首页> 外文期刊>The Journal of Chemical Physics >Accurate thermochemistry of covalent and ionic solids from spin-component-scaled MP2
【24h】

Accurate thermochemistry of covalent and ionic solids from spin-component-scaled MP2

机译:Accurate thermochemistry of covalent and ionic solids from spin-component-scaled MP2

获取原文
获取原文并翻译 | 示例
           

摘要

We study the performance of spin-component-scaled second-order M{o}ller-Plesset perturbation theory (SCS-MP2) for the prediction of the lattice constant, bulk modulus, and cohesive energy of 12 simple, three-dimensional, covalent and ionic semiconductors and insulators. We find that SCS-MP2 and the simpler scaled opposite-spin MP2 (SOS-MP2) yield predictions that are significantly improved over the already good performance of MP2. Specifically, when compared to experimental values with zero-point vibrational corrections, SCS-MP2 (SOS-MP2) yields mean absolute errors of 0.015 (0.017) {AA} for the lattice constant, 3.8 (3.7) GPa for the bulk modulus, and 0.06 (0.08) eV for the cohesive energy, which are smaller than those of leading density functionals by about a factor of two or more. We consider a reparameterization of the spin scaling parameters and find that the optimal parameters for these solids are very similar to those already in common use in molecular quantum chemistry, suggesting good transferability and reliable future applications to surface chemistry on insulators. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号