首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Dichotomous ylide formation from an alkyl(benzyl)phosphonium salt leading to stereoselective alkene syntheses
【24h】

Dichotomous ylide formation from an alkyl(benzyl)phosphonium salt leading to stereoselective alkene syntheses

机译:烷基(苄基)膦盐形成二分酰化物,导致立体选择性烯烃合成

获取原文
获取外文期刊封面目录资料

摘要

1476 J.C.S. Perkin IDichotomous YIide Formation from an Alkyl( benzy1)phosphonium SaltLeading to Stereoselective Alkene SynthesesBy Brian G. James and Gerald Pattenden,' Departments of Chemistry, The University, Nottingham NG7 2RD,and University College, Cathays Park, Cardiff CF1 1 XLCondensation reactions between the tributyl-(4-methoxy-2,6-dimethylbenzyl)phosphonium salt (1 b) and severalaryl alkyl ketones, in the presence of methylsulphinylmethanide ion, are shown to lead to mixtures of stilbene andstyrene products, resulting from dichotomous ylide formation. By contrast, with p-anisaldehyde, the salt (1 b)produces solely the stilbene (1 0). and condensation between the tributyl-(4-methoxybenzyl)phosphonium salt(8) and 4'-methoxyacetophenone produces only the stilbene (9).The olefin-forming reactions between (1 b)and aryl alkyl ketones are completely stereoselective, leading to Z-stilbenes reg. (3) and euro;-styrenes e.g. (6).Explanations for the stereoselectivities are discussed.THE Wittig reaction is probably the most versatile olefinsynthesis known. Its advantages and convenience overother carbon-carbon bond forming reactions have beenstressed.l In the preceding paper we described theapplication of benzylic phosphonium ylide intermediatesin the syntheses of sterically crowded stilbenes. Duringthese studies we observed unprecedented limitations tothe ' normal ' Wittig synthesis which led us to examinecertain features of the reaction in greater detail.We have shown that condensation between the ylidefrom the salt (la) and 4'-methoxyacetophenone givesonly ca.2 of stilbenes (2) + (3) with trimethylanisole(4) as the major product (ca. 50). Use of elevatedtemperatures and an excess of carbonyl compound in-creases the yield of stilbene to ca. 25. An alternativeway of increasing the yield of stilbenes (2) + (3) ap-peared to be the application of the corresponding tri-butylphosphonium salt (lb). The ylide from this salt isexpected to be more nucleophilic, and the smaller n-butylgroups provide less steric hindrance in the transitionstates. Indeed, condensation between the salt (lb) and4'-methoxyacetophenone did give a greater yield of stil-bene product, but the course of the reaction was parti-cularly interesting.Chromatography separated three products, identifiedas the stilbene (3) (29), the hydrolysis product (4)(37), and the styrene (6) (14).Surprisingly theolefin-forming reactions leading to (3) and (6) were bothtotally stereoselective, giving the 2-stilbene and theE-styrene. Chromatography and spectral data did notdetect the presence of the corresponding isomeric olefins.The configuration assigned to the stilbene product fol-lowed from comparison of spectral data with those of theauthentic E-isomer (2) and also from the observation thatit produced the E-isomer (2) upon isomerisation in thepresence of iodine. The configuration assigned to thestyrene (6) also followed from comparison of spectral datawith those of the 2-isomer (7). Paradoxically, a Wittigcondensation between triphenylphosphonium butylideand 4'-methoxyacetophenone, under similar conditions,produced largely the 2-styrene (7) (2 : E ratio 9 : 1).The styrene (6) is produced as a result of intermediateformation of the ylide (5) from the benzyl salt (lb).Toour knowledge this is the first time that dichotomousylide formation has been observed from an alkyl(benzy1)-phosphonium salt. This observation clearly reflects thediminished acidity of the benzylic C-H bonds in (lb) overthose in other benzyl salts, presumably as a consequenceof the steric influence of the proximate ortho-methylgroups in (lb). A similar condensation between the salt(8), lacking ortho-methyl substitution, and 4'-methoxy-acetophenone produced the stilbene (9) uncontaminated( 1 1 a; R 2 P h ,b; R = n - BUM e 0 ck 'OMe(31(71with the styrene (6).With +-anisaldehyde, the tributylsalt (lb) gave only a mixture of 2- and E-isomers of thestilbene (10) (85); neither the styrene (11) nor thehydrolysis product (4) was detected in the crude reactionmixtures.Our studies suggested that only in those condensationsinvolving the salt (lb) and aryl ketones should we expectFor extensive bibliography since 1968 see S. Trippett,' Ylides and Related Compounds ' in ' OrganophosphorusChemistry,' vols. 1-6, Chem. Soc. Specialist Periodical Reports,1970-1975; see also ( a ) A. Maercker, Org. Reactions, 1965, 14,270;. ( b ) S. Trippett, Quart. Rev., 1963, 17, 406; (c) M. Schlosser,Topzcs Stereochem., 1970, 5, 11976 1477to observe products resulting from dichotomous ylideformation in (lb) ; this was confirmed in parallel studies.6 OMe( I b l ---+ @OMeMe0 Me0 '(101 (11)Condensations between (1 b) and 4'-methoxypropio-phenone and between (lb) and 4'-methoxy-2'-methyl-acetophenone both produced products (l2) + (13) and(14) + (15), respectively resulting from dichotomousylide formation. In both cases the hydrolysis product(4) was also obtained (3240).The configurationsassigned to compounds (12)-(15) , followed from in-spection and comparison of spectral data with those ofauthentic Z- and E-stilbenes and styrenes (see Experi-mental section).The stereospecificities of the reactions leading from(lb) to Z-stilbenes (3), (12), and (14) and E-styrenes(S), (13), and (15) are unprecedented.If we considerthat C-C bond formation between the ylides (16) and(17) and the aryl alkyl ketones is the first step in bothreactions, in one case (that leading to Z-stilbene) erythro-intermediate betaine formation viz. (lS) must be in-voked, whereas in the other (leading to E-styrene) ,threo-betaine formation viz. (19) has to occur (seeScheme 1) ; syn-elimination via the appropriate oxa-phosphetan intermediates formed from the betaines then/ (I21 OMe( l b l(13)(141 OMe (151leads to Z-stilbene and E-styrene. Under othenviseidentical conditions however, triphenylphosphoniumbutylide reacts with the same aryl alkyl ketones produc-ing predominantly the corresponding Z-styrenes (7) etc.;t In these reactions an E-stilbene could have resulted fromstereomutation of a pre-formed Z-isomer during reaction (seeExperimental conditions, preceding paper).see Experimental section. In addition , the triphenyl-phosphonium salt (la) either produces E-stilbene vix.(2) t or does not react at all with the aryl ketones. Inview of these comparative data it seems probable that themechanisms which operate in these reactions are differentfrom those in the reactions leading from the salt (lb) tocompounds (3), (6), and (12)-(15).An alternative explanation for the stereospecific re-actions leading to compounds (3), (6) , and (12)-( 15) canbe formulated, based on initial co-ordination of carbonyloxygen to the phosphorus of the ylide (lb), leading to anoxyphosphorane intermediate (Scheme 2) (for discussionof this approach see ref.2). Formation of this type ofintermediate is plausible in the special case of (lb) andaryl alkyl ketones, because of the mutual inaccessibilityof the carbon centres in the two reactants. Models sug-gest that this sequence could lead to an oxyphosphorane6 u BuA r CH, P- CH, Prbsol; /d.6 u Bu // / /A r k H -P-C H2Pr *bsol;bsol; BU Bubsol; /ArCH2-P-CHPr + -(161 (17;iA r ' Me Me Ar'C' 0 - / bsol;Ar H1C' 0 -/ bsol;Pr H 19 1 t h i e o( 3 ) E I C . ( 6 I e!c.SCHEME 1(20) which might equilibrate with a second oxyphosphor-ane (22) by intramolecular H exchange. With both aryl(Ar) and propyl (Pr) groups anti see (21) and Arorientated in the least sterically crowded section of theequatorial plane, a rotational movement to the left aboutthe C-0 bond would lead to the erytkro-intermediate (23),whereas a rotational movement to the right would lead tothe ' threo '-intermediate (24) ; collapse of these inter-mediates by syn-elimination would then give rise toZ-stilbene and E-styrene, respectively.+EXPERIMENTALFor general experimental details see ref.3.Tributyl-( 4-methoxy-2,6-dimethylbenzyl)phosp~ honiumBromide (lb) .-A solution of tributylphosphine (18 g ) in drybenzene (100 ml) was added dropwise to a solution of2 W. P. Schneider, Chenz. Comm., 1969, 786; see also E.Vedejs and K. A. J. Snoble, J . Amer. Chem. Soc., 1973, 95, 6778.3 B. G. James and G.Pattenden. J.C.S. Perkin I , 1974, 11951478 J.C.S. Perkin I4-methoxy-2,6-dimethylbenzyl bromide from 4-methoxy-2,6-dimethylbenzyl alcohol (16.6 g) in dry benzene (50 ml),and the mixture was then boiled under reflux for 2 h. Thebenzene was removed i n vacuo, and the residual glass wasthen triturated with dry ether to give the salt (34.2 g, go),as a white powder, m.p. 124", vmX. (Nujol) 1610, 1585,1510, 1250, 915, 840, and 735 cm-l, T 3.4 (2 H), 5.97 (d, J15 Hz, ArCH,*P+), 6.24 (OCH,), 7.54br (s, 3 x CH,*CH,),7.6 (2 x XHCH,), 8.55br (s, 3 x CH,*CH,.CH,CH,), and9.1 (t, J 7 Hz, CH,*CH,) (Found: C, 61.1; H, 9.7. C,,H4,-BrOP requires C, 61.3; H, 9.5).Reactions between Tg.ibutyl- (4-methoxy-2,6-dimethyZbenzyZ) -phosphoniuvn Bromide and AryZ Ketones.-The reactionscm-l, T 3.08 (2 H, d, J 9 Hz), 3.40 (2 H, d, J 9 Hz), 3.53(2 H), 3.72 (CXH), 6.32 (OCH,), 6.35 (OCH,), 7.79 (XCH,),and 7.98 (2 x XMe) (Found: C, 80.65; H, 7.9; nz/e 282.C,,H,,O, requires C, 80.8; H, 7.85 ; .!W, 282).The stil-bene was isomerised to the corresponding E-isomer withiodine in acetic acid (see preceding paper).(B) With 4'-methoxypropiophenone. Chromatographygave : (i) (E)-3-(4-methoxyphenyZ)hept-3-ene (13) (0.1 g, 5)(eluted first), hx 252 nm; vmX. (film) 1610, 1575, 15101250, 1035, 830, and 800 cm-l; T 2.75 ( 2 H, d, J 9 Hz),3.22 (2 H, d, J 9 Hz), 4.45 (t, J 7 Hz, XHCH,), 6.23 (OMe),7.55 (9, J 7 Hz, :C*CH,CH,), 7.85 (q, J ca. 7 Hz, :CHCH,CH,), ca. 8.6 (m, CH,CH,.CH,), and 9.06 (t, 2 x CH,CH,)A r C H - p u 3I - Ar', +c - 0Ar', 7 c=oMe' Me'- A r zP.Me IAr''MeIB UIBu1201 (21 I ( 2 2 ) J(231H /-I13 I etc.'Pr1241(61 etc.SCHEME 2were carried out according t o the general procedure de-scribed in the preceding paper.Products of reactions wereseparated by chromatography in benzene on silica gel.(A) With 4'-methoxyacetophenone. Chromatography gave :(i) (E)-2-(4-methoxyPhenyZ)hex-Z-ene (6) (0.28 g, 14) (elutedfirst), Lx 270 nm, vmX. (film) 1 610, 1575, 1510, 1250,1030, and 830 cm-l, T 2.7 (2 H, d, J 9 Hz), 3.2 (2 H, d, J 9Hz), 4.32 (t, J 7 Hz, CHXMe), 6.28 (OMe), 7.95 (9, J 7 Hz,CH,*CH,CH), 8.03 (XMe), 8.55 (sextet, J 7 Hz, CH,*CH,*CH,), and 9.06 (t, J 7 Hz, CH,*CH,) (Found: m/e, 190.1358,C,,H,,O requires M , 190.1358) ; (ii) 3,4,5-trimethylanisole(4) (0.58 g , 37) (eluted second) identical with an authenticsample ; and (iii) (2)-4,4'-dimethoxy-2, 6,a'-tr~methylstiZbene(3) (0.85 g, 29) (eluted third), which crystallised fromethanol as needles, m.p.72", LX. (EtOH) 268 nm (8 700);v,, (Nujol) 1608, 1575, 1515, 1250, 860, 825, and 805(Found : m/e, 204.1514. C14H200 requires M 204.1514) ;(ii) 3,4,5-trimethylanisole (0.59 g, 40) (eluted second),identical with an authentic sample ; and (iii) (Z)-a'-ethyZ-4,4'-dimethoxy-2,6-dimethyZstiZbene ( 12) (0.9 g, 30) (elutedthird), which crystallised from aqueous ethanol as needles,m.p. 68", kx. (EtOH) 270 nm (10 950) ; vmx. (Nujol) 1 603,1 510, 1 250, 1 150, 850, and 835 cm-l, ?: 3.1 (2 H, d, J 9 Hz),3.5 ( 2 H, d, J 9 Hz), 3.55 (2 H), 3.75 (olefinic XH), 6.3( 2 x OCH,), 7.42 (9, J 8 Hz, CH,*CH,), 7.97 (2 x arylX-CH,), and 8.9 (t, J 8 Hz, CH,-CH,) (Found: C, 81.2; H,8.2; m/e, 296.C,,H,,O, requires C, 81.0; H, 8.2; M ,296). The stilbene was isomerised t o the correspondingE-isomer with iodine in acetic acid (see preceding paper).(C) With 4'-methoxy-2'-methyZacetoplzenone. Chromato-graphy gave : (i) (E)-2-(4-methoxy-2-methyZfihenyZ)hex-2-ene(15) (0.07 g, 3.5) (eluted first), nD2, 1.5160; hx (EtOH1976 1479230 and 275 nm, vmx. (film) 1 605, 1570, 1500, 1235, 860,840, and 800 cm-l; z 3.07 (d, J 9 Hz, aryl XH), 3.34 (arylXH), 3.48 (d, J 9 Hz, aryl XH), 4.76 (t, J 8 Hz, CXH), 6.28(OCH,), 7.78 (aryl :C*CH,), 7.88 (q, J 8 Hz, C:CH*CH,*CH,),8.13 (olefinic CH,), 8.56 (sextet, J 8 Hz, CH,*CH,*CH,), and9.05 (t, J 8 Hz, CH,CH,) (Found: mJe, 204.1514.C14H2,0requires M , 204.1514) ; (ii) 3,4,5-trimethylanisole (0.48 g,32 yo) (eluted second), identical with an authentic sample ;and (iii) (2) -4,4'-dimethoxy-2,2', 6, cc'-tetl.amethyZstiZbene ( 14)(0.3 g, lo), an oil, kx. 231 and 280 nm; vmx. (film) 1 610,1575, 1500, 1260, 1 190, 1 160, and 835 cm-l; T 3.23 (d,J 9 Hz, aryl XH), 3.4-3.7 (m, 4 x aryl :CH plus 1 x ole-fink XH), 6.4 (2 x OCH,), 7.85 (olefinic :C.CH,), and 7.96(3 x aryl :CCH,), r n / e 296 (C20H2402). The stilbene wasisomerised to the E-isomer with iodine in acetic acid (seepreceding paper).(D) Reaction with P-anisaldehyde, followed by chrom-atography on silica gel benzene-ethyl acetate (97 : 3) gavea 1 : 9 mixture (85) of Z- and E-isomers of 4,4-dimethoxy-2,6-dimethylstilbene (10).Crystallisation gave the E-iso-mer, m.p. 82-83', identical with an authentic sample.(2)-2-(4-MethoxyphenyZ)hex-2-ene (7) .-By the generalprocedure, butyltriphenylphosphonium bromide and 4'-methoxyacetophenone produced a 9 : 1 mixture of Z- andE-isomers of the alkene. Chromatography in benzene onsilica gel gave: (i) the (2)-alkene (eluted first) (70y0), T 2.93(2 H, d, J 9 Hz), 3.2 (2 H, d, J 9 Hz), 4.6 (t, J 7 Hz, :CH*CH,), 6.28 (OMe), 8.05 (9, J 7 Hz, :CH.CH,*CH,), 8.02(ICMe), 8.62 (sextet, J 7 Hz, CH,-CH,CH,), and 9.18 (t, J7 Hz, CH,*CH,) (Found: m/e, 190.1358. C13H1,0 requiresM , 190.1358); and (ii) the E-alkene (eluted second) (lo),identical with an authentic sample,(2)-3-(4-MethoxyphenyZ)hept-3-ene.-By the general pro-cedure, butyltriphenylphosphonium bromide and 4'-meth-oxypropiophenone produced a 9 : 1 mixture of Z- and E-iso-mers of the alkene.Chromatography in benzene on silicagel gave: (i) the (2)-aZkene (eluted first) (65y0), z 2.96 (2 H,d, J 9 Hz), 3.20 (2 H, d, J 9 Hz), 4.63 (t, J 7 Hz, :CH*CH,),6.26 (OMe), 7.69 (9, J 7 Hz, :C.CH,CH,), 8.09 (q, J 7 Hz,:CH*CH,*CH,), 8.69 (sextet, J 7 Hz, CH,*CH,CH,), 9.06 (t,J 7 Hz, :C*CH,*CH,), and 9.18 (t, J 7 Hz, CH,CH3) (Found:m/e, 204.1514. C14H2,O requires M, 204.1514); and (ii) the(E)-alkene (eluted second) (6y0), identical with an authenticsample.Tributyl-(4-methoxybenzyZ)fihosphonium Bromide (8) .-The saZt, prepared from p-anisyl alcohol via the correspond-ing bromide in the usual manner, had m.p. 62-63", vmX.(Nujol) 1 605, 1 580, and 1 510 cm-l, T 2.14 (2 H, d, J 9 Hz),2.58 (2 H, d, J 9 Hz), 5.59 (d, J 14 Hz, ArCH,-P+), 6.2(OMe), 7.4-7.7 (m, 3 x P+*CH,), 8.4-8.6 (12 H, m), and9.05 (t, J 7 Hz, 3 x CH,*CH,) (Found: C, 59.8; H, 10.1.C,,H,,BrOP requires C, 59.6; H, 8.9).(E)-4,4'-Dimethoxy-a-methyZstiZbene (9) .-By the generalprocedure (see preceding paper), tributyl-(4-methoxybenz-y1)phosphonium bromide and acetophenone gave the stil-bene (60y0), m.p. 122-123" (from glacial acetic acid) (lit.,4124"), z 2.55 (2 H, d, J 8 Hz), 2.71 (2 H, d, J 8 Hz), 3.11(4 H, d, J 8 Hz), 3.3 (:CH), 6.2 (OMe), and 7.75 (:CRIIe), rn/e254.We thank the British Petroleum Company Ltd. for aresearch scholarship (to B. G. J.).5/2379 Received, 8th December, 197514 R. L. Huang, J . Chem. SOC., 1954, 2539
机译:1476 J.C.S. Perkin Idichotomous YIide Formation from an Alkyl( benzy1)phosphonium SaltLeading to Stereoselective Alkene Syntheses作者:Brian G. James 和 Gerald Pattenden,诺丁汉大学化学系 NG7 2RD,和卡迪夫国泰公园大学学院 CF1 1 XL 三丁基-(4-甲氧基-2,6-二甲基苄基)膦盐 (1 b) 和几个芳基烷基酮在甲基磺酰甲酰基离子存在下发生缩合反应, 被证明会导致二苯乙烯和苯乙烯产物的混合物,这是由二分法酰化物形成产生的。相比之下,使用对茴香醛时,盐(1 b)仅产生二苯乙烯(1 0)。三丁基-(4-甲氧基苄基)膦盐 (8) 和 4'-甲氧基苯乙酮之间的缩合仅产生二苯乙烯 (9)。(1 b)和芳基烷基酮之间的烯烃形成反应是完全立体选择性的,导致Z-二苯乙烯(3)]和€-苯乙烯[例如(6)]。讨论了立体选择性的解释。Wittig反应可能是已知用途最广泛的烯烃合成方法。在前面的论文中,我们描述了苄基膦酰基化物中间体在空间拥挤二苯乙烯合成中的应用。在这些研究中,我们观察到“正常”Wittig合成的空前局限性,这导致我们更详细地研究了反应的某些特征。我们已经证明,盐(la)和4'-甲氧基苯乙酮之间的缩合仅产生约2%的二苯乙烯[(2)+(3)],三甲基苯甲醚(4)为主要产物(约50%)。使用升高的温度和过量的羰基化合物会使二苯乙烯的产量降低到约25%。提高二苯乙烯[(2)+(3)]收率的另一种方法是施用相应的三丁基膦盐(lb)。预计来自该盐的酰化物具有更强的亲核性,并且较小的正丁基在过渡态中提供的空间位阻较小。事实上,盐(lb)和4'-甲氧基苯乙酮之间的缩合确实产生了更高的芪-苯产物,但反应过程非常有趣。色谱法分离出三种产物,分别为二苯乙烯(3)(29%)、水解产物(4)(37%)和苯乙烯(6)(14%)。令人惊讶的是,导致(3)和(6)的烯烃形成反应都是完全立体选择性的,得到2-二苯乙烯和E-苯乙烯。色谱和光谱数据未检测到相应异构体烯烃的存在。二苯乙烯产物的构型是通过将光谱数据与真实的E-异构体(2)进行比较,以及观察到它在碘存在下异构化后产生E-异构体(2)得出的。分配给苯乙烯 (6) 的构型也是通过比较光谱数据与 2-异构体 (7) 的光谱数据得出的。矛盾的是,在相似的条件下,三苯基丁酰膦和4'-甲氧基苯乙酮之间的Wittigcondens反应主要产生2-苯乙烯(7)(2:E比9:1)。苯乙烯 (6) 是由苄基盐 (lb) 中间形成的酰化物 (5) 产生的。据我们所知,这是第一次从烷基(benzy1)-膦盐中观察到二分基化物的形成。这一观察结果清楚地反映了(lb)中苄基C-H键的酸度比其他苄基盐中的酸度降低,这可能是由于(lb)中近邻甲基的空间位阻作用的结果。缺乏邻甲基取代的盐(8)与4'-甲氧基苯乙酮之间的类似缩合产生了未受污染的二苯乙烯(9)(1 1 a;R 2 P h ,b;R = n - BUM e 0 ck 'OMe(31(71与苯乙烯 (6).使用+-茴香醛时,三丁基盐(lb)仅得到二苯乙烯(10)(85%)的2-和E-异构体的混合物;粗反应混合物中均未检测到苯乙烯(11)和水解产物(4)。我们的研究表明,只有在那些涉及盐(lb)和芳基酮的缩合反应中,我们才应该期待自1968年以来的广泛参考书目,参见S. Trippett,“Ylides and Related Compounds”,in ' OrganophosphorusChemistry',vols. 1-6, Chem. Soc. Specialist Periodical Reports,1970-1975;另见 ( a ) A。Maercker, Org. Reactions, 1965, 14,270;.( b ) S. Trippett, 夸脱.修订版, 1963, 17, 406;(c) M. Schlosser,Topzcs Stereochem., 1970, 5, 11976 1477观察(lb)中二分基化变形产生的产物;6 OMe( I b l ---+ @OMeMe0 Me0 '(101 (11)(1 b) 和 4'-甲氧基苯丙酮之间以及 (lb) 和 4'-甲氧基-2'-甲基苯乙酮之间的缩合都产生产物 [(l2) + (13) 和 (14) + (15) 分别] 由二分基化物形成产生。在这两种情况下,还获得了水解产物(4)(3240%)。分配给化合物(12)-(15)的构型,随后是将光谱数据与真正的Z-和E-二苯乙烯和苯乙烯的光谱数据进行比较(参见经验部分)。从(lb)到Z-二苯乙烯[(3)、(12)和(14)]和E-苯乙烯[(S)、(13)和(15)]的反应的立体特异性是前所未有的。如果我们认为亚基(16)和(17)与芳基烷基酮之间的C-C键形成是两种反应的第一步,那么在一种情况下(导致Z-二苯乙烯),必须诱发赤式中间甜菜碱的形成[即(lS)],而在另一种情况下(导致E-苯乙烯),必须发生苏式甜菜碱的形成[即(19)](见方案1);通过由甜菜碱形成的适当的氧杂磷杂环烷中间体进行同步消除,然后/ (I21 OMe( l b l(13)(141 OMe(151导致Z-二苯乙烯和E-苯乙烯。然而,在相同的条件下,三苯基丁酰膦与相同的芳基烷基酮反应,主要产生相应的Z-苯乙烯[(7)等;在这些反应中,E-二苯乙烯可能是由反应过程中预先形成的Z-异构体的立体突变产生的(参见实验条件,前一篇论文)。此外,三苯基膦盐(la)产生E-二苯乙烯[vix.(2)] t 或根本不与芳基酮反应。从这些比较数据来看,在这些反应中起作用的机理似乎可能与从盐(lb)到化合物(3)、(6)和(12)-(15)的反应中的机理不同。基于羰基氧与酰化物磷(lb)的初始配位,可以制定导致化合物(3)、(6)和(12)-(15)的立体特异性反应的另一种解释,从而产生无氧磷烷中间体(方案2)(关于这种方法的讨论见参考文献2)。在(lb)安芳基烷基酮的特殊情况下,这种类型的中间体的形成是合理的,因为两种反应物中的碳中心相互不可接近。模型推测该序列可导致氧磷烷6 u BuA r CH, P- CH, Pr\ /d.6 u Bu // / /A r k H -P-C H2Pr *\\ BU Bu\ /ArCH2-P-CHPr + -(161 (17;iA r ' Me Me Ar'C' 0 - / \Ar H1C' 0 -/ \Pr H[ 19 1 t h i e o( 3 ) E I C .( 6 I e!c.方案1(20)可能通过分子内H交换与第二个氧磷烷(22)平衡。芳基(Ar)和丙基(Pr)基团都与[见(21)]相反,并且定向在赤道平面空间拥挤程度最低的部分,围绕C-0键向左的旋转运动将导致erytkro-中间体(23),而向右旋转运动将导致“threo”-中间体(24);这些中间体通过同步消除而崩溃将分别产生Z-二苯乙烯和E-苯乙烯.+实验一般实验细节见参考文献3.三丁基-(4-甲氧基-2,6-二甲基苄基)磷~溴化氢(lb).-将三丁基膦(18g)在干苯(100ml)中的溶液滴加到2W.P.Schneider,Chenz的溶液中。通讯, 1969, 786;另见 E.Vedejs 和 K. A. J. Snoble, J .Amer. Chem. Soc., 1973, 95, 6778.3 B. G. James and G.Pattenden.J.C.S. Perkin I, 1974, 11951478 J.C.S. Perkin I4-甲氧基-2,6-二甲基溴苄[来自4-甲氧基-2,6-二甲基苯甲醇(16.6g)]在干苯(50ml)中,然后将混合物在回流下煮沸2小时。真空除去苯,然后用干燥的乙醚研磨残留的玻璃,得到盐(34.2 g,go%),为白色粉末,熔点124“,vmX。(Nujol) 1610、1585、1510、1250、915、840 和 735 cm-l,T 3.4 (2 H),5.97 (d,J15 Hz,ArCH,*P+),6.24 (OCH,),7.54br (s,3 x CH,*CH,),7.6 (2 x XHCH,),8.55br (s,3 x CH,*CH,.CH,CH,)和9.1 (t, J 7 Hz, CH,*CH,) (实测值: C, 61.1;H,9.7。C,,H4,-BrOP需要C,61.3;H,9.5%)。Tg.ibutyl-(4-methoxy-2,6-dimethyZbenzyZ)-phosphoniuvn bromide和AryZ酮之间的反应cm-l,T 3.08(2 H,d,J 9 Hz),3.40(2 H,d,J 9 Hz),3.53(2 H),3.72(CXH),6.32(OCH,),6.35(OCH),7.79(XCH)和7.98(2 x XMe)(发现:C,80.65;H, 7.9%;nz/e 282.C,,H,,O,要求C,80.8;H, 7.85% ; .!W,282)。在乙酸中,将芪异构化为相应的E-异构体与碘(见前文)。(b)与4'-甲氧基苯丙酮。色谱法:(i) (E)-3-(4-甲氧基苯Z)庚-3-烯(13)(0.1 g,5%)(先洗脱),hx 252 nm;vmX. (胶片) 1610、1575、15101250、1035、830 和 800 cm-l;T 2.75 ( 2 H, d, J 9 Hz),3.22 (2 H, d, J 9 Hz), 4.45 (t, J 7 Hz, XHCH,), 6.23 (OMe),7.55 (9, J 7 Hz, :C*CH,CH,), 7.85 (q, J ca. 7 Hz, :CHCH,CH,), ca. 8.6 (m, CH,CH,.CH,) 和 9.06 (t, 2 x CH,CH,)A r C H - p u 3I - Ar', +c - 0Ar', 7 c=oMe' Me'- A r zP.Me IAr''MeIB UIBu1201 (21 I ( 2 2 ) J(231H /-I13 I etc.'Pr1241(61 etc.方案2是根据前述的一般程序进行的。在硅胶上用苯色谱法分离反应产物。(a)用4'-甲氧基苯乙酮。色谱法得到:(i)(E)-2-(4-甲氧基PhenyZ)己-Z-烯(6)(0.28 g,14%)(洗脱),Lx 270 nm,vmX。(胶片)1 610、1575、1510、1250、1030和830 cm-l,T 2.7(2 H,d,J 9 Hz),3.2(2 H,d,J 9Hz),4.32(t,J 7 Hz,CHXMe),6.28(OMe),7。95 (9, J 7 Hz,CH,*CH,CH), 8.03 (XMe), 8.55 (六重奏, J 7 Hz, CH,*CH,*CH,), 和 9.06 (t, J 7 Hz, CH,*CH,) (找到: m/e, 190.1358,C,,H,,O 需要 M , 190.1358) ;(ii) 3,4,5-三甲基苯甲醚(4)(0.58 g,37%)(洗脱第二),与真实样品相同;(iii) (2)-4,4'-二甲氧基-2,6,a'-tr~甲基锑(3) (0.85 g, 29%) (洗脱第三),由乙醇结晶为针状,熔点72“,LX。(EtOH) 268 nm (8 700);v,, (Nujol) 1608, 1575, 1515, 1250, 860, 825, and 805(找到: m/e, 204.1514.C14H200需要M 204.1514);(ii)3,4,5-三甲基苯甲醚(0.59 g,40%)(洗脱第二),与真实样品相同;(iii) (Z)-a'-ethyZ-4,4'-dimethoxy-2,6-dimethyZstiZbene ( 12) (0.9 g, 30%) (洗脱第三),其从乙醇水溶液中结晶为针状,熔点 68“,kx。(EtOH) 270 nm (10 950) ;(Nujol) 1 603、1 510、1 250、1 150、850 和 835 cm-l、?: 3.1 (2 H, d, J 9 Hz)、3.5 ( 2 H, d, J 9 Hz)、3.55 ( 2 H)、3.75 (烯烃 XH)、6.3( 2 x OCH)、7.42 (9, J 8 Hz, CH,*CH,)、7.97 (2 x 芳基 X-CH,) 和 8.9 (t, J 8 Hz, CH,-CH,) (发现: C, 81.2;H,8.2%;m/e,296.C,,H,,O,需要C,81.0;H,8.2%;M,296)。将二苯乙烯与相应的E-异构体在乙酸中异构化(见上文)。(c)与4'-甲氧基-2'-甲基Zacetoplzenone。色谱图得到:(i) (E)-2-(4-甲氧基-2-甲基ZfihenyZ)己-2-烯(15)(0.07 g,3.5%)(先洗脱),nD2,1.5160;hx (EtOH1976 1479230 和 275 nm, vmx.(胶片)1 605、1570、1500、1235、860,840 和 800 cm-l;z 3.07 (d, J 9 Hz, 芳基 XH), 3.34 (芳基 XH), 3.48 (d, J 9 Hz, 芳基 XH), 4.76 (t, J 8 Hz, CXH), 6.28(OCH,), 7.78 (芳基 :C*CH,), 7.88 (q, J 8 Hz, C:CH*CH,*CH,),8.13 (烯烃 CH,), 8.56 (六重, J 8 Hz, CH,*CH,*CH,), 和 9.05 (t, J 8 Hz, CH,CH,) (发现: mJe, 204.1514.C14H2,0requires M , 204.1514) ;(ii) 3,4,5-三甲基苯甲醚(0.48 g,32 yo)(第二次洗脱),与真实样品相同;(iii)(2)-4,4'-二甲氧基-2,2',6,cc'-tetl.amethyZstiZbene(14)(0.3g,lo%),油,kx。231 和 280 nm;(胶片)1 610、1575、1500、1260、1 190、1 160、835 cm-L;T 3.23 (d,J 9 Hz,芳基 XH),3.4-3.7 (m,4 x 芳基 :CH 加 1 x ole-fink XH),6.4 (2 x OCH,),7.85 (烯烃 :C.CH,),和 7.96(3 x 芳基 :CCH,),r n / e 296 (C20H2402)。二苯乙烯在乙酸中用碘异构化为E异构体(见前文)。(D)与对茴香醛反应,然后在硅胶苯-乙酸乙酯(97:3)]上进行色谱分析,得到1:9的4,4-二甲氧基-2,6-二甲基二苯乙烯的Z-和E-异构体的混合物(10)。结晶得到的E-异构体,熔点82-83',与真实样品相同。(2)-2-(4-甲氧基苯Z)己-2-烯 (7).-通过一般程序,丁基三苯基溴化膦和4'-甲氧基苯乙酮产生9 : 1的Z-和E-烯烃异构体混合物。苯硅胶中的色谱法得到:(i)(2)-烯烃(先洗脱)(70y0),T 2.93(2 H,d,J 9 Hz),3.2(2 H,d,J 9 Hz),4.6(t,J 7 Hz,:CH*CH,),6.28(OMe),8.05(9,J 7 Hz,:CH。CH,*CH,), 8.02(ICMe)、8.62(六重奏,J 7 Hz,CH,-CH,CH,)和 9.18(t,J7 Hz,CH,*CH,)(发现值:m/e,190.1358。C13H1,0 requiresM , 190.1358);(ii)E-烯烃(洗脱第二)(lo%),与真实样品相同,(2)-3-(4-甲氧基苯庚-3-烯)-通过一般方法,丁基三苯基溴化膦和4'-甲基氧苯丙酮产生了烯烃的Z-和E-异构体的9:1混合物。苯在硅胶上的色谱法得到:(i)(2)-aZkene(首先洗脱)(65y0),z 2.96(2 H,d,J 9 Hz),3.20(2 H,d,J 9 Hz),4.63(t,J 7 Hz,:CH*CH,),6.26(OMe),7.69(9,J 7 Hz,:C.CH,CH,),8.09(q,J 7 Hz,:CH*CH,*CH,),8.69(六重奏,J 7 Hz, CH,*CH,CH,),9.06 (t,J 7 Hz, :C*CH,*CH,), 和 9.18 (t, J 7 Hz, CH,CH3) (发现:m/e, 204.1514.C14H2,O需要M,204.1514);(ii)(E)-烯烃(洗脱第二)(6y0),与真实样品相同。三丁基-(4-甲氧基苄基Z)溴化物(8).-saZt,由对茴香醇通过相应的溴化物以通常的方式制备,熔点为62-63“,vmX。(Nujol) 1 605, 1 580, and 1 510 cm-l, T 2.14 (2 H, d, J 9 Hz), 2.58 (2 H, d, J 9 Hz), 5.59 (d, J 14 Hz, ArCH,-P+), 6.2(OMe), 7.4-7.7 (m, 3 x P+*CH,), 8.4-8.6 (12 H, m), 和 9.05 (t, J 7 Hz, 3 x CH,*CH,) (发现: C, 59.8;H, 10.1.C,,H,,BrOP 需要 C, 59.6;H,8.9%)。(E)-4,4'-二甲氧基-a-甲基ZstiZbene (9) .-通过一般程序(见前文),三丁基-(4-甲氧基苯并-y1)溴化膦和苯乙酮得到芪-bene (60y0),熔点。122-123“(来自冰醋酸)(lit.,4124”),z 2.55(2 H,d,J 8 Hz),2.71(2 H,d,J 8 Hz),3.11(4 H,d,J 8 Hz),3.3(:CH),6.2(OMe)和7.75(:CRIIe),rn/e254。我们感谢英国石油有限公司(British Petroleum Company Ltd.)提供的研究奖学金(给BGJ)。[5/2379 收稿日期, 12月8日, 197514 R. L. Huang, J . Chem. SOC., 1954, 2539

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号