 177 (14) 151 (14) 124 (5) 102 (6) and 78 (10); lmax(CH2Cl2)/nm 238 (e/dm3 mol21 cm21 23 600) 294 (18 400) 309 (24 000) and 330 (20 800).Methylation of the 1,4-di(3-pyridyl)buta-1,3-diyne 13 To a solution of the diyne derivative (100 mg 0.49 mmol) in ethanol (25 cm3) was added iodomethane (0.12 cm3 1.96 mmol). The mixture was stirred for 20 h at 50 8C. A yellow solid precipitated from the solution and was filtered off and identi- fied as the dimethylated derivative 16 (92 mg 38) mp 190 8C (decomp.). Then the mixture was allowed to cool and an orange solid precipitated out which was filtered off and identi- fied as the monomethylated derivative 15 (72 mg 42) mp 166 8C (decomp.).Dimethylated product 16 had nmax(KBr)/cm21 1620 and 1500 (C C and C N conj.) 1290 (NCH3) 1150 (Py+ndash;CH3) 810 and 665 (PyH 3-subst.); dH200 MHz; (CD3)2SO 4.37 (6 H s CH3 times; 2) 8.23 (2 H t 5-H) 8.91 (2 H d 4-H) 9.13 (2 H d 6-H) and 9.49 (2 H s 2-H); dC(200 MHz; CDCl3) 48.4 (CH3) 77.2 and 77.6 (PyC C) 120.1 (C-3) 127.7 (C-5) 146.4 (C-4) 147.9 (C-6) and 149.3 (C-2); m/z (FAB+) 234 (M+ 25) and 219 (52); lmax(CH2Cl2)/nm 237 (e/dm3 mol21 cm21 31 430) 290 (18 500) 308 (20 000) 330 (18 570) 345 (13 710) 354 (12 000) and 360 (11 430). Monomethylated product 15 had nmax(KBr)/cm21 1620 1580 and 1500 (C C and C N conj.) 1280 (NCH3) 1160 (Py+CH3) 830 800 700 and 675 (PyH 3-subst.); dH200 MHz; (CD3)2SO 4.31 (3 H s CH3) 7.50 (1 H m 5-H) 8.20 (2 H m 5-H in the methylated ring and 4-H) 8.70 (2 H m 2- and 6-H) 8.88 (1 H m 4-H in the methylated ring) 9.05 (1 H d 6-H in the methylated ring) and 9.42 (1 H br s 2-H in the methylated ring); dC(200 MHz; CDCl3) 48.4 (CH3) 77.2 and 77.6 (PyC C) 120.1 (C-3) 127.7 (C-5) 146.4 (C-4) 147.9 (C-6) and 149.3 (C-2); m/z (FAB+) 219 (M+ 100) and 205 (13); lmax(CH2Cl2)/nm 237 (e/dm3 mol21 cm21 40 250) 290 (17 750) 308 (22 500) 330 (24 000) and 345 (12 500).Charge-transfer complex of 1-(N-methylpyridinium-3-yl)-4-(3- pyridyl)buta-1,3-diyne iodide 15 with TMPD A hot solution of TMPD (24 mg 0.14 mmol) in acetonitrile (10 cm3) was added to a nearly boiling solution of the monomethylated buta-1,3-diyne derivative 15 (50 mg 0.14 mmol) in 100 cm3 of acetonitrile.The resulting dark violet solution was allowed to cool and then to evaporate slowly to yield a black solid with metallic lustre; nmax(Nujol)/cm21 1610 1580 and 1510 (C C and C N conj.) 1160 (Py+CH3) 950 (Py) 820 810 800 720 690 and 665 (PyH 3-subst.); lmax(CH2Cl2)/nm 238 309 330 350 543 565 and 615. Charge-transfer complex of 1,4-bis(N-methylpyridinium-3-yl)- buta-1,3-diyne diiodide 16 with TMPD The same procedure was followed to form the charge-transfer complex of the dimethylated buta-1,3-diyne derivative 16. 714 J. Chem. Soc. Perkin Trans. 1 1997 The complex was a green solid with a metallic lustre; nmax- (Nujol)/cm21 1620 and 1520 (C C and C N conj.) 1320 (NCH3) 1170 and 1150 (Py+CH3) 950 (Py) 815 720 and 665 (PyH 3-subst.); lmax(CH2Cl2)/nm 264 327 594 617 and 642.Acknowledgements We are indebted to the CAYCIT of Spain for financial support (project no. PB92-0142-C02-01). References 1 Polydiacetylenes ed. D. Bloor and R. R. Chance NATO ASI series E No. 102 Matinus Nijkoff Boston 1985; A. E. Stiegman E. Graham K. J. Perry R. Khundkard L. T. Cheng and J. W. Perry J. Am. Chem. Soc. 1991 113 1658 and references cited therein. 2 G. Wegner Z. Naturforsch. B Anorg. Chem. Org. Chem. 1969 24 824. 3 G. M. Carter Y. J. Chen M. F. Rubner D. J. Sandman M. K. Thakur and S. K. Tripathy in Nonlinear Optical Properties of Organic Molecules and Crystals ed. D. S. Chemla and J. Zyss Academic Press New York 1987 vol. 2 p. 85. 4 G. Wegner J. Polym. Sci. Part B Polym. Lett. 1971 9 133. 5 Y. Ozcayir J. Asrar and A.Blumstein Mol. Cryst. Liq. Cryst. 1984 110 1424. 6 G. H. Milburn A. R. Wernick J. Tsibouklis E. Bolton G. Thomson and A. Shand Polymer 1989 30 1004. 7 J. P. Ferraris D. O. Cowan V. Walatka and J. Perlstein J. Am. Chem. Soc. 1973 95 948. 8 G. Kouml;brig H. Trapp K. Flory and W. Drischel Chem. Ber. 1966 99 689. 9 D. E. Ames D. Bull and C. Takundwa Synth. Commun. 1981 364. 10 L. Brandsma Studies in Organic Chemistry Preparative Acetylenic Chemistry Elsevier Science Publishers B.V. Amsterdam 1988 vol. 34 p. 220. 11 J. G. Rodriacute;guez S. Ramos R. Martiacute;n-Villamil I. Fonseca and A. Albert J. Chem. Soc. Perkin Trans. 1 1996 541. 12 G. M. J. Schmidt Reactivity of the Photoexcited Organic Molecule Wiley New York 1967 p. 227. 13 S. D. Lrsquo;vova Y. P. Koslov and U. I. Gunar Zh. Obshch. Khim. 1977 47 1251.14 A. Altomare G. Cascarano C. Giacovazzo and A. Guagliardi Dipartimento Geomineralogico University of Bari; M. Burla and G. Polidori Dipartimento Scienze della Terra University of Perugia; M. Camalli SIR92 Ist Strutt. Chimica CNR Monterrotondo Stazione Roma 1992. 15 J. M. Stewart F. A. Kundell and J. C. Badwin The XRAY80 System Computer Science Center University of Maryland College Park MD 1980. 16 M. Martinez-Ripoll and F. H. Cano PESOS A Computer Program for the Automatic Treatment of Weighting Schemes Instituto Rocasolano CSIC Madrid 1975. 17 International Tables for X-RAY Crystallography Kynoch Press Birmingham 1974 vol. 4. 18 M. Nardelli Comput. Chem. 1983 7 95. 19 U. Fritzsche and S. Hunig Tetrahedron Lett. 1972 4831. Paper 6/05468D Received 5th August 1996 Accepted 5th November 1996 J.Chem. Soc. Perkin Trans. 1 1997 709 Synthesis of 1,4-di(n-pyridyl)buta-1,3-diyne and formation of charge-transfer complexes. X-Ray structure of 1,4-di(3-pyridyl)buta-1,3-diyne J. Gonzalo Rodriacute;guez,*,a Rosa Martiacute;n-Villamil,a Felix H. Canob and Isabel Fonsecab a Departamento de Quiacute;mica Orgaacute;nica Universidad Autoacute;noma de Madrid Cantoblanco 28049-Madrid Spain b Departamento de Cristalografiacute;a C.S.I.C. Serrano 119 28006-Madrid Spain Ethynylpyridines have been satisfactorily prepared by two different routes (a) the Wittig reaction between chloromethylene(triphenyl)phosphine ylide and a pyridinecarbaldehyde followed by elimination of hydrogen chloride; (b) from the 2-methyl-4-(n-pyridyl)but-3-yn-2-ol intermediate by elimination of acetone. 1,4-Di(n-pyridyl)buta-1,3-diynes are obtained by oxidative dimerization in good yield.An X-ray structure of the 3-substituted dimer is reported. Mono- and di-methyl salts of the 3-substituted diyne have been obtained and the charge-transfer complexes with tetramethyl-p-phenylenediamine (TMPD) are formed. Introduction The use of molecular organic materials for conductor and nonlinear optics applications is an area of considerable recent activity. Interest in these materials is due to their inherent synthetic flexibility which permits the lsquo;designrsquo; of molecular properties. 1 Solid-state polymerization of 1,3-diynes to form crystalline conjugated polydiynes has attracted much attention.1,2 Some of the recent interest in poly-1,3-diynes is related to their large and fast nonlinear optical response making them good potential materials in ultrafast optical applications.3 Although the electronic and optical properties of poly-1,3-diynes are primarily dominated by the p-conjugated backbone the substituent groups markedly influence the topopolymerization behaviour of the 1,3-diynes and the physical and chemical properties of the crystalline conjugated poly-1,3-diynes.An aspect of the substituent effect that has received little attention is the influence of formally p-conjugated substituents on the electronic properties of poly-1,3-diynes because many of them are unreactive in the solid state,4ndash;6 although they may undergo liquid-crystalline polymerization to form polymers distinct from the solid-state polymers. However preliminary studies show that 4-amino-49-nitrodiphenyl-1,3-diyne is solid-state reactive.6 The discovery of a one-dimensional metallic state in the ionradical solid formed from the p-donor tetrathiafulvalene and the acceptor tetracyanoquinodimethane has stimulated interest in the structurendash;properties relationships of novel donors and
机译:J. Chem. Soc. Perkin Trans. 1 1997 709 1,4-二(正吡啶基)丁-1,3-二炔的合成和电荷转移配合物的形成。1,4-二(3-吡啶基)丁-1,3-二炔的X射线结构 J·贡萨洛·罗德里格斯(J. Gonzalo Rodríguez)*,a 罗莎·马丁-维拉米尔(Rosa Martín-Villamil),a 费利克斯·卡诺布(Felix H. Canob)和伊莎贝尔·丰塞卡布(Isabel Fonsecab) a 马德里自治大学 Departamento de Química Orgánica Universidad Autónoma de Madrid Cantoblanco 28049-马德里 西班牙 b Departamento de Cristalografía C.S.I.C. 塞拉诺 119 28006-马德里 西班牙 乙炔基吡啶已通过两种不同的途径令人满意地制备 (a) 氯亚甲基(三苯基)膦酰化物与吡啶甲醛之间的 Wittig 反应消除氯化氢;(b)从2-甲基-4-(正吡啶基)丁-3-炔-2-醇中间体中除去丙酮。1,4-二(正吡啶基)丁-1,3-二炔通过氧化二聚化得到,收率高。报道了 3-取代二聚体的 X 射线结构。已经获得了3-取代二炔的单甲基盐和二甲基盐,并与四甲基对苯二胺(TMPD)形成了电荷转移络合物。引言 分子有机材料在导体和非线性光学应用中的应用是最近相当活跃的一个领域。对这些材料的兴趣是因为它们固有的合成灵活性,允许“设计”分子特性。1 1,3-二炔的固态聚合形成结晶共轭聚二炔已引起人们的广泛关注。1,2 最近对聚-1,3-二炔的一些兴趣与它们大而快速的非线性光学响应有关,使其成为超快光学应用中良好的潜在材料.3 尽管聚-1,3-二炔的电子和光学性质主要由 p 共轭骨架主导,但取代基显着影响 1,3-二炔的拓扑聚合行为和结晶共轭聚 poly-1 的物理和化学性质,3-二炔。取代基效应的一个方面很少受到关注,即形式上的p-共轭取代基对聚-1,3-二炔的电子性质的影响,因为它们中的许多在固态下是非反应性的,4-6尽管它们可能经历液晶聚合以形成与固态聚合物不同的聚合物。然而,初步研究表明,4-氨基-49-硝基二苯基-1,3-二炔是固态反应性的.6在由对供体四硫黄槌和受体四氰基醌二甲烷形成的离子自由基固体中发现一维金属态激发了人们对新型供体和受体的结构-性质关系的兴趣.7金属电导性和超导性是这些有机电荷转移盐中最重要的特性。最近,人们也注意到了它们可以展示的新型磁性和光学特性。在这里,我们报道了 1,4-二(正吡啶基)丁-1,3-二炔 12、13 和 14 的合成以及 3-取代衍生物 13 的甲基化,从而得到具有受体特性的分子,使它们能够与供体形成电荷转移络合物。结果与讨论 正乙炔基吡啶的合成 (a) 通过从氯乙烯衍生物中消除氯化氢。在不同温度下,在四氢呋喃(THF)中与叔丁醇钾脱氯化氯,以相应的(E)-和(Z)-2-氯乙烯基吡啶1-3的混合物制备了起始乙炔衍生物4-6,收率高。在该消除反应中,我们观察到温度对产率和反应产物有影响。此外,乙烯基在吡啶环上的位置决定了一些必要的反应条件(表1,方案1)。氯乙烯基衍生物由氯亚甲基(三苯基)膦8与方案1试剂和条件i Ph3P]] CHCl进行Wittig反应制备;ii ButO2K+ 25 8C (4–6) 或 70 8C (7a,b; 8) N C N CH=CHCl 1a,b 2-subst.Z 和 E 2a,b 3-subst. Z 和 E 3a,b 4-subst. Z 和 E i N CHO N CH=CHOBut ii 4 2-subst. 5 3-subst. 6 4-subst. ii CH 7a,b 2-subst. Z 和 E 8 4-subst.表1 不同温度下THF中1–3与ButO2K+的脱氯化氢反应 氯乙烯基 T/8C 消除 (%) 取代 (%) 1a 25 48 1a 70 50 E:Z = 1 1 1b 50 45 1b 70 40 E 2a + 2b 60 54 2a + 2b 70 25 3a + 3b 25 40 3a + 3b 70 20 710 J. Chem. Soc. Perkin Trans. 1 1997 THF中相应的吡啶甲醛衍生物,作为E的混合物收率很高:Z异构体(方案1表2)。在2-取代衍生物的情况下,主要产物是Z异构体,因为该异构体的顺式-1,2-氧磷杂环丁烷前体更稳定。酰化物在羰基表面反应,得到氧磷烷中间体,其 C]Cl 键的偶极矩与吡啶中 N]C 偶极子的方向相反,这种立体分布是最稳定的。(b) 通过插入钯催化的乙炔基团,从正卤代吡啶中提取。氯化氢消除步骤的低收率促使我们利用溴吡啶与2-甲基丁-3-炔-2-醇之间的偶联反应,对吡啶的乙炔衍生物进行替代合成;9 在钯的催化下反应,得到2-甲基-4-(正吡啶基)丁-3-炔-2-醇衍生物9-11,收率极高。最后,消除丙酮后,乙炔衍生物的收率适中(方案2,表3)。1,4-二(正吡啶基)丁-1,3-二炔的合成 12–14 在40 8°C下,通过氧化二聚化相应乙炔衍生物与吡啶中的氧进行氧化二聚化,以良好的收率合成了对阳光稳定的固体(方案3)。采用1,4-二(3-吡啶基)丁-1,3-二炔13的单晶进行X射线晶体学分析。该晶体对Cu-Ka X辐射稳定,未观察到对单晶聚-1,3-二炔的拓扑聚合反应。晶体结构分析 化合物 13 由丁-1,3-二炔链组成,在吡啶环的 3 位有 1,4- 取代。图 1 显示了原子编号为 Scheme 2 的分子视图 试剂和条件 i 2-甲基丁-3-炔-2-醇 Cl2Pd- (PPh3)2 Cu2I2 HNEt2;ii NaOH 反流 N Br N C C C CH3 CH3 OH N C CH i ii 9 2-subst.10 3-subst. 11 4-subst. 4–6 方案 3 试剂 Cu2CI2 O2 吡啶 N C CH N C C C N C 4 2-subst. 5 3-subst. 6 4-subst. 12 2-subst. 13 3-subst. 14 4-subst.表2 通过Wittig反应合成1-3 异构体Z(%)E(%)收率(%) 1 84 16 77 2 50 50 90 3 50 50 84方案。分数原子坐标表已作为补充材料沉积,†表4中列出了(a)键距和(b)键角。该分子具有与晶体中心重合的对称中心。1.338(3) 和 1.325(3) Å 的距离 N(1)]C(2) 和 N(1)]C(6) 分别与吡啶中的距离相似。所有距离和角度都在预期值范围内(表 4)。吡啶环是平面 C(7) 和 C(8),偏离该平面上方 0.031(2) 和 0.086(2) Å。丁-1,3-二炔链的键距显示正常值,11 C(7)]C(8) 三键距离为 1.199(3) Å。该链实际上是线性的,C(7)]C(8)]C(89)角为179.7(2)8。晶体与分子沿着 c 轴平行排列(见图 2),该轴将连续环的质心之间的距离定义为 3.87 Å,与 c 轴形成 108 的角度。从图2中可以看出,沿着无轴线存在相邻的分子间环区域和分子内]C]] ] C]C]] ] C]线性链的区域,产生所谓的“偏析”,通过细胞中每个分子的整体最小二乘平面是平行的,并且在每个列内产生堆栈。沿着 b 轴,还有所谓的“边到边”模式的分子链,在一根柱子内有平行的分子,但在两个相邻柱子的分子之间形成几乎 908 的角度。通常,在丁-1,3-二炔化合物的反应性晶体中,分子以梯状方式堆积,使得一个三键系统的末端接近相邻的三键系统,距离d <4 Å,与平移轴形成的倾角约为458。12 电荷转移配合物 吡啶环的p电子缺陷和1,4-二(3-吡啶基)-丁-1,3-二炔13中二炔链的延伸共轭使其能够参与以N,N,N9,N9-四甲基对苯二胺(TMPD)作为供体的电荷转移络合。然而,1,4-二(正吡啶基)丁-1,3-二炔衍生物不形成电荷转移络合物 表3 9-11和4-6的产率 溴吡啶醇(%) 乙炔 (%) 2-subst.93 84 3-subst. 98 55 4-subst. 90 50 表4 13的键长和角度 (a) 键距(Å) N(1)]C(2) 1.338(3) C(5)]C(6) 1.394(3) N(1)]C(6) 1.325(3) C(5)]C(7) 1.431(3) C(2)]C(3) 1.375(3) C(7)]C(8) 1.199(3) C(3)]C(4) 1.371(3) C(8)]C(89) a 1.371(3) C(4)]C(5) 1.392(3) (b) 键角 (8) C(2)]N(1)]C(6) 117.3(2) C(4)]C(5)]C(6) 117.4(2) N(1)]C(2)]C(3) 123.1(2) C(6)]C(5)]C(7) 121.4(2) C(2)]C(3)]C(4) 119.2(2) N(1)]C(6)]C(5) 123.9(2) C(3)]C(4)]C(5) 119.0(2) C(5)]C(7)]C(8) 178.1(2) C(4)]C(5)]C(7) 121.2(2) C(7)]C(8)]C(89) a 179.7(2) a C(89) 通过对称运算 (1 2 x 21 2 y 2 2 z) 与 C(8) 相关。† 补充材料 分数原子坐标和热参数以及全键长度和角度的表格已存放在剑桥晶体学数据中心 (CCDC)。见作者须知:J. Chem. Soc. Perkin,Trans. 1,1997年,第1期。向CCDC索取此材料的任何请求都应引用完整的文献引文和参考编号207/78。J. Chem. Soc. Perkin 译.1 1997 711 一些受体或供体,因此我们对吡啶环进行了甲基化,以增加这些化合物的受体特性(方案4)。将间二炔衍生物的单甲基化和二甲基化盐纯分离,并用于与供体分子TMPD制备电荷转移配合物。因此,在两种情况下,单盐或二盐和TMPD的等摩尔混合物在热乙腈中缓慢蒸发,得到金属光亮的固体(黑色或绿色)(图3)。单甲基化盐 15 和 TMPD 分子复合物的紫外-可见光谱显示,在 543、565 和 615 nm 处有三个电荷转移带。在二甲基化盐 16 和 TMPD 的分子络合物的情况下,紫外-可见光谱还显示了 594、617 和 642 nm 处的三个电荷转移带。红外光谱显示,TMPD配合物与游离盐之间存在一些差异,因此配合物中C]] C共轭键的吸收强度低于游离盐。使用Reichert载物台显微镜测定实验Mps,并且未校正。使用 Perkin-Elmer 681 分光光度计记录红外光谱。使用布鲁克 WM-200-SY 波谱仪在 200 MHz 下记录 NMR 波谱;化学位移以 d 单位给出,使用 SiMe4 作为内部参考;J值以Hz为单位,使用Perkin-Elmer Lambda 6分光光度计记录UV-可见光谱。使用惠普SP85光谱仪记录质谱图。无花果。1 分子 13 的原子编号方案视图 方案 4 试剂 MeI N C C N C C N C C N+I– C C CH3 –I+N C C N+I– C C CH3 H3C 13 + 15 16 通过从氯乙烯衍生物中消除氯化氢来制备乙炔基吡啶 2-(2-氯乙烯基)吡啶 1.在干燥的THF(60cm3)中缓慢加入氯甲基-(三苯基)氯化膦(18.7g 57 mmol)在干燥THF(60 cm3)中的悬浮液中,在210 8C的氩气下缓慢加入丁基锂溶液(己烷溶液1.6 M;35.6 cm3 57 mmol)。溶液呈红色,搅拌30分钟后用吡啶-2-甲醛(2g,19mmol)处理。将混合物在室温下搅拌10小时,然后除去溶剂,得到棕色油。硅胶与己烷-乙酸乙酯的色谱法,提供 (Z)-2-(2-氯乙烯基)吡啶 nmax(薄膜)/cm21 3055 (]] C]H) 1620 (C]] C conj.)1580 和 1560 (C]] C 和 C]] N) 和 670 (Z);dH(200 MHz;CDCl3) 6.49 (1 H d J 8.3 CH]] CHCl) 6.86 (1 H d J 8.3 CH]] CHCl) 7.19 (1 H dd J 7.9 和 6.0 5-H) 7.70 (1 H t J 7.9 4-H) 8.02 (1 H d J 7.9 3-H) 和 8.62 (1 H d J 6.0 6-H);男/女:141 (9%)、139 (M+ 22)、104 (100)、84 (13)、78 (30) 和 51 (27);和 (E)-2-(2-氯乙烯基)吡啶 nmax(薄膜)/cm21 3070 (]] C]H) 1620 (C]] C conj.)1580 和 1560 (C]] C 和 C]] N) 和 970 (E);dH(200 MHz;CDCl3) 6.67 (1 H d J 13.3 CH]] CHCl) 7.20 (2 H m 3- 和 5-H) 7.43 (1 H d J 13.3 CH]] CHCl) 7.63 (1 H m 4-H) 和 8.53 (1 H br s 6-H);男/中:141 (9%)、139 (M+、27)、104 (100)、78 (25) 和 51 (18)。无花果。2 从基轴向下观察分子晶体晶胞的堆积 图 3 N N CH3 CH3 H3C H3C N+I– C C C N CH3 N N CH3 CH3 H3C H3C N+I– C C C –I+N CH3 H3C 712 J. Chem. Soc. Perkin Trans. 1 1997 3-(2-氯乙烯基)吡啶 2.按照相同的步骤制备3-取代的衍生物,但用吡啶-3-甲醛制备。在硅胶上色谱纯化后,得到氯乙烯衍生物2,为E、Z异构体(1,1)(2.38g,90%)的油性混合物;nmax(film)/cm21 3050 (]] C]H) 1610 和 1605 (C]] C conj.)1580 和 1560 (C]] C 和 C]] N) 970 (E) 和 730 (Z);dH(200 MHz;CDCl3) 6.29 (1 H d J 8.2 CH]] CHCl Z) 6.69 (1 H d J 13.9 CH]] CHCl E) 6.74 (1 H d J 8.2 CH]] CHCl Z) 6.85 (1 H d J 13.9 CH]] CHCl E) 7.25 (1 H d J 8.0 5-H E) 7.32 (1 H dd J 8.0 和 5.4 5-H Z) 7.60 (1 H d J 8.0 4-H E) 8.13 (1 H d J 8.0 4-H Z)8.49 (1 H br s 6-H E)、8.52 (1 H d J 5.4 6-H Z)、8.53 (1 H br s 2-H E) 和 8.76 (1 H br s 2-H Z);M/Z 141 (8%)、139 (M+、29)、104 (100)、86 (10)、77 (46) 和 51 (64).4-(2-氯乙烯基)吡啶 3.按照相同的程序,我们从吡啶-4-甲醛中获得氯乙烯衍生物3,作为E Z异构体(1,1)(2.22克,84%)的油性混合物;nmax(film)/cm21 3060 (]] C]H) 1610 (C]] C conj.)1590 和 1540 (C]] C 和 C]] N) 960 (E) 和 720 (Z);dH(200 MHz;CDCl3) 6.48 (1 H d J 8.2 CH]] CHCl Z) 6.60 (1 H d J 8.2 CH]] CHCl Z) 6.69 (1 H d J 13.8 CH]] CHCl E) 6.77 (1 H d J 13.8 CH]] CHCl E) 7.16 (2 H d J 4.8 3 和 5 H E) 7.52 (2 H d J 4.6 3 和 5 H Z)、8.56 (2 H d J 4.8 2 和 6 H E) 和 8.62 (2 H d J 4.6 2 和 6 H Z);M/Z 141 (8%)、139 (M+ 29)、112 (29)、104 (38)、86 (84)、77 (36)、63 (16) 和 51 (100).2-乙炔基吡啶 4.从(Z)-2-(2-氯乙烯基)吡啶异构体1a.—在干燥THF(30 cm3)中缓慢加入(Z)-氯乙烯衍生物1a(3 g 21 mmol)在0 8°C氩气下缓慢加入叔丁醇钾(6 g 54 mmol)。将混合物在室温下搅拌45分钟。然后将溶液倒入冰水(150 cm3)上,并用饱和水溶液使氯化铵呈碱性(pH 8)。混合物用二氯甲烷萃取;将提取物用硫酸镁干燥,过滤后除去溶剂,得到棕色油。以己烷-乙酸乙酯(1,2)为洗脱液的硅胶色谱法得到乙炔衍生物4(1.04 g,48%),为橙油,bp 91–92 8C/15 mmHg(lit.,9,85–86,8C/12 mmHg);nmax(film)/cm21 3260 (]] C]H) 和 2114 (C]] ] C);dH(200 MHz;CDCl3) 3.25 (1 H s C]] ] CH) 7.21 (1 H dd J 7.7 和 5.1 5-H) 7.40 (1 H d J 7.7 3-H) 7.60 (1 H t J 7.7 4-H) 和 8.54 (1 H d J 5.1 6-H);dC(200兆赫;CDCl3) 77.0 (Py]C]] ] C) 82.5 (Py]C]] ] C) 123.1 (C-5)、127.1 (C-3)、135.8 (C-4)、148.4 (C-2) 和 149.5 (C-6);m/z 103 (M+ 100%)、76 (46) 和 50 (36)。从(E)-2-(2-氯乙烯基)吡啶异构体1b.—在干燥THF(15 cm3)中缓慢加入(E)-氯乙烯基衍生物1b(1g 7.2 mmol)在0 8°C氩气下缓慢加入叔丁醇钾(2g 18 mmol)。将混合物在50 8C下搅拌90分钟。然后将溶液倒入冰水(60 cm3)上,并用饱和水溶液制成碱性(pH 8)。混合物用二氯甲烷萃取;将提取物用硫酸镁干燥,过滤后除去溶剂,得到棕色油。以己烷-乙酸乙酯(1,2)为洗脱液的硅胶色谱法得到乙炔衍生物4(0.33g,45%)作为橙油。3-乙炔基吡啶 5.向(Z,E)-氯乙烯衍生物2(3克,21毫摩尔)的溶液中,在0,8°C的氩气下,在氩气下缓慢加入(30,E)-氯乙烯衍生物2(30克,21毫摩尔)。将混合物在60 8C下搅拌60分钟。然后让溶液冷却,倒入冰水(150 cm3)中,并用饱和水溶液制成碱性(pH 8)。混合物用二氯甲烷萃取;将提取物用硫酸镁干燥,过滤后除去溶剂,得到棕色油。以己烷-乙酸乙酯(1,2)为洗脱液的硅胶色谱法得到乙炔衍生物5(1.17克,54%),黄色固体,mp:35-37,8C(lit.,13,39-40,8C);nmax(film)/cm21 3280 (]] C]H) 和 2120 (C]] ] C);dH(200 MHz;CDCl3) 3.30 (1 H s C]] ] CH) 7.25 (1 H ddd J 7.8 5.0 和 0.9 5-H) 7.70 (1 H dt J 7.8 和 2.0 4-H) 8.56 (1 H dd J 5.0 和 2.0 6-H) 和 8.70 (1 H dd, J 2.0 和 0.9 2-H);dC(200兆赫;CDCl3) 80.0 (Py]C]] ] C) 80.6 (Py]C]] ] C) 118.7 (C-3)、122.3 (C-5)、138.3 (C-4)、148.3 (C-6) 和 151。9名(C-2);m/z 103 (M+ 100%)、76 (38) 和 50 (30)。4-乙炔基吡啶 6.按照所述的相同程序,从(Z)-氯乙烯基异构体制备2-乙炔基吡啶,从4-(氯乙烯基)异构体中得到(40%)作为固体,mp 63–65 8C;nmax(film)/cm21 3270 (]] C]H) 和 2100 (C]] ] C);dH(200 MHz;CDCl3) 3.40 (1 H s C]] ] CH) 7.35 (2 H d J 6.8 3- 和 5-H) 和 8.60 (2 H d J 6.8 2- 和 6-H);dC(200兆赫;CDCl3) 80.6 (Py]C]] ] C) 81.8 (Py]C]] ] C) 129.9 (C-4) 125.7 (C-3 和 -5) 和 149.4 (C-2 和 -6);m/z 103 (M+ 100%)、76 (52) 和 50 (41)。通过插入钯 2-甲基-4-(2-吡啶基)丁-3-炔-2-醇催化的乙炔基合成乙炔基吡啶 9.将双(三苯基膦)、二氯化钯(II)(220 mg 0.3 mmol)和碘化铜(I)(32 mg 0.2 mmol)依次加入到2-溴吡啶(5 g 31.6 mmol)和2-甲基丁-3-炔-2-醇(3.62 ml 37.3 mmol)在0 8°C氩气下在二乙胺(新鲜蒸馏;25 cm3)中的溶液中。将混合物在室温下搅拌15小时,然后在减压下除去二乙胺。粗混合物用水洗涤,用二氯甲烷萃取;将提取物用硫酸镁干燥,过滤后除去溶剂,得到棕色固体。以己烷-乙酸乙酯为洗脱液的硅胶色谱法得到2-甲基-4-(2-吡啶基)丁-3-炔-2-醇9(4.76克,93%),为黄色固体MP 60-62 8C(lit.,9 61–63 8C);nmax(薄膜)/cm21 3300 (O]H) 2980 (C]H) 2230 (C]] ] C) 1585 (C]] C conj.)1380 和 1360 (CH3)、1170 (C]O)、970 (Py) 和 780 (Py]H 2-subst.);dH(200 MHz;CDCl3) 1.70 (6 H s CH3 × 2) 5.29 (1 H s OH) 7.20 (1 H dd J 6.7 和 5.0 5-H) 7.39 (1 H d J3,4 6.7 3-H) 7.62 (1 H td J4,3 = J4,5 6.7 和 J4,6 0.8 4-H) 和 8.59 (1 H br s 6-H);dC(200兆赫;CDCl3) 30.9 (CH3) 64.5 (C]OH) 80.6 (Py]C]] ] C) 94.9 (Py]C]] ] C) 122.5 (C-5) 126.7 (C-3) 136.0 (C-4) 142.6 (C-2) 和 149.2 (C-6).2-甲基-4-(3-吡啶基)丁-3-炔-2-醇 10.按照相同的步骤,从3-溴吡啶mp52–54 8C中获得3-取代衍生物10(5 g 98%)为黄色固体;nmax(薄膜)/cm21 3300 (O]H) 2980 (C]H) 2240 (C]] ] C) 1590 (C]] C conj.)1380 和 1360 (CH3)、1170 (C]O)、970 (Py) 和 810 和 705 (Py]H 3-subst.);dH(200 MHz;CDCl3) 1.58 (6 H s CH3 × 2) 5.78 (1 H s OH) 7.15 (1 H dd J5,4 8.0 J5,6 6.4 5-H) 7.09 (1 H d J4,5 8.0 4-H) 8.38 (1 H s 6-H) 和 8.60 (1 H s 2-H);dC(200兆赫;CDCl3) 31.1 (CH3) 64.3 (C]OH) 77.6 (Py]C]] ] C) 98.6 (Py]C]] ] C) 120.2 (C-3) 122.9 (C-5) 138.7 (C-4) 147.4 (C-6) 和 151.3 (C-2).2-甲基-4-(4-吡啶基)丁-3-炔-2-醇 11.4-取代衍生物11的制备按照与4-溴吡啶盐酸盐相同的步骤进行。得到化合物11(3.72克,90%),黄色固体mp 96-98 8C;nmax(薄膜)/cm21 3350–3040 (O]H) 2980 (C]H) 2230 (C]] ] C) 1600 (C]] C conj.)1370 和 1360 (CH3)、1170 (C]O)、970 (Py) 和 840 (Py]H 4-subst。);dH(200 MHz;CDCl3) 1.62 (6 H s CH3 × 2) 3.10 (1 H s OH) 7.29 (2 H d J 8.1 3- 和 5-H) 和 8.59 (2 H s 2- 和 6-H);dC(200兆赫;CDCl3) 31.0 (CH3) 64.5 (C]OH) 78.6 (Py]C]] ] C) 100 (Py]C]] ] C) 125.6 (C-3 和 -5) 和 148.8 (C-2 和 -6)。从2-甲基-4-(正吡啶基)丁-3-炔-2-醇制备乙炔基吡啶的一般方法 将炔醇(5 g 31 mmol)在干燥甲苯(30 cm3)中的溶液用粉碎的氢氧化钠(0.90 g)回流加热2 h,然后倾析溶液,减压蒸发溶剂,得到棕色固体。J. Chem. Soc. Perkin Trans. 1 1997, 713 用己烷-乙酸乙酯(1,2)在硅胶上色谱,得到乙炔衍生物2-乙炔基吡啶(84%)为橙油,bp 90–92 8C/15 mmHg;3-乙炔基吡啶(55%)为黄色固体MP 37-39 8C,4-乙炔基吡啶(50%)为固体MP 63-65 8C。乙炔基吡啶的氧化二聚化。一般程序:将氧气鼓泡到氯化铜(I)溶液中(0.54g 2.73mmol)在加热至40 8C的吡啶(12 cm3)中,然后加入乙炔衍生物(0.78g 7.57 mmol)。将混合物搅拌3小时,然后通过蒸馏除去吡啶进行冷却和浓缩。粗混合物用氢氧化铵洗涤至蓝色消失,然后用二氯甲烷提取。将提取物(MgSO4)干燥,过滤并蒸发,得到黄色固体色谱,在硅胶上以己烷-乙酸乙酯(1,2)为洗脱液,得到二炔衍生物。3-取代产物13(49%)为黄色固体MP 145–146 8C;nmax(KBr)/cm21 1550 (C]] C conj.)955 (Py) 800 和 700 (Py]H 3-subst.);dH(200 MHz;CDCl3)、7.30(2 H dd J、7.9 和 5.0、5-H)、7.82(2 H dt J、7.9 和 1.7 4-H)、8.61(2 H br s 6-H)和 8.78(2 H br s 2-H);dC(200兆赫;CDCl3) 78.9 (C]] ] C) 118.5 (C-3)、122.7 (C-5)、139.1 (C-4)、149.2 (C-6) 和 152.9 (C-2);m/z:204 (M+ 100%)、177 (11)、151 (23) 和 124 (8);lmax(CH2Cl2)/nm, 229 (e/dm3, mol21, cm21, 30 000), 244 (29, 000), 292 (22, 000), 319 (30 000) 和 331 (26 000).4-取代产物 14 (54%) 为棕色固体 mp 198– 201 8C;nmax(Nujol)/cm21 1580 (C]] C conj.)980 (Py) 和 810 (Py]H 4-subst.);dH(200 MHz;CDCl3)、7.41(4 H d J、7.2、3 和 5-H)和 8.67(4 H、2-和 6-H);dC(200兆赫;CDCl3) 76.9 (Py]C]] ] C) 79.9 (Py]C]] ] C) 125.7 (C-3 和 -5) 128.9 (C-4) 和 149.6 (C-2 和 -6);m/z、204 (M+ 100%)、177 (13)、151 (14) 和 124 (6)。1,4-二(3-吡啶基)丁-1,3-二炔13的X射线晶体学分析 1,4-二(3-吡啶基)丁-1,3-二炔13的黄色透明板状晶体从乙腈溶液中缓慢蒸发生长。选择尺寸为0.29×0.27×0.18 mm3的晶体进行X射线衍射分析。使用石墨单色 Cu-Ka 辐射 (l = 1.5418 Å) 自动定位并居中于 40 个反射角(15 < 2q < 848)的最小二乘法分析,确定准确的电池尺寸。C14H8N2 M = 204.23 单斜晶系 a = 22.104(3) b = 6.017(1) c = 3.873(1) Å b = 91.48(1)8 V = 514.92(7) Å3 Z = 2 空间群 P21/n Dc = 1.317(3) g cm23 F(000) = 212 m = 6.253 cm21.数据采集。每 90 分钟测量两次标准反射以确定晶体稳定性;未观察到显著差异。针对洛伦兹和偏振效应对强度进行了校正。没有对吸收进行校正。对于强度测量,在 2 < q < 658 范围内测量反射;从 975 次独立反射中,测量了 778 次被认为是满足标准 I < 2s(I) 的 h 227/27 k 0/8 l 0/5 的观测结果,并用于随后的计算。使用SIR92,14通过直接方法求解结构,并通过各向异性全矩阵最小二乘法进行细化.15 H原子位于差分图上并各向同性细化。经过几个循环的混合细化(89 个细化参数),在 R = 0.057 和 Rw = 0.069 处达到收敛,使用加权方案 16 以防止 ·wD2FÒ 与 ·|Fo|Ò 和 ·sinq/lÒ 的趋势。原子散射因子和异常色散校正取自文献。17 使用PARST程序计算了原子坐标,键距和角度.18 1,4-二(2-吡啶基)丁-1,3-二炔 12 将氯化铜(I)(57mg,0.58mmol)和N,N,N9,N9,N9-四甲基乙二胺(TMEDA)(0.11cm3,0.75mmol)在1,2-二甲氧基乙烷(DME)(4 cm3)中加入2-乙炔基吡啶4(0.3g 2.9 mmol)在DME(1 cm3)中的溶液,先前在35 8C下加热10分钟,而氧气冒泡了进来。30 分钟后,混合物颜色从绿色变为棕色,15 分钟后除去溶剂,得到棕色固体色谱,在硅胶上,以己烷-乙酸乙酯 (2, 3) 为洗脱液,得到二乙炔衍生物 12 (150 mg, 52%) 作为固体 mp 120– 122 8C (lit.,19, 122–123, 8C);nmax(KBr)/cm21 1580 和 1560 (C]] C conj.)990 (Py) 780 和 735 (Py]H 2-subst.);dH(200 MHz CDCl3)、7.24(2 H ddd J 7.6、4.8 和 1.1 5-H)、7.47(2 H d J 7.7 3-H)、7.63(2 H td J 7.7 和 1.7 4-H)和 8.55(2 H d J 4.8 6-H);dC(200兆赫;CDCl3) 72.9 (Py]C]] ] C) 80.7 (Py]C]] ] C) 123.6 (C-5)、128.2 (C-3)、136.0 (C-4)、141.5 (C-2) 和 150.2 (C-6);男/女:204 (M+ 100%)、177 (14)、151 (14)、124 (5)、102 (6) 和 78 (10);lmax(CH2Cl2)/nm, 238 (e/dm3, mol21, cm21, 23, 600), 294 (18, 400), 309 (24, 000) 和 330 (20, 800)。甲基化13将1,4-二(3-吡啶基)丁-1,3-二炔酯加入乙醇(25 cm3)溶液中,将二炔衍生物(100 mg 0.49 mmol)加入碘甲烷(0.12 cm3 1.96 mmol)。将混合物在50 8C下搅拌20小时。从溶液中析出黄色固体,过滤掉并鉴定为二甲基化衍生物16(92mg,38%),mp 190 8C(分解)。然后让混合物冷却,析出橙色固体,过滤掉并鉴定为单甲基化衍生物15(72mg,42%),mp 166,8C(分解)。二甲基化产物16的nmax(KBr)/cm21 1620和1500 (C]]C和C]] N conj.)1290 (N]CH3)、1150 (Py+–CH3)、810 和 665 (Py]H 3-subst.);dH[200 MHz;(CD3)2SO] 4.37 (6 H s CH3 × 2) 8.23 (2 H t 5-H) 8.91 (2 H d 4-H) 9.13 (2 H d 6-H) 和 9.49 (2 H s 2-H);dC(200兆赫;CDCl3)、48.4 (CH3)、77.2 和 77.6 (Py]C]] ] C) 120.1 (C-3)、127.7 (C-5)、146.4 (C-4)、147.9 (C-6) 和 149.3 (C-2);m/z (FAB+)、234 (M+ 25%) 和 219 (52);lmax(CH2Cl2)/nm, 237 (e/dm3, mol21, cm21, 31, 430), 290 (18, 500), 308 (20, 000), 330 (18, 570), 345 (13, 710), 354 (12, 000) 和 360 (11, 430)。单甲基化产物 15 具有 nmax(KBr)/cm21、1620、1580 和 1500 (C]] C 和 C]] N conj.)1280 (N]CH3)、1160 (Py+]CH3)、830、800、700 和 675 (Py]H 3-subst.);dH[200 MHz;(CD3)2SO] 4.31 (3 H s CH3) 7.50 (1 H m 5-H) 8.20 (2 H m 5-H 在甲基化环和 4-H 中)、8.70 (2 H m 2- 和 6-H)、8.88 (1 H m 4-H 在甲基化环中)、9.05 (1 H d 6-H 在甲基化环中)和 9.42 (1 H br s 2-H 在甲基化环中);dC(200兆赫;CDCl3)、48.4 (CH3)、77.2 和 77.6 (Py]C]] ] C) 120.1 (C-3)、127.7 (C-5)、146.4 (C-4)、147.9 (C-6) 和 149。3名(C-2);m/z (FAB+)、219 (M+ 100%) 和 205 (13);lmax(CH2Cl2)/nm, 237 (e/dm3, mol21, cm21, 40, 250), 290 (17, 750), 308 (22, 500), 330 (24, 000) 和 345 (12, 500)。1-(N-甲基吡啶-3-基)-4-(3-吡啶基)丁-1,3-二炔碘化物15与TMPD的电荷转移络合物将TMPD(24mg,0.14mmol)在乙腈(10cm3)中的热溶液加入到单甲基化丁-1,3-二炔衍生物15(50mg,0.14mmol)在100cm3乙腈中的近乎沸腾的溶液中。将得到的深紫色溶液冷却,然后缓慢蒸发,得到具有金属光泽的黑色固体;nmax(Nujol)/cm21 1610 1580 和 1510 (C]] C 和 C]] N conj.)1160 (Py+]CH3)、950 (Py)、820、810、800、720、690 和 665 (Py]H 3-subst.);lmax(CH2Cl2)/nm:238、309、330、350、543、565 和 615。1,4-双(N-甲基吡啶-3-基)-丁-1,3-二炔二碘化物16与TMPD的电荷转移络合物 遵循相同的程序形成二甲基化丁-1,3-二炔衍生物16的电荷转移络合物。714 J. Chem. Soc. Perkin Trans. 1 1997 该复合物是一种具有金属光泽的绿色固体;nmax- (Nujol)/cm21 1620 和 1520 (C]] C 和 C]] N conj.)1320 (N]CH3) 1170 和 1150 (Py+]CH3) 950 (Py) 815 720 和 665 (Py]H 3-subst.);lmax(CH2Cl2)/nm 264 327 594 617 和 642.致谢 我们感谢西班牙CAYCIT的财政支持(项目编号)。PB92-0142-C02-01)。参考文献: 1 Polydiacetylenes, ed. D. Bloor and R. R. Chance, NATO ASI series E, No. 102, Matinus Nijkoff, Boston, 1985;AE 斯蒂格曼 E. 格雷厄姆 K.J. Perry, R. Khundkard, L. T. Cheng and J. W. Perry, J. Am. Chem. Soc., 1991, 113, 1658 以及其中引用的参考文献。2 G. Wegner, Z. Naturforsch.B 阿诺格。化学组织化学, 1969, 24, 824.3 G. M. Carter、Y. J. Chen、M. F. Rubner、D. J. Sandman、M. K. Thakur 和 S. K. Tripathy,《有机分子和晶体的非线性光学特性》,D. S. Chemla 和 J. Zyss 编,纽约学术出版社,1987 年,第 2 卷,第 85 页。4 G.韦格纳,J.波利姆。Sci. Part B Polym.1971 9 133.5 Y. Ozcayir、J. Asrar 和 A. Blumstein、Mol.Cryst。1984 年,110 1424 年。6 G. H. Milburn、A. R. Wernick、J. Tsibouklis E. Bolton、G. Thomson 和 A. Shand Polymer 1989, 30, 1004。7 J. P. Ferraris, D. O. Cowan, V. Walatka 和 J. Perlstein, J. Am. Chem. Soc., 1973, 95, 948.8 G. Köbrig, H. Trapp, K. Flory, and W. Drischel, Chem. Ber.1966 99 689.9 D. E. Ames、D. Bull 和 C. Takundwa 合成器。公社。1981 364.10 L. Brandsma,《有机化学制备乙炔化学研究》,Elsevier Science Publishers,B.V.,阿姆斯特丹,1988年,第34卷,第220页。11 J.G.罗德里格斯、S.拉莫斯、R.马丁-维拉米尔、I.丰塞卡和A.阿尔伯特,J.化学学会,珀金译,1996年,第541页。12 G. M. J. Schmidt,《光激发有机分子的反应性》,Wiley,纽约,1967年,第227页。13 S. D. L'vova、Y. P. Koslov 和 U. I. Gunar Zh. Obshch。希姆。1977 47 1251.14 A. Altomare、G.Cascarano、C. Giacovazzo 和 A. Guagliardi,Dipartimento,巴里地质矿物学大学;M. Burla 和 G. Polidori,Dipartimento,Scienze della Terra,佩鲁贾大学;M.Camalli SIR92 Ist Strutt.Chimica CNR,蒙特罗通多,罗马火车站,1992年。15 J. M. Stewart、F. A. Kundell 和 J. C. Badwin,XRAY80 系统计算机科学中心,马里兰大学帕克分校,马里兰州,1980 年。16 M. Martinez-Ripoll 和 F. H. Cano, PESOS, A Computer Program for the Automatic Treatment of Weighting Schemes, Instituto Rocasolano, CSIC, Madrid, 1975.17 International Tables for X-RAY Crystallography,Kynoch Press,伯明翰,1974 年,第 4 卷。18 M. Nardelli 计算。化学, 1983, 7, 95.19 U. Fritzsche 和 S. Hunig Tetrahedron Lett.,1972 年,第 4831 页。论文 6/05468D 1996 年 8 月 5 日收稿 1996 年 11 月 5 日录用 J.Chem. Soc. Perkin Trans. 1 1997 709 1,4-二(正吡啶基)丁-1,3-二炔的合成和电荷转移配合物的形成。1,4-二(3-吡啶基)丁-1,3-二炔的X射线结构 J·贡萨洛·罗德里格斯(J. Gonzalo Rodríguez)*,a 罗莎·马丁-维拉米尔(Rosa Martín-Villamil),a 费利克斯·卡诺布(Felix H. Canob)和伊莎贝尔·丰塞卡布(Isabel Fonsecab) a 马德里自治大学 Departamento de Química Orgánica Universidad Autónoma de Madrid Cantoblanco 28049-马德里 西班牙 b Departamento de Cristalografía C.S.I.C. 塞拉诺 119 28006-马德里 西班牙 乙炔基吡啶已通过两种不同的途径令人满意地制备 (a) 氯亚甲基(三苯基)膦酰化物与吡啶甲醛之间的 Wittig 反应消除氯化氢;(b)从2-甲基-4-(正吡啶基)丁-3-炔-2-醇中间体中除去丙酮。1,4-二(正吡啶基)丁-1,3-二炔通过氧化二聚化得到,收率高。报道了 3-取代二聚体的 X 射线结构。已经获得了3-取代二炔的单甲基盐和二甲基盐,并与四甲基对苯二胺(TMPD)形成了电荷转移络合物。引言 分子有机材料在导体和非线性光学应用中的应用是最近相当活跃的一个领域。对这些材料的兴趣是因为它们固有的合成灵活性,允许“设计”分子特性。1 1,3-二炔的固态聚合形成结晶共轭聚二炔已引起人们的广泛关注。将混合物在50 8C下搅拌90分钟。然后将溶液倒入冰水(60 cm3)上,并用饱和水溶液制成碱性(pH 8)。混合物用二氯甲烷萃取;将提取物用硫酸镁干燥,过滤后除去溶剂,得到棕色油。以己烷-乙酸乙酯(1,2)为洗脱液的硅胶色谱法得到乙炔衍生物4(0.33g,45%)作为橙油。3-乙炔基吡啶 5.向(Z,E)-氯乙烯衍生物2(3克,21毫摩尔)的溶液中,在0,8°C的氩气下,在氩气下缓慢加入(30,E)-氯乙烯衍生物2(30克,21毫摩尔)。将混合物在60 8C下搅拌60分钟。然后让溶液冷却,倒入冰水(150 cm3)中,并用饱和水溶液制成碱性(pH 8)。混合物用二氯甲烷萃取;将提取物用硫酸镁干燥,过滤后除去溶剂,得到棕色油。以己烷-乙酸乙酯(1,2)为洗脱液的硅胶色谱法得到乙炔衍生物5(1.17克,54%),黄色固体,mp:35-37,8C(lit.,13,39-40,8C);nmax(film)/cm21 3280 (]] C]H) 和 2120 (C]] ] C);dH(200 MHz;CDCl3) 3.30 (1 H s C]] ] CH) 7.25 (1 H ddd J 7.8 5.0 和 0.9 5-H) 7.70 (1 H dt J 7.8 和 2.0 4-H) 8.56 (1 H dd J 5.0 和 2.0 6-H) 和 8.70 (1 H dd, J 2.0 和 0.9 2-H);dC(200兆赫;CDCl3) 80.0 (Py]C]] ] C) 80.6 (Py]C]] ] C) 118.7 (C-3)、122.3 (C-5)、138.3 (C-4)、148.3 (C-6) 和 151。J. Perry, R. Khundkard, L. T. Cheng and J. W. Perry, J. Am. Chem. Soc., 1991, 113, 1658 以及其中引用的参考文献。2 G. Wegner, Z. Naturforsch.B 阿诺格。化学组织化学, 1969, 24, 824.3 G. M. Carter、Y. J. Chen、M. F. Rubner、D. J. Sandman、M. K. Thakur 和 S. K. Tripathy,《有机分子和晶体的非线性光学特性》,D. S. Chemla 和 J. Zyss 编,纽约学术出版社,1987 年,第 2 卷,第 85 页。4 G.韦格纳,J.波利姆。Sci. Part B Polym.1971 9 133.5 Y. Ozcayir, J. Asrar 和 A.Blumstein, Mol. Cryst. Liq. Cryst., 1984, 110, 1424.6 G. H. Milburn、A. R. Wernick、J. Tsibouklis E. Bolton、G. Thomson 和 A. Shand Polymer 1989, 30, 1004。7 J. P. Ferraris, D. O. Cowan, V. Walatka 和 J. Perlstein, J. Am. Chem. Soc., 1973, 95, 948.8 G. Köbrig, H. Trapp, K. Flory, and W. Drischel, Chem. Ber.1966 99 689.9 D. E. Ames、D. Bull 和 C.Takundwa 合成器。公社。1981 364.10 L. Brandsma,《有机化学制备乙炔化学研究》,Elsevier Science Publishers,B.V.,阿姆斯特丹,1988年,第34卷,第220页。11 J.G.罗德里格斯、S.拉莫斯、R.马丁-维拉米尔、I.丰塞卡和A.阿尔伯特,J.化学学会,珀金译,1996年,第541页。12 G. M. J. Schmidt,《光激发有机分子的反应性》,Wiley,纽约,1967年,第227页。13 S. D. L'vova、Y. P. Koslov 和 U. I. Gunar Zh. Obshch。希姆。1977, 47 1251.14 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, Dipartimento 地质矿物学, 巴里大学;M. Burla 和 G. Polidori,Dipartimento,Scienze della Terra,佩鲁贾大学;M.获得了3-取代二炔的单甲基盐和二甲基盐,并与四甲基对苯二胺(TMPD)形成了电荷转移络合物。引言 分子有机材料在导体和非线性光学应用中的应用是最近相当活跃的一个领域。对这些材料的兴趣是因为它们固有的合成灵活性,允许“设计”分子特性。1 1,3-二炔的固态聚合形成结晶共轭聚二炔引起了人们的广泛关注.1,2 最近对聚-1,3-二炔的一些兴趣与它们大而快速的非线性光学响应有关,使其成为超快光学应用中具有良好潜力的材料.3 聚-1,3-二炔的电子和光学性质主要由p-共轭骨架主导,但取代基显著影响1,3-二炔的拓扑聚合行为和结晶共轭聚-1,3-二炔的理化性质。取代基效应的一个方面很少受到关注,即形式上的p-共轭取代基对聚-1,3-二炔的电子性质的影响,因为它们中的许多在固态下是非反应性的,4-6尽管它们可能经历液晶聚合以形成与固态聚合物不同的聚合物。然而,初步研究表明,4-氨基-49-硝基二苯基-1,3-二炔是固态反应性的.6 在由对供体四噻富瓦烯和受体四氰基醌二甲烷形成的离子自由基固体中发现一维金属态激发了人们对新供体和

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号