首页> 外文期刊>The Journal of Chemical Physics >Atomistic description of molecular binding processes based on returning probability theory
【24h】

Atomistic description of molecular binding processes based on returning probability theory

机译:Atomistic description of molecular binding processes based on returning probability theory

获取原文
获取原文并翻译 | 示例
           

摘要

The efficiency of molecular binding such as host-guest binding is commonly evaluated in terms of kinetics, such as rate coefficients. In general, to compute the coefficient of the overall binding process, we need to consider both the diffusion of reactants and barrier crossing to reach the bound state. Here, we develop a methodology of quantifying the rate coefficient of binding based on molecular dynamics simulation and returning probability (RP) theory proposed by Kim and Lee [J. Chem. Phys. 131, 014503 (2009)]. RP theory provides a tractable formula of the rate coefficient in terms of the thermodynamic stability and kinetics of the intermediate state on a predefined reaction coordinate. In this study, the interaction energy between reactants is utilized as the reaction coordinate, enabling us to effectively describe the reactants' relative position and orientation on one-dimensional space. Application of this method to the host-guest binding systems, which consist of beta-cyclodextrin and small guest molecules, yields the rate coefficients consistent with the experimental results.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号