首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Control of the enantioselectivity of the bioreduction with immobilized bakers' yeast in a hexane solvent system
【24h】

Control of the enantioselectivity of the bioreduction with immobilized bakers' yeast in a hexane solvent system

机译:在己烷溶剂体系中控制固定化面包酵母生物还原的对映选择性

获取原文
获取外文期刊封面目录资料

摘要

J. C'HFM soc'. PERKIN TRANS. I 1992 Control of the Enantioselectivity of the Bioreduction with Immobilized Bakers' Yeast in a Hexane Solvent System Yoshinobu Naoshima," Jusei Maeda and Yoshihito Munakata Department of Biological Chemistry, Faculty of Science, Oka yama University of Science, I -I Ridai-cbo, Oka yama 700,Japan Enantioselective reduction of P-keto esters with immobilized bakers' yeast in hexane was either controlled or changed by additives such as acetamide, or adenine, instead of glucose. In recent years, bakers' yeast has been used for enantioselective reductions of P-keto esters, keto acids, or $-unsaturated carbonyl compounds. ' Several ways for controlling the stereo- chemistry of aqueous bakers' yeast reductions have been adopted such as modification of substrate structure,' immobili- zation of the bakers' yeast,3 or with additives such as allyl alcohol and metal salts.4 More recently we reported that immobilized bakers' yeast (IBY) entrapped in calcium alginate beads functioned both in hexane and water systems, IBY- mediated reductions in the former, using alcohols as an energy source or additive, giving chemical and optical yields similar to those with analogous reductions using gl~cose.~ In continuance of our work on IBY reactions, we found that enantioselective reduction of certain P-keto esters, 1-3, in hexane, could be con- trolled by additives such as alcohols, Me'SO, thioacetamide, or adenine, instead of glucose.For 4-chloro-3-oxobutanoate 1, each reduction in hexane, using thioacetamide, Me,SO, and saturated alcohols (e.g.methanol, butan-2-01, and 2,2,2-trifluoroethanoI), gave the cor- responding chiral hydroxy esters R(L)-la with an enantiomeric purity of 21-43',,,. In contrast, for analogous reductions of 1 with allyl alcohol and quinine the stereochemistry of la was largely shifted to the D-isomer, S(D)-la of 55 ee being pro- duced in the presence of the former additive. Both reductions of the keto ester 2, using thioacetamide and adenine, yielded S(L)- 2a with 55", ee, while that of 2 with ally1 alcohol gave R(~)-2a with 64',, ee. Similar reductions with saturated alcohols were also carried out, and resulted in S(~)-2a with an enantiomeric saturated and unsaturated alcohols, Me,SO, thio-R (L)-la S (~)-2a S (L)-3a t 1 2 3 1 S (D)-l a R (D)-2a R (D)-3a Scheme 1 Reactions in the presence of IBY, hexane and additives purity of 1846. For substrate 3, the stereochemistry of the product (R)-3a obtained for reductions in the presence of several additives including saturated alcohols shifted towards the L-isomer, relative to that produced for the reduction using glucose; in contrast, the stereochemistry in Me,SO and allyl alcohol systems was shifted more to the D-isomer than that in glucose system (see Table 1).A combination of DMSO and glucose was a particularly Table 1 Enantioselectivity of the reduction of keto esters 1-3 with immobilized bakers' yeast." la 2a 3a Additive yc, Yield Ee Config.d 7;Yield :(,Ee Config.d "/, Yield 7;Ee ' Config.d Methanol 54 25 45 18 13 38 Ethanol 64 21 35 41 10 62 Propan-2-01 65 28 37 39 11 47 Butan-! -01 70 30 10 33 5 46 Butan-2-01 70 35 42 42 1 42 Trifluoroethanol 70 37 40 46 3 39 Et hy 1 ch loroacet a te 56 26 4 51 3 -f Me,SO 37 32 26 10 8 78 Thioacetamide 52 43 21 55 Adenine 66 23 22 55 16 51 MezSO + gluco~e" 20 8 20 4 31 99 Quinine 51 36 39 -1 36 63 Ally1 alcohol 51 55 6 64 6 95 Glucose 34 4 45 23 35 67 None 30 35 30 22 10 64 ('Reactions were run in the presence of an additive (I g).Determined by HPLC analysis of the MTPA ester derived from la GL Science Lichrosorb SI-100, diethyl ether -hexane (1 :20), 1.0 cm3 min-', 254 nm.Determined by HPLC analysis of the benzoate esters derived from 2a and 3a Daicel Chiralcel OB, propan-2-01 -hexane (I :9),0.7 cm3 min-', 220 nm. Both the stereochemical designations of RS and DL were used to show clearly the direction of stereochernistry. " Me,SO (10g) and glucose (1 g) were used. Racemic. satisfactory additive, the enantiomeric purity. of the product R(~)-3areaching 99. It is interesting to note that the degree of the change of these enantioselectivities varies, depending on the keto ester involved, whereas the direction of the selectivity is controllable by selecting the appropriate additive. In re-ductions using thioacetamide, adenine, and saturated alcohols including butan-2-01 and trifluoroethanol, for example, the stereochemistry of la-3a was generally shifted to the L-isomer.All of these additives can be classified as being L-selective (or L-directing). Since with ally1 alcohol, the stereochemistry was exclusively shifted to the D-isomer, this additive can be classified as being D-selective (or D-directing). Although the present stereochemical control system on IBY- mediated reductions in hexane has not been optimized these results indicate that the enantioselective reductions with bakers' yeast may be controlled in both aqueous and organic solvent systems (particularly in hexane), by using appropriate L-selective or D-selective additives. Experimental Immobilized bakers' yeast entrapped in calcium alginate beads, ca.1.5 mm diam., was prepared according to the procedure described previo~sly.~~ a,, Values were recorded in lo-' deg cm2 g-'. IBY Reduction qf 1-3 in the Presence of Adenine.-IBY prepared from free bakers' yeast (10 g) was added to a solution containing the appropriate keto ester, 1-3 (1 g), adenine (1 g) and hexane (200 cm3). Each mixture was shaken at 3amp;35 "Cfor a different period: 4 h for 1,52 h for 2 and 50 h for 3. The reaction J. CHEM. SOC. PERKIN TRANS. I 1992 mixture was then filtered, and IBY beads were well washed with water; the filtrate and washings were combined and extracted with diethyl ether. Work-up of the extract gave a crude product, which was purified by column chromatography (silica gel and hexane-ethyl acetate) and microvacuum distillation to yield a chiral hydroxy ester; 0.668 g of la, zh2 +5.22 (c 6.12, CHCI,), 0.223 g of 2a, Cali2 +20.64 (c 3.85, CHCI,) and 0.166 g of 3a, zh2 -11.91 (c 4.24, CHCI,), were obtained, respectively.Each hydroxy ester was fully characterized by IR and 'H NMR spectroscopy. References 1 P. Gramatica, Chim. Oggi, 1988, 17; S. Servi, Synthesis, 1990, 1. 2 T. Fujisawa, E. Kojima, T. Itoh and T. Sato, Chem. Left., 1985, 1751; A. Manzocchi, A. Fiecchi and E. Santaniello, J. Org. Chem., 1988,53, 4405. 3 T. Sakai, T. Nakamura, K. Fukuda, E. Amano, M. Utaka and A. Takeda, Bull. Chem. SOC. Jpn., 1986. 59, 3185; K. Nakamura, K. Inoue, K. Ushio, S. Oka and A. Ohno, J. Org. Chem., 1988,53,2589. 4 K. Nakamura, Y. Kawai, S. Oka and A. Ohno, Bull. Chem. SOC.Jpn., 1989, 62,875; K. Nakamura, Y. Kawai and A. Ohno, Tetrahedron Lett., 1990, 31, 267; K. Nakamura and A. Ohno, Yuki Gosei Kagaku Kyokaishi, 1991,49, 110. 5 (a) Y. Naoshima, 3. Maeda, Y. Munakata, T. Nishiyama, M. Kamezawa and H. Tachibana, J. Chem. Soc., Chem. Commun., 1990, 964; (b) Y. Naoshima, Y. Munakata, T. Nishiyama, J. Maeda, M. Kamezawa, T. Haramaki and H. Tachibana, World J. Microhiol. Biotechnol., 1991,7, 219. Paper 2/00191H Received 14th January 1992 Accepted 14th January 1992
机译:J. C'HFM SOC'。佩尔金译。I 1992 在己烷溶剂系统中用固定化面包酵母进行生物还原的对映选择性的控制 Yoshinobu Naoshima,“ Jusei Maeda 和 Yoshihito Munakata 冈山理科大学理学院生物化学系,I -I Ridai-cbo,Oka yama 700,Japan 己烷中固定化面包酵母对P-酮酯的对映选择性还原被乙酰胺等添加剂控制或改变, 或腺嘌呤,而不是葡萄糖。近年来,面包酵母已被用于对映选择性还原对羟基酮酯、酮酸或%$-不饱和羰基化合物。“已经采用了几种方法来控制水性面包酵母还原的立体化学,例如改变底物结构,”固定面包酵母“3或使用烯丙醇和金属盐等添加剂.4最近我们报告说,固定在海藻酸钙珠中的固定化面包酵母(IBY)在己烷和水系统中都起作用, 使用醇作为能源或添加剂,IBY介导的前者还原,其化学和光学产率与使用gl~cose的类似还原相似。 Me'SO,硫代乙酰胺或腺嘌呤,而不是葡萄糖。对于4-氯-3-氧代丁酸酯1,使用硫代乙酰胺、Me,SO和饱和醇(例如甲醇、丁-2-01和2,2,2-三氟乙醇I)对正己烷的每次还原,得到相应的手性羟基酯R(L)-la,其对映体纯度为21-43',,,.相反,对于烯丙醇和奎宁的类似还原 1,la 的立体化学在很大程度上转移到 D-异构体上,在前者添加剂存在下产生 55% ee 的 S(D)-la。使用硫代乙酰胺和腺嘌呤对酮酯 2 进行两次还原,均得到 S(L)- 2a,55“, ee,而 2 与烯丙醇 1 醇还原得到 R(~)-2a,64',, ee。也用饱和醇进行了类似的还原,并得到S(~)-2a与饱和醇和不饱和醇的对映体,Me,SO,硫代-R(L)-la S(~)-2a S (L)-3a t 1 2 3 1 S (D)-l a R (D)-2a R (D)-3a 方案1在IBY存在下反应,己烷和添加剂纯度为1846%。对于底物3,相对于使用葡萄糖进行还原而产生的产物(R)-3a,在几种添加剂(包括饱和醇)存在下还原而获得的产物(R)-3a的立体化学性质向L-异构体移动;相比之下,Me、SO和烯丙醇体系中的立体化学比葡萄糖体系中的立体化学更多地转移到D-异构体上(见表1)。DMSO和葡萄糖的组合是表1 固定化面包酵母还原酮酯1-3的对映选择性。“ la 2a 3a 添加剂 yc, 收率 % Ee Config.d 7;屈服:(,ee Config.d “/, 屈服7;Ee ' Config.d 甲醇 54 25 45 18 13 38 乙醇 64 21 35 41 10 62 丙-2-01 65 28 37 39 11 47 丁-!-01 70 30 10 33 5 46 丁烷-2-01 70 35 42 42 1 42 三氟乙醇 70 37 40 46 3 39 等 1 氯罗乙酰 56 26 4 51 3 -f Me,SO 37 32 26 10 8 78 硫代乙酰胺 52 43 21 55 腺嘌呤 66 23 22 55 16 51 MezSO + gluco~e“ 20 8 20 4 31 99 奎宁 51 36 39 -1 36 63 Ally1 醇 51 55 664 6 95 葡萄糖 34 4 45 23 35 67 无 30 35 30 22 10 64 ('反应在添加剂(I g)存在下进行。通过HPLC分析对来源于la [GL Science Lichrosorb SI-100,乙醚-己烷(1:20),1.0 cm3 min-',254 nm]的MTPA酯进行HPLC分析测定。通过HPLC分析衍生自2a和3a的苯甲酸酯[Daicel Chiralcel OB,丙-2-01-己烷(I:9),0.7cm3min-',220nm]测定。RS 和 DL 的立体化学名称都用于清楚地显示立体化学的方向。“ 使用Me,SO(10g)和葡萄糖(1g)。消 旋。令人满意的添加剂,对映体纯度。产品R(~)-3a达到>99%。有趣的是,这些对映选择性的变化程度因所涉及的酮酯而异,而选择性的方向可以通过选择合适的添加剂来控制。例如,在使用硫代乙酰胺、腺嘌呤和饱和醇(包括丁-2-01和三氟乙醇)的还原中,la-3a的立体化学通常转移到L-异构体上。由于使用ally1醇时,立体化学完全转移到D-异构体上,因此该添加剂可归类为D-选择性(或D-导向)。尽管目前对IBY介导的己烷还原的立体化学控制系统尚未得到优化,但这些结果表明,通过使用适当的L-选择性或D-选择性添加剂,可以在水性和有机溶剂体系(特别是己烷)中控制面包酵母的对映选择性还原。实验 固定化面包酵母包埋在海藻酸钙珠中,直径约1.5 mm,按照前述程序制备~sly.~~ [a],,值以lo-'deg cm2 g-'为单位记录。将由游离面包酵母(10g)制备的IBY还原qf 1-3加入到含有适当酮酯1-3(1g)、腺嘌呤(1g)和己烷(200cm3)的溶液中。将每种混合物在3&35“C下振荡不同的时间:4小时为1.52小时为2,50小时为3。反应 J. CHEM. SOC. PERKIN TRANS.然后过滤I 1992混合物,用水充分洗涤IBY微珠;将滤液与洗涤液合并,用乙醚萃取。提取液后处理得到粗品,经柱层析(硅胶和己烷-乙酸乙酯)和微真空蒸馏纯化,得手性羟基酯;分别得到0.668 g la, [z]h2 +5.22 (c 6.12, CHCI,)、0.223 g 2a, Cali2 +20.64 (c 3.85, CHCI,)和0.166 g 3a, [z]h2 -11.91 (c 4.24, CHCI,)。通过红外和'H NMR波谱对每种羟基酯进行了充分表征。参考文献 1 P. Gramatica, Chim.Oggi, 1988, 17;S. Servi, 综合, 1990, 1.2 T. Fujisawa, E. Kojima, T. Itoh and T. Sato, Chem. Left., 1985, 1751;A. Manzocchi、A. Fiecchi 和 E. Santaniello,J. Org. Chem.,1988,53,4405。3 T. Sakai、T. Nakamura、K. Fukuda、E. Amano、M. Utaka 和 A. Takeda,Bull。Chem. SOC. Jpn., 1986.59, 3185;K. Nakamura, K. Inoue, K. Ushio, S. Oka 和 A. Ohno, J. Org. Chem., 1988,53,2589.4 K. Nakamura、Y. Kawai、S. Oka 和 A. Ohno,公牛。Chem. SOC.Jpn., 1989, 62,875;K. Nakamura、Y. Kawai 和 A. Ohno,Tetrahedron Lett.,1990 年,31 页,267 页;K. Nakamura 和 A. Ohno,Yuki Gosei Kagaku Kyokaishi,1991,49,110。5 (a) Y. Naoshima, 3.Maeda, Y. Munakata, T. Nishiyama, M. Kamezawa and H. Tachibana, J. Chem. Soc., Chem. Commun., 1990, 964;(b) Y. Naoshima、Y. Munakata、T. Nishiyama、J. Maeda、M. Kamezawa、T. Haramaki 和 H. Tachibana, World J. Microhiol。生物技术, 1991,7, 219.论文 2/00191H 收稿日期 1992年1月14日 录用日期 1992年1月14日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号