首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Naphtho1,2-bthiophen. Part 2. Substitution reactions of derivatives with one or more substituents in the thiophen ring and of the 4,5-di-hydro-derivative
【24h】

Naphtho1,2-bthiophen. Part 2. Substitution reactions of derivatives with one or more substituents in the thiophen ring and of the 4,5-di-hydro-derivative

机译:萘并1,2-b噻吩。第 2 部分。衍生物与噻吩环中一个或多个取代基的取代反应以及4,5-二氢衍生物的取代反应

获取原文
获取外文期刊封面目录资料

摘要

1977 63Naphthol,Z-blthiophen. Part 2.l Substitution Reactions of Derivativeswith One or More Substituents in the Thiophen Ring and of the 4,5-Di-hyd ro-derivat iveBy Kenneth Clarke," Derek N. Gregory, and Richard M. Scrowston, Department of Chemistry, The Uni-versity, Hull HU6 7RXAcetylation, formylation, and bromination of 2- or 3-methylnaphtho 1.2-61 thiophen and bromination of naphtho-1.2-bthiophen-3-carbaldehyde take place in the free thiophen position. Nitration of the 2-methyl compoundgives mainly the 5-nitro-derivative and 2-methyl-2-nitronaphthol,2-bthiophen-3(2H)-one; nitration of the3-methyl compound gives a mixture of the 2- and 5-nitro-derivatives. 2,3-Dimethylnaphtho1,2-6 thiophenundergoes bromination and acetylation in the 5-position. 4.5- Dihydronaphthol.2-6 thiophen undergoes mono-substitution in the 2-position ; attempted nitration of its 2-ethoxycarbonyl derivative gave mainly the aromatisedethyl naphthol,2-6 thiophen-2-carboxylate and its 7-nitro-derivative.SUBSTITUTED naphthol,2-blthiophens 2 9 3 and their 4,5-dihydro-derivatives 495 are being used increasingly asintermediates in the synthesis of biologically activemolecules.However, apart from our study1 of somesubstitution reactions of the parent molecule, thechemistry of naphtho 1,241 thiophen has not been exam-ined systematically. We therefore now describe someelectrophilic substitution reactions of naphtho1,2-b-thiophens containing one or more substituents in thethiophen ring, and of the 4,5-dihydro-derivatives (1) andVilsmeier-Haack formylation, Friedel-Crafts acetyl-ation, and monobromination of 3-methylnaphtho 1,241-(2) *Part 1, K.Clarke, D. N. Gregory, and R. M. Scrowston,0. Dann, G. Volz, E. Demant, W. Pfeifer, G. Bergen, H .B. P. Das, R. T. Cunningham, and D. W. Boykin, J .J.C.S. Perkin I, 1973, 2956.Fick, and E. Walkenhorst, Annulen, 1973, 1112.Medicin. Chem., 1973, 16, 1361.thiophen gave the appropriate substituted derivativein each case, for which the n.m.r. spectrum lacked a(1) X = H ( 3 )(2) X = CqEtquartet due to 2-H the n.m.r. spectrum of a 2-unsubsti-tuted S-methylnaphtho1,2-bthiophen shows a character-istic quartet ( J 2 . 5 ~ ~ ca. 1 Hz). These results were notA. Rosowsky, K. K. N. Chen, and M. Lin, J .Medicin.6 E. F. Elslager, P. Jacob, and L. M. Werbel. J. HeterocyclicChem., 1973, 16, 191.Chem., 1972, 9, 776J.C.S. Perkin Iunexpected, since the parent compound also undergoessubstitution in the 2-position.1 The fact that formyl-ation proceeded smoothly in the presence of phosphorylchloride and dimethylformamide illustrates the enhancedreactivity of the 3-methyl compound; naphtho 1,241-thiophen itself is formylated only in the presence of themore reactive N-rnethylformani1ide.l Nitration of 3-methylnaphthol,2-b thiophen in glacial acetic acid gavea mixture of the 2- (40) and 5-nitro-isomers (60).The 2-nitro-compound was too insoluble to allow asatisfactory n.m.r. spectrum to be obtained. However,it was successively reduced and acetylated, and thespectrum of the resulting acetamido-compound showedclearly the absence of a 2-H signal, As we have alreadyindicated,l the 4- and 5-H signals in the n.m.r.spectra ofnaphtho 1,241 thiophen derivatives are often not wellresolved, thus rendering it almost impossible to differen-tiate between a 4- or 5-substituent. However, advantagecould be taken of the nuclear Overhauser effect to iden-tify 5-substituted naphtholJ2-bthiophen derivatives.Thus, saturation of the 3-Me resonance from the majorisomer from the nitration reaction gives a 20 enhance-ment of the signal at 6 8.48; from the stereochemistry ofthe system, this signal can only be due to 4-H. Chemicalproof of the sfructure of the 5-nitro-compound camefrom its conversion by standard means into 5-bromo-3-rnethylnaphtholJ2-bthiophen; this could also be ob-tained unambiguously by cyclodehydration of (4-bromo-1 -naphthylthio) acetone.Dibromination of 3-methylnaphtho 1,241 thiophengave the 2,5-dibromo-derivative. Its structure followedfrom the observation that it could also be obtained bybromination of either 5-bromo-3-methyl- or 2-bromo-3-methyl-naphthol,2-b thiophen.Next we prepared 2-methylnaphthol,2-bthiophen,both by Huang-Minlon reduction of the correspondingaldehyde and, preferably, by reductive silylation 6 ofthe readily available 2-carboxylic acid in the presenceof trichlorosilane and triethylamine, followed by alkalinehydrolysis of the resulting trichloro- (2-napht ho 1,241 -thienylmethy1)silane.PreviouslyJ7 we had shown thatthe isomeric 2-met h ylnapht ho 2,l -b t hiop hen undergoessubstitution in the 5-positionJ rather than in the remain-ing free thiophen position. We suggested that thisbehaviour might be due to steric interaction between thel-position (corresponding to the 3-position in the 1,2-b-isomer) and the 9-position. Since a steric effect of thistype is not possible for the lJ2-b-isomer, we expectedthat the 3-position in 2-methylnaphtholJ2-b thiophenwould be activated towards electrophiles by the methylgroup (cf. the behaviour of 2-methylbenzobthiophenOur predictions were confirmed : bromination, acetyl-ation, and formylation of 2-methylnaphtholJ2-blthio-phen each gave a 3-substituted derivative, which lackedCf.R. A. Benkeser, K. M. Foley, J. M. Gaul, and G. S. Li, J .I. Clarke, G. Rawson, and R. M. Scrowston, J . Chem. Soc.B. Iddon and R. M. Scrowston, Adv. Heterocyclic Chem.,Amer. Chem. SOC., 1970, 92, 3232.( C ) , 1969, 1274.1970, 11, 177.a signal due to 3-H in its n.m.r. spectrum. When the2-methyl compound was treated with bromine (2 mol.equiv.) the second bromine atom entered the methylgroup. The resulting 3- bromo-2- bromomet hylnapht ho-1,2-bthiophen could not be obtained pure, probablybecause of the lability of the bromine atom in the side-chain. It was converted into the corresponding ethoxy-methyl compound merely by heating with ethanol.Nitration of 2-methylnaphthol,2-bthiophen gave amixture of seven components, from which 2-methyl-5-nitronaphthol,2-bthiophen ( 16y0) and 2-methyl-2-nitronaphtho 1,241 thiophen-3(2H)-one (3) (10) wereisolated ; surprisingly, no 3-nitro-compound was detected.An $so-nitration product analogous to the ketone (3)is also formed during the nitration of 2-bromo-3-methyl-benz~bjthiophen.~ Spectroscopic evidence for struc-ture (3) is cited in the Experimental section.Thestructure of the 5-nitro-compound did not follow im-mediately from its n.m.r. spectrum (cj. discussion above).However, by comparing the spectrum of 5-nitronaphtho-1,2-bthiophen with that of naphthol,2-bthiophenJ1Osubstituent chemical shifts for a 5-nitro-substituent inthe naphtholJ2-b thiophen nucleus could be calculated.When these values were added to the chemical shift ofeach proton in 2-methylnaphtho1,2-bjthiophen, theresulting calculated chemical shifts corresponded closelywith those observed for the product from the nitrationreaction.The structure was confirmed by convertingthe 5-nitro-compound into the corresponding 5-bromo-compound ; this was identical with a sample of 5-b1 omo-2-methylnaphtho1,2-bthiophen prepared unambigu-ously from the corresponding 2-carboxylic acid.We next prepared 2,3-dimethylnaphtho1,2-bthiophenby Huang-Minlon reduction of S-methylnaphthol,2-b-thiophen-2-carbaldehyde and established that it under-went bromination in the 5-position by demonstratingthat an identical product could be obtained by successivef ormylation and Huang-Minlon reduction of 5-bromo-3-methylnaphthol,2-bthiophen. Earlier workers l1 be-lieved that 2,3-dimethylnaphtho1,2-bthiophen under-went Friedel-Crafts acetylation in the 6-position.How-ever, such a result would not fit in with the pattern whichour work had indicated for the order of reactivity towardselectrophiles of the various positions in substitutednaphtholJ2-bthiophens (i.e. 2 3 5). We thereforeobtained the 5-carbonitrile from the 5-bromo-compound,treated it with methylmagnesium iodide, and confirmedthat the resulting ketone was indeed identical with theacetylation product.We have already shown1 that the presence of theelectron-withdrawing 2-ethoxycarbonyl substituent inthe naphtholJ2-bthiophen nucleus leads to electro-philic attack in the 5-position.We now wished toexamine the effect of an electron-withdrawing group* J. Cooper and R. M. Scrowston, J . Chsm. Soc. ( C ) , 1971,lo D. F. Ewing and -R. M. Scrowston, Org. Magnetic Resonance,l1 P. Cagniant, D. Cagniant, and P. Faller, Bull. SOC. chim.3052.1971, 3, 405.France, 1964, 17561977 65in the 3-position, and therefore brominated naphtho- 1,241 thiophen-3-carbaldehyde. The aldehyde was con-veniently obtained from the 3-bromomethyl compoundvia the Sommelet reaction. Bromination took placewith difficulty in the 2-position, thus illustrating againthe high reactivity of this position. The result wasunexpected, because the corresponding aldehyde in thenaphtho(2,l-blthiophen series is brominated in the5-position.Further, benzob thiophen-3-carbaldehyderesists bromination, even under forcing conditions,12 andis nitrated entirely in the benzenoid ring.13Finally, we obtained 4,5-dihydronaphtho 1,241 thio-phen from the readily available ester (2), in order tocompare its substitution reactions with those of naph-thol,2-b thiophen and those of 9,lO-dihydrophenan-threne. I t is believed l4 that the substitution patternsof fluorene, 9,1O-dihydrophenanthrene, and relatedcompounds are governed by the mesomeric interactionsof the two benzene rings, and that the alkyl chain simplymodifies these interactions by altering the angle betweenthe planes of the two aromatic nuclei which it links.Models show that the 4,5-bridge in the dihydro-com-pound (1) causes the two aryl groups to have roughly thesame spatial relationship as the two phenyl groups in9,lO-dihydrophenanthrene. It might be expected, there-fore, that 4,5-dihydronaphthol,2-bthiophen, like 9,lO-dihydrophenanthrene,l49l5 would undergo substitutionfirst in the 2-position, then in the 7-position.However,the possibility of the second substituent entering theremaining vacant position in the thiophen ring could notbe discounted.The results of bromination (bromine-acetic acid),iormylation, and monoacetylation reactions confirmedour predictions. Each reaction gave the appropriate2-substitu t ed 4,5-dihydronaph t ho 1,241 t hiophen, whichwas converted (see Experimental section) into 4,5-dihydronaphtho 1,241 thiophen-2-carboxylic acid inorder to confirm its structure.Treatment of thedihydro-compound (1) with N-bromosuccinimide gavemainly naphthol,2-bthiophen (6176) cf. the dehydro-genation (880/'0) of the ester (2) by N-bromosuccinimide l,together with starting material (15y0), 2-bromo-4,5-dihydronaphthol,2-bthiophen ( 14y0), and an unidenti-fied product (10). The acetylation reaction withacetyl chloride (1 mol. equiv.) gave the 2-acetyl compound(83) and a diacetyl derivative (16). When acetylchloride (2 mol. equiv.) was used the proportion of thelatter increased to 40 ; the n.m.r. spectrum showedclearly that the second acetyl group occupied either the7- or the 8-position, but no firm distinction was possible.However, we shall show that the ester (2) undergoessubstitution in the 7-position; by analogy, it seemslikely that the second acetyl group of the diacetyl com-pound occupies the 7-position.Further, 2-phenylthio-l2 Y . Matsuki and T.-C. Lee, J . Chem. SOC. Japan, 1966, 87,l3 G. C. Brophy, S. Sternhell, N. M. D. Brown, I. Brown, K. J.l4 P. B. D. de la Mare, E. A. Johnson, and J. S. Lomas, J.186.Armstrong, and M. Martin-Smith, J. Chem. SOC. { C ) , 1970, 933.Chem. SOC., 1963, 6973; 1964, 6317.phen, which is structurally analogous to the dihydro-naphthothiophen (1), undergoes substitution l6 first inthe thiophen ring, then in the para-position of the benzen-oid ring; the latter position corresponds to the 7-positionin the dihydro-compound (1).In common with thenitration reactions already described, the nitration of4,5-dihydronaphthol,2-bthiophen did not proceedsmoothly. Nitration with nitric acid under variousconditions or with copper(r1) nitrate in acetic anhydridegave a tar in each case, from which 4,5-dihydro-2-nitro-naphthol,2-bthiophen (ca. 10) could be isolated.Its structure was not immediately evident because therelevant peaks in the n.m.r. spectrum were unresolved.It was therefore aromatised with N-bromosuccinimide,to give 2-nitronaphthol,2-bthiophen which, becauseit was too insoluble for examination by n.m.r. spectro-scopy, was converted by the route already described intothe 2-acetamido-compound. An identical product wasobtained from the Beckmann rearrangement of 2-acetyl-naphthol,2-b thiopheii oxime.We next attempted to acetylate ethyl 4,5-dihydro-naphthothiophen-2-carboxylate (2) in the hope that thestructure of the product could be related to that of thediacetyl compound already described.However, undermild conditions no reaction was observed; under moreforcing conditions only intractable products wereobtained. We therefolle nitrated the ester (2) in orderto observe how the presence of an electron-withdrawinggroup in the 2-position affected the substitution patternof the dihydro-system (1). However, the major product(73) was ethyl naphtho 1,2-bthiophen-2-carboxylate,thus confirming our previous observation that the ester(2) is readily dehydrogenated. The other products wereethyl 7-nitronaphthol,2-b thiophen-2-carboxylate (9)and ethyl 4,5-dihydro-7-nitronaphthol,2-bthiophen-2-carboxylate (18).Only the former was obtainedpure, but the structural relationship between the twoproducts was evident from a spectroscopic examinationof the mixture and from the fact that the mixture wasconverted almost quantitatively into the former productby dehydrogenation. As before, the splitting patternin the n.m.r. spectrum of ethyl 7-nitronaphthol,2-b-thiophen-2-carboxylate was consistent with the presenceof either a 7- or an 8-substituent. However, the sub-stituent chemical shifts for the nitro-group in benzeneare well authenticated; l7 knowing the chemical shiftsfor 6-, 7-, 8-, and 9-H in ethyl naphthol,2-bthiophen-2-carboxylate (8 7.88, 7.58, 7.51, and 8.11, respectively),it is possible to predict the chemical shifts of the ABXsystem for both a 7- and an 8-nitro-substituent.Thecalculated 8 values for 6-, 8-, and 9-H in the 7-nitro-compound are 8.83 (8.85), 8.46 (8.38), and 8.28 (8.30),respectively; the observed values are quoted in paren-theses. For the 8-nitro-compound, the calculated 8l5 Cf. J. W. Krueger and E. Mosettig, J. Ovg. Chem., 1938, 3,340; N. P. Buu-Hoi, P. Mabille, and D.-C. Thang, Bult. SOC.chim. France, 1966, 1667.16 S. Gronowitz and N. Gjers, Acta Chey. Scand., 1967, 21, 2823.17 L. M. Jackman and S. Sternhell, Applications of NuclearMagnetic Resonance Spectroscopy in Organic Chemistry,' 2ndedn., Pergamon, Oxford, 1969, p. 20266 J.C.S.Perkin Ivalues are 8.05 (6-H), 8.53 (7-H), and 9.06 (9-H). Thesedata show that the nitro-compound is almost certainlythe 7-nitro-isomer. Ethyl naphtho 1,241 thiophen-2-carboxylate is nitrated in the 5-position,l so the 7-nitro-derivative just described must have been formed bynitration of the dihydro-compound (2), followed bydehydrogenation.We calculated electron densities and localisationenergies (cf. ref. 1) for each of the naphthol,2-bthiophenson which we had carried out substitution reactions;3-methyl-2-(o-tolyl) thiophen was used as a model forour calculations on 4,5-dihydronaphthol,2-b thiophen.Except for 2- and 3-methylnaphthol,2-b thiophen, therewas poor correlation between these values and the ob-served position of substitution, thus highlighting theinadequacies (cf.ref. 1) of LCAO-MO Hiickel calculationsas applied to polycyclic thiophen derivatives.EXPERIMENTALGeneral experimental details and general procedures forsubstitution reactions are described in Part 1 .l(4-Bromo- 1-naphthy2thio)acetone.-Prepared (6 1 yo) from4-bromonaphthalene-l-thiol la by the usual method (cf. ref.19), this was obtained as an oil, b.p. 180-186" a t 0.5 mmHg(Found: C, 52.7; H, 3.7; M+, 294/296. Cl,HllBrOSrequires C, 52.9; H, 3.75 ; M+, 294/296), v,,,. (film) 1 705cm-1 ( G O ) .3-Methy2naphtho1,2-bthiophen.-Treatment of (l-naph-thylthio) acetone with polyphosphoric acid a t 80-90 "Cfor 4 h gave a mixture (8 : l), b.p. 120-126" a t 0.2 mmHg,m.p. 62-68' (lit.,19 m.p.60.5-61.5"), of 3-methylnaphtho-l,Zbthiophen and 3-methylnaphthol,8-bcthiopyran.Fractional crystallisation from ethanol gave the former(39) as prisms, m.p. 76-77" (lit.,11 7 7 O ) , 6 2.46 (d, Me) and7.08 (4, 2-H, J 1.0 Hz). Attempted purification of thelatter via the picrate gave material of only 70 purity,6 2.84 (Me).Similar cyclisation of (4-bromo- l-naphthy1thio)acetonegave a homogeneous product, from which 5-bromo-3-methyl-nuphtho 1,2-bthioPhen (65) was obtained as needles, m.p.115.5-117deg; from ethanol (charcoal) (Found: C, 56.6;H, 3.5; M+, 276/278. Cl,HoBrS requires C, 56.35; H,3.25 ; M f 276/278), 6 2.33 (d, Me) and 7.02 (9, 2-H, J 0.8Hz).3-MethyZnaphtho 1,2-bthioPhen-2-carbaZdehyde.- 3-Meth-ylnaphtho 1,2-b thiophen was formylated with phosphorylchloride and dimethylformamide, to give the aldehyde (75),m.p.209-210" (prisms from ethanol) (Found: C, 74.5;H, 4.6; M , 226. C,,H,,OS requires C, 74.3; H, 4.45;M , 226), vmax. 1640 cm-l ( G O ) , 6 10.34 (CHO) (no 2-Hsignal).Obtained similarly from 5-bromo-3-methylnaphtho 1,241-thiophen, 5-bromo-3-methyZnaphthol,2-bthio~hen-2-carb-aldehyde (31) formed yellow prisms, m.p. 163-166' (fromethanol) (Found: C, 55.35; H, 3.0; M+, 304/306.Cl,HoBrOS requires C, 55.1; H, 2.95; M+, 304/306),vmx. 1665 cm-l (GO), 6 2.77 (s, Me), 8.08 (s, 4-H), and10.28 ( s , CHO).2-A cetyZ-3-methylnaphtho 1,2-bthiophen.- Friedel-Craftsacetylation of 3-methylnaphtho 1,2-b thiophen with acetylJ . E. Banfield, W.Davies, N. W. Gamble, and S. Middleton,J . Chem. SOC., 1956, 4791.chloride in methylene chloride gave prisms (70y0), m.p.138-139" (1it.,l1 141") (from ethanol), vmx. 1 640 cm-l (GO).The acetyl group was reduced by the Huang-Minlonmethod, to give 2-ethyZ-3-methylna$htho 1, 2-bIthiophen(55y0), m.p. 42-44" (prisms from ethanol) (Found: C,79.9; H, 6.4; M , 226. C15Hl,S requires C, 79.6; H,6.25 ; M , 226).Bromination of 3-Methylnaphtho 1,2-b thiophen .-Treat-ment with bromine (1 mol. equiv.) in carbon tetrachloridegave 2-bromo-3-methyZnuphtho 1,2-bthiophen (93) asneedles, m.p. 120-122" (from ethanol) (Found: C , 56.0;H, 3.4; M+, 276/278. Cl,H,BrS requires C, 56.3; H,3.25 ; M+, 276/278).Use of bromine (2.01 mol. equiv.) in boiling glacial aceticacid gave the 2,5-dibromo-com~ound (78y0), m.p.133-136"(needles from ethanol) (Found: C, 43.8; H, 2.6; M+,354/356/358. C,,H,Br,S requires C , 43.85; H, 2.3; Mf,354/356/358), 6 2.35 (Me) and 7.87 (4-H). The same productwas obtained (70 and SOY0, respectively) by treatment ofeither 5-bromo-3-methyl- or 2-bromo-3-methyl-naphtho-1,2-bthiophen with bromine (1 mol. equiv.) in acetic acid.Nitration of 3-MethyZnaphtho 1,2-bthiophen.-Nitrationin acetic acid gave a mixture of two components 3 : 2 (g.l.c.)from which 3-methyZ-2-nitronaphtho 1,ZbIthiophen (theminor component) was obtained by several recrystallis-ations from ethanol. It formed yellow feathers, m.p.245-248" (Found: C, 63.7; H, 3.95; N, 6.0; M , 243.Cl,H9N0,S requires C, 64.15; H, 3.75; N, 5.75; M , 243).The 5-nitro-isomer was obtained from the mother liquors aspale red needles, m.p.154.5-155.5" (from light petroleum)(Found: C, 64.05; H, 3.6; N, 5.7; M , 243), 6 2.51 (d,Me), 7.24 (q, 2-H, J 1.0 Hz), and 8.48 (s, 4-H).The 2-nitro-compound was reduced with Raney nickel andhydrazine hydrate by the method used for 5-nitronaphtho-1,2-bthiophen.l The resulting amine was acetylated withacetic anhydride in pyridine, to give 2-acetamido-3-methyl-naphthol,2-bthiophen (87y0), m.p. 222-223.5' (from eth-anol) (Found: C, 70.6; H, 5.0; N, 5.25; M , 255.C15Hl,NOS requires C , 70.55; H, 5.15; N, 5.5; M , 255).Similar reduction of the 5-nitro-isomer gave the corres-ponding $mine, the hydrochloride of which had m.p.230-233" (from ethanol). The diazotised amine was treatedwith copper(1) bromide in hydrobromic acid,20 t o give5-bromo-3-methylnaphtho 1,2-b thiophen, m.p. and mixedm.p. 115-1 17".2-Methylnaphtho 1,2-bthiophen.-A mixture of naphtho-1,2-bthiophen-2-carboxylic acid l (4.56 g, 0.02 mol),trichlorosilane (1 6.3 g, 0.12 mol) , and dry acetonitrile (40 ml)was heated under reflux for 1 h. The cooled solution wasthen treated dropwise with triethylamine (5.75 g, 0.057 mol)a t such a rate that the temperature did not exceed 15 "C,and heated under reflux overnight. Ether (150 ml) wasadded to the cooled solution to precipitate the amine hydro-chloride, then the filtered solution was evaporated underreduced pressure.The residual oil was boiled with meth-anol (10 ml) for 1 h, then the mixture was heated underreflux overnight with potassium hydroxide (1 1 g) in methanol(20 ml) and water (5 ml), and poured into water. Extrac-tion with ether gave the product as a pale yellow oil (3.15 g,79), b.p. 108-115" at 0.1 mmHg (Iit.,l 110-118" a t 0.1mmHg).lo W. Knapp, Monatsh., 1932, 60, 189.2o A. I. Vogel, 'A Text-book of Practical Organic Chemistry,'3rd edn., Longmans, London, 1956, p. 6021977 67Obtained similarly, 5-bromo-2-methyZna~htho 1,2-bthio-phen (48) formed needles, m.p. 90-90.5" (from ethanol)(Found: C, 56.55; H, 3.7; M+, 276/278. C,,H,BrSrequires C, 56.35; H, 3.25; Mf, 276/278), 6 2.60 (d, Me)and 6.96 (q, 3-H, J 1.0 Hz).Substitution Reactions of 2-MethyZnaphtho lJ2-bthiophen.-(a) Formylation.Use of phosphoryl chloride and N-methylformanilide gave 2-methyZnaphtho1,2-bthiophen-3-curbaldehyde (53) as off-white needles, m.p. 133.6135"(from ethanol) (Found: C, 74.4; H, 4.4; MI 226), vmx.1 665 cm-l (C=O), 6 10.01 (s, CHO).(b) A cetylation. 3-A cetyZ-2-methyZnaphtho 1,2-bthiophen(83) was obtained as prisms, m.p. 81-83" (from ethanol)(Found: C, 74.8; H, 4.9; M , 240. C,,H,,OS requiresC, 74.95; H, 5.05; M , 240), vmax. 1 665 cm-l (GO).(c) Brovninution. Use of bromine (1 mol. equiv.) incarbon tetrachloride gave 3-bromo-2-methyZnu~hthol,2-b-thiophen (72) as needles, m.p. 98-100" (from ethanol)(Found: C, 56.0; H, 3.25; M+, 276/278).Use of bromine (2 mol. equiv.) in boiling acetic acid gave3-bromo-2-bromomethylnaphtho 1,2-bthiophen as an oil(Found: M+, 354/356/358), 6 4.68 (s, 2 H, CH,Br).Boilingthe crude product with ethanol gave 3-bromo-2-ethoxy-methyZna~htho1,2-bthiophen (31 overall) as needles, m.p.65-67' (from ethanol) (Found: Mf, 319.9861. C15H13-7QBrOS requires M, 319.9870), 6 3.93 (9, O*CH,Me) and4.37 (s, ArCH,-0).The mixture obtainedby carrying out the nitration reaction in acetic acid waschromatographed on silica gel. Elution with benzene gave2-methyZ-5-nitronuphtho1,2-bthiophen ( 16y0), m.p. 156-157" (yellow needles from ethanol) (Found: C, 64.5; H,(d) Nitration (with G. RAWSON).3.95; N, 5.7; M , 243), 6 7.13 (7.16) (3-H), 7.61 (7.59)(7-H), 7.63 (7.67) (8-H), 8.05 (8.16) (6-H), 8.43 (8.43) (4-H),and 8.59 (8.56) (9-H); calculated chemical shifts (see text)are given in parentheses.The nitro-compound was con-verted as before into 5-bromo-2-methylnaphtho 1,241-thiophen, identical with authentic material.Chromatography of the nitration product on alumina(grade 11) and elution with benzene gave first a brown oil,then a yellow oil. The latter solidified on trituration withhexane-chloroform (1 : l), to give 2-methyl-2-nitronaphtho-1,2-bthiophen-3(2H)-one (3) (10) as yellow prisms,m.p. 139-141" (from ethanol) (Found: M+, 259.0328.C,,H,NO,S requires M , 259.0303), vmax 1702 (GO), 1335,and 1465 cm-l (NO,), 6 2.26 (s, Me).2, 3-Dimethylnaphtho 1,2-bthiophen.-Obtained (70) byHuang-Minlon reduction (cf. ref. 1) of 3-methylnaphtho-1,2-bthiophen-2-carbaldehyde, this had m.p.100.5-102.5" (lit.,,, 108.5-109.5") (from ethanol), 6 2.44 and 2.51(2 x Me).5-Bromo-2,3-dimethyZnaphtho 1, 2-bthiophen, obtainedsimilarly by reduction of the appropriate 2-carbaldehydeformed prisms (68), m.p. 98-99.5" (from ethanol) (Found:C, 57.9; H, 4.0; M+, 290/292. C1,H,,BrS requires C,57.75; H, 3.8; M , 290/292), 6 2.25 and 2.47 (2 x Me)and 7.86 (4-H). The same bromo-compound was obtained(62) by treatment of 2,3-dimethylnaphtho 1,2-b thiophenwith bromine (1 mol. equiv.) in carbon tetrachloride.5-AcetyZ-2, S-dimethyZnaphtho 1,2-bthiophen.-(a) A stir-red mixture of the foregoing bromo-compound (0.25 g),copper(1) cyanide (0.1 g), and quinoline (10 ml) was heatedunder reflux for 2 h, then cooled and poured into an excessof dilute hydrochloric acid.Extraction with chloroformgave a green oil which was filtered in benzene throughalumina, to give 2,3-dimethyZnaphtho 1,2-bthiophen-5-cur-bonitrile (0.16 g, 78) as needles, m.p. 140-142" (frombenzene-light petroleum) (Found: C, 75.95; H, 4.5; N,5.9; M , 237. C,,H,,NS requires C, 75.9; H, 4.65;N, 5.9 ; M , 237), v,, 2 225 cm-l ( E N ) .(b) A solution of the 5-carbonitrile (0.5 g) in ether (20 ml)was added dropwise during 15 min t o a stirred solution ofmethylmagnesium iodide from magnesium (0.1 g) in ether(10 ml). The mixture was kept at 0 "C overnight, thenpoured into ice and concentrated hydrochloric acid. Ex-traction with ether gave the ketone (0.3 g, 56y0), m..p.117-119" (1it.,l1 116-117") (from ethanol), identical withthe product obtained by Friedel-Crafts acetylation of 2,3-dimethylnaphthol, 2-blthiophen.Nuphthol,2-bthiophen-3-carbuZdehyde.-(a) Brominationof 3-methylnaphtho 1,241 thiophen with freshly recrystal-lised N-bromosuccinimide in the usual way gave 3-bromo-methylnaphthol,2-bthiophen (71) as needles, m.p.85-87' (from light petroleum), M+ 276/278, 6 4.65 (CH,Br).(b) A solution of the bromomethyl compound (8.0 g) indry chloroform (40 ml) was added slowly t o a boiling solutionof hexamethylenetetramine (4.0 g) in chloroform (30 ml).The mixture was heated under reflux for 3 h, then cooledand filtered. The hexamine salt was washed light petrol-eum (b.p. 40-60') and dried, then heated under reflux for3 h with aqueous 50 acetic acid (35 ml).Water (30 ml)and concentrated hydrochloric acid (7 ml) were added, thenthe mixture was boiled for 5 min and kept a t 0 "C overnight.The precipitate was filtered off and crystallised from aqueousethanol, to give yellow prisms (3.8 g, 62), m.p. 81.5-83'(Found: C, 73.3; H, 3.8; M , 212. C,,H,OS requiresC, 73.55; H, 3.8 : M , 212), vmaX. 1 675 cm-l (CEO), 6 10.15(s, CHO).2-Bromonaphtho 1,2-b thiophen-3-cavbddehyde .-The fore-going aldehyde was brominated in chloroform for 9 h at40 'C, t o give needles (51), m.p. 139-142" (from ethanol-water) (Found: C, 53.6; H, 2.5 ; M+, 290/292. C,,H,Br-0s requires C, 53.6; H, 2.4 ; M , 290/292), vmx, 1 675 cm-l(GO), 6 7.87 (d, 5-H), 8.38 (d, 4-H, J 8.6 Hz), and 10.13 (s,CHO) (no 2-H signal).4,5-Dihydronaphtho 1,2-bthiophen (1) .-Hydrolysis of theester (2) with ethanolic sodium hydroxide gave 4,5-dihydro-naphtho1,2-bthiophen-2-carboxyZic; acid (99) as prisms,m.p.199-200" (from ethanol) (Found: C, 68.0; H, 4.5 ;M , 230. C1,HloO,S requires C, 67.8; H, 4.4; M , 230),vmax. 1 660 cm-l (GO). This was decarboxylated withcopper in quinoline at 210 'C (cf. Part 1 I), to give an oiZ(87y0), b.p. 97-106' a t 0.1 mmHg (Found: C, 77.5; H,5.4; M , 186. C,,HloS requires C, 77.35; H, 5.4; M ,186), 6 2.80 (m, CH,*CH,).Bromination of 4,5-Dihydrona~hthol,2-bthiophen (1) .-(a) Use of N-bromosuccinimide under the conditions alreadydescribed gave the results indicated in the text.(b) Use of bromine (1 mol.equiv.) in glacial acetic acid inthe presence of an iron catalyst gave a dark residue whichwas distilled under nitrogen, to give the 2-bromo-compound(81) as an unstable, pale green oil, b.p. 114-116' at 0.1mmHg (Found: M+, 264/266. C,,H,BrS requires M ,The bromo-compound was heated with copper(1) cyanidein quinoline under the conditions already described, t o give4,5-dihydrona~htho1,2-bthiophen-2-carbonitriZe (75) as adark red oil, b.p. 176-178" a t 1.0 mmHg (Found: C, 73.4;H, 4.35; N, 6.8; M , 211. C,,HQNS requires C, 73.9;H, 4.3; N, 6.65; M , 211), vmx. 2 210 cm-l (C-").264/266), 6 6.72 (s, 3-H)68 J.C.S. Perkin IThe nitrile was hydrolysed with sodium hydroxide inethanol-water (1 : l), to give 4,5-dihydronaphtholJ2-b-thiophen-2-carboxylic acid (73 ), identical with authenticmaterial.4,5-Dihydro-2-nitronaphtho 1,2-b thiophen.--Nitration ofthe dihydro-compound (1) in acetic acid gave an oily mixture(1 : 2) of starting material and the 2-nitro-compound (g.1.c.).Chromatography on silica gel and elution with benzenegave the nitro-compound as the slower running component.It formed yellow prisms (12), m.p.117-119' (fromethanol) (charcoal) (Found: C, 62.45; H, 3.65; N, 6.25;M , 231. C12H,N02S requires C, 62.3; H, 3.9; N, 6.05;M , 231), 6 2.92-2.98 (m, CH,*CH2).Nitration with nitric acid in AcOH-Ac,O a t 0 "C or withcopper(I1) nitrate in Ac20 at 40 "C gave similar mixtures ofproducts, admixed with tarry material.Identification of 4,5-Dihydro-2-nitronaphtho lJ2-bthiophen.-(a) 2-Acetamidonaphtho 1,2-bthiophen. Powdered phos-phorus pentachloride (0.5 g) was added in portions to astirred solution of 2-acetylnaphtho 1,241thiophen oxime(0.5 g) in dry ether (100 ml).The resulting solution waskept a t room temperature for 3 h, then it was washed (H20and ~ M - N ~ O H ) , dried, and evaporated. The residue formedwhite needles (0.3 g, 60), m.p. 194-195.5' (from benzene)(charcoal) (Found: C, 69.6; H, 4.7; N, 5.8; M , 241.C,,H,,NOS requires C, 69.7; H, 4.6; N, 5.8; M , 241),vmaX 1 650 ( G O ) and 3 240 (NH) cm-l.(b) 2-Nitronaphtho 1,2-bthiophen. The 4,5-dihydro-2-nitro-compound was aromatised with N-bromosuccinimideby the method described in Part 1,l to give brownneedles (Six), m.p.161.5-163.5" (from ethanol) (Found:C, 62.5; H, 3.1; N, 5.9; M , 229. C,,H,NO,S requiresC, 62.85; H, 3.1; N, 6.1; M , 229), i.r. spectrum wasidentical with that of the minor product from the nitrationof naphthol,2-bthiophen.(c) Reductive acetylation of 2-nitronaphtho 1,2-bthiophen.A solution of the nitro-compound (0.1 g) in glacial aceticacid (30 ml) and acetic anhydride (1 ml) was shaken over-night with hydrogen in the presence of Adams catalyst (30mg), then filtered. The filtrate was poured into water andneutralised with sodium hydrogen carbonate. Extractionwith ether gave the 2-acetamido-compound (0.04 g, 38),m.p. 192-194", identical with that obtained in (a).FriedeGCrafts Acetylation of 4,5-Dihydronaphtho 1,2-b-thiophen.-Use of acetyl chloride (1 mol.equiv.) gave amixture of mono- and di-acetyl compounds (5 : 1) (g.l.c.),which was resolved by chromatography on silica gel andelution with chloroform. The 2-acetyl compound, elutedfirst, formed long yellow needles, m.p. 112-115" (fromethanol) (Found: C, 73.45; H, 5.4; M , 228. C,,H,,OSrequires C, 73.65; H, 5.3: M , 228), vmax. 1 640 cm-l (GO),6 2.54 (s, Ac) and 2.90 (m, CH,CH,).Continued elution gave the 2,7-diacetyl compound, whichcrystallised from ethanol as pale yellow needles, m.p. 141-143.5" (Found: C, 70.8; H, 5.25; M , 270. C,,H,,O,Srequires C, 71.1; H, 5;2; M , 270), vmx. 1650 and 1 670cm-l (CSO), 6(C,D,) 2.10 and 2.17 (s, 2 x Ac), 2.30-2.57(m, CH,CH,), 7.01 (s, 3-H), 7.19 (dd, 9-H), 7.52 (dd, 8-H),and 7.66 (dd, 6-H) (JS,* 8.5, J6.8 1.5, J6.9 0.5 Hz).Thediacetyl compound was obtained in 40 yield when acetylchloride (2 mol. equiv.) was used for the acetylation.Oxidation of the 2-acetyl compound with sodium hypo-iodite in dioxan gave 4,5-dihydronaphtho 1,241 thiophen-2-carboxylic acid (68) , identical with authentic material.4,5-Dihydronaphtho 1,2-bthioPhen-2-carbaZdehyde.-Form-ylation of the dihydro-compound (1) with phosphorylchloride and dimethylformamide gave a pale yellow oil(70), b.p. 138-142' a t 0.1 mmHg (Found: C, 72.7; H,4.9; M , 214. C,,H,,OS requires C, 72.85; H, 4.7;M , 214), vmx. 1660 cm-l (GO), 6 2.82-2.97 (ma CH,*CH2)and 9.82 (s, CHO).It was oxidised by silver oxide (cf. ref. 1) to the corres-ponding 2-carboxylic acid (70), identical with authentic 1material.Nitration of Ethyl 4,5-Dihydronaphtho 1,2-bthiophen-2-carboxylate (2) --Nitration of the ester (2) in boiling glacialacetic acid for 1 h gave a solid product which containedthree components ( 8 : 2 : 1) (g.1.c.). Chromatography onsilica gel and elution with benzene gave first the majorcomponent, ethyl naphtho 1,241 thiophen-2-carboxylate,m.p. and mixed m.p. 86-88' (lit.,l 87-88") (from ethanol).Continued elution gave a crystalline mixture (1 : 2) of ethyl7-nitronaphtho 1,241 thiophen-2-carboxylate and the cor-responding 4,5-dihydro-compound. Recrystallisation fromethanol gave the former as yellow needles, m.p. 194-195.5'(from ethanol), M+ 301, v,, 1 715 cm-l ( G O ) ; see Discus-sion for details of the n.m.r. spectrum. The mixture of the7-nitro-compound and its 4,bdihydro-derivative wasconverted entirely into the former by heating i t withN-bromosuccinimide in carbon tetrachloride for 1 h.We thank the S.R.C. for a research studentship (toD. N. G.). We are grateful to F. Brown, G. Collier,A. D. Roberts, and Dr. D. F. Ewing for obtaining physicaldata.6/1053 Received, 3rd June, 1976
机译:1977 63萘[l,Z-苯噻吩.第 2 部分 l 衍生物与噻吩环和 4,5-二氢衍生物中的一个或多个取代基的取代反应作者:Kenneth Clarke,“Derek N. Gregory 和 Richard M. Scrowston,大学化学系,赫尔 HU6 7RX2-或 3-甲基萘 [1.2-61 噻吩的乙酰化、甲酰化和溴化以及萘-[1.2-b]噻吩-3-甲醛的溴化发生在游离噻吩位置。2-甲基化合物的硝化反应主要得到5-硝基衍生物和2-甲基-2-硝基萘并[l,2-b]噻吩-3(2H)-酮;3-甲基化合物的硝化得到2-和5-硝基衍生物的混合物。2,3-二甲基萘并[1,2-6]噻吩在5位发生溴化和乙酰化。4.5-二氢萘并[l.2-6]噻吩在2位发生单取代;尝试将其2-乙氧羰基衍生物硝化,主要得到芳构化的萘并[L,2-6]噻吩-2-羧酸乙酯及其7-硝基衍生物。取代的萘[l,2-苯硫酚2,9,3及其4,5-二氢衍生物495越来越多地被用作生物活性分子合成的中间体。然而,除了我们对母体分子的一些取代反应的研究1外,萘酚[ 1,241噻吩的化学性质尚未得到系统的检查。因此,我们现在描述了噻吩环中含有一个或多个取代基的萘并[1,2-b]-噻吩以及 4,5-二氢衍生物 (1) 和 Vilsmeier-Haack 甲酰化、Friedel-Crafts 乙酰化和 3-甲基萘的单溴化的一些亲电取代反应[ 1,241-(2) *第 1 部分,K.Clarke、D. N. Gregory 和 R. M. Scrowston,0。Dann, G. Volz, E. Demant, W. Pfeifer, G. Bergen, H .B. P. Das, R. T. Cunningham, and D. W. Boykin, J .J.C.S. Perkin I, 1973, 2956.Fick, and E. Walkenhorst, Annulen, 1973, 1112.Medicin.Chem., 1973, 16, 1361.噻吩在每种情况下都给出了适当的取代衍生物%,其中n.m.r.谱由于2-H而缺乏a(1)X = H(3)(2)X = CqEtquartet[2-unsubsti-tuted S-methylnaphtho[1,2-b]thiophen的n.m.r.谱显示出一个特征四重奏(J 2 . 5 ~ ~ ca. 1 Hz)]。这些结果不是A。Rosowsky, K. K. N. Chen, 和 M. Lin, J .Medicin.6 E. F. Elslager、P. Jacob 和 L. M. Werbel。J. HeterocyclicChem., 1973, 16, 191.Chem., 1972, 9, 776J.C.S. Perkin 出乎意料,因为母体化合物也在 2 位发生取代.1 甲酰基化在磷酰氯和二甲基甲酰胺存在下顺利进行的事实说明了 3-甲基化合物的增强反应性;萘[ 1,241-噻吩本身仅在反应性更强的N-rnethylformani1ide存在下被甲酰化。l 3-甲基萘并[l,2-b]噻吩在冰醋酸中的硝化反应得到2-(40%)和5-硝基异构体(60%)的混合物。2-硝基化合物太不溶,无法获得令人满意的n.m.r.谱图。然而,它被连续还原和乙酰化,并且所得对乙酰氨基化合物的光谱清楚地表明没有 2-H 信号,正如我们已经指出的那样,l 萘的 n.m.r.谱图中的 4- 和 5-H 信号[ 1,241 噻吩衍生物通常不能很好地解析,因此几乎不可能区分 4 或 5 取代基。然而,可以利用核Overhauser效应来识别5-取代的萘并[lJ2-b]噻吩衍生物。因此,来自硝化反应的主要异构体的 3-Me 共振饱和,使 6 8.48 处的信号增强 20%;从系统的立体化学来看,该信号只能归因于4-H。 5-硝基化合物的化学证明来自它通过标准方法转化为5-溴-3-rn乙基萘并[lJ2-b]噻吩;这也可以通过(4-溴-1-萘硫基)丙酮的环脱水明确获得。3-甲基萘[1,241噻吩的二溴化得到2,5-二溴衍生物。其结构源于观察,即它也可以通过5-溴-3-甲基或2-溴-3-甲基-萘并[l,2-b]噻吩的溴化获得。接下来,我们制备了2-甲基萘并[l,2-b]噻吩,既通过Huang-Minlon还原相应的醛,又优选地,在三氯硅烷和三乙胺存在下,通过易得的2-羧酸的还原硅烷化6,然后碱性水解得到的三氯-(2-萘醚[1,241-噻吩基甲基1)硅烷。在J7之前,我们已经证明,异构体2-met h ylnapht ho [ 2,l -b] t hiop hen在5-位J而不是在剩余的游离噻吩位上发生取代。我们认为这种行为可能是由于 l-位(对应于 [1,2-b]-异构体中的 3 位)和 9-位之间的空间相互作用。由于 [lJ2-b]-异构体不可能产生这种类型的空间效应,我们预计 2-甲基萘并[lJ2-b]噻吩中的 3 位将被甲基活化为亲电试剂(参见 2-甲基苯并[b]噻吩的行为我们的预测得到了证实:2-甲基萘[lJ2-苯硫基-苯酚的溴化、乙酰化和甲酰化分别给出了 3-取代的衍生物,该衍生物缺乏Cf.R. A. Benkeser, K. M. Foley, J. M. Gaul, 和 G. S. Li, J .我3>5)中不同位置的亲电试剂的反应顺序。因此,我们从5-溴化合物中制得了5-甲腈,并用甲基碘化镁处理,并确认所得酮确实与乙酰化产物相同。我们已经证明1,萘并[lJ2-b]噻吩核中吸电子的2-乙氧羰基取代基的存在导致5位的亲电攻击。我们现在希望研究吸电子基团的影响* J. Cooper 和 R. M. Scrowston, J .Chsm. Soc. ( C ) , 1971,lo D. F. Ewing and -R. M. Scrowston, Org.磁共振,l1 P. Cagniant、D. Cagniant 和 P. Faller,Bull。SOC.chim.3052.1971,3,405.France,1964,17561977 65在3位,因此溴化萘-[1,241噻吩-3-甲醛。醛是通过Sommelet反应方便地从3-溴甲基化合物中获得的。溴化在2位上发生困难,从而再次说明了该位的高反应性。结果是出乎意料的,因为thenaphtho(2,l-blthiophen系列中相应的醛在5-位被溴化。此外,苯并[b]噻吩-3-甲醛即使在强迫条件下也能抵抗溴化,12并且在苯环中完全硝化.13最后,我们从现成的酯(2)中得到了4,5-二氢萘[1,241噻吩,以便将其取代反应与萘-钊[l,2-b]噻吩和9,lO-二氢苯那-苏烯的取代反应进行比较。I t 认为 l4 芴、9,1O-二氢菲和相关化合物的取代模式受两个苯环的介构相互作用的控制,并且烷基链通过改变它连接的两个芳香族核平面之间的角度来简单地修饰这些相互作用。模型表明,二氢-com-pound(1)中的4,5-桥使两个芳基与9,lO-二氢菲中的两个苯基具有大致相同的空间关系。因此,可以预期,4,5-二氢萘并[l,2-b]噻吩,如9,lO-二氢菲,l49l5将首先在2位发生取代,然后在7位发生取代。然而,第二取代基进入噻吩环中剩余空位的可能性不容小觑。溴化(溴-乙酸)、碘乙酰化和单乙酰化反应的结果证实了我们的预测。每次反应得到适当的2-取代基4,5-二氢萘[1,241吨噻吩,将其转化为4,5-二氢萘[1,241-噻吩-2-羧酸,以确认其结构。用N-溴琥珀酰亚胺处理二氢化合物(1),主要得到萘并[l,2-b]噻吩(6176)[参见N-溴琥珀酰亚胺l]的酯(2)的脱氢(880/'0)),以及起始原料(15y0),2-溴-4,5-二氢萘并[l,2-b]噻吩(14y0)和未识别产物(10%)。与乙酰氯(1摩尔当量)的乙酰化反应得到2-乙酰基化合物(83%)和二乙酰衍生物(16%)。当使用乙酰氯(2摩尔当量)时,后者的比例增加到40%;N.M.R. 谱清楚地表明,第二个乙酰基团占据了 7 位或 8 位,但无法明确区分。然而,我们将证明酯 (2) 在 7 位发生取代;以此类推,二乙酰 Com-Pound 的第二个乙酰基似乎占据了 7 位。此外,2-苯硫基-l2 Y .Matsuki 和 T.-C.李 J .Chem. SOC. Japan, 1966, 87,l3 G. C. Brophy, S. Sternhell, N. M. D. Brown, I. Brown, K. J.l4 P. B. D. de la Mare, E. A. Johnson, and J. S. Lomas, J.186.Armstrong, and M. Martin-Smith, J. Chem. SOC. { C ) , 1970, 933.Chem. SOC., 1963, 6973;1964, 6317.phen 在结构上类似于二氢萘噻吩 (1),首先在噻吩环中发生取代 L6,然后在苯环的对位发生取代;后一个位置对应于二氢化合物 (1) 中的 7 位。与已经描述的硝化反应一样,4,5-二氢萘并[l,2-b]噻吩的硝化过程并不顺利。在各种条件下用硝酸或在醋酸酐中用硝酸铜(r1)硝化得到焦油,从中可以分离出4,5-二氢-2-硝基萘并[l,2-b]噻吩(约10%)。它的结构不是很明显的,因为n.m.r.谱中的相关峰尚未解析。因此,用N-溴琥珀酰亚胺芳构化,得到2-硝基萘并[l,2-b]噻吩,由于它太不溶而无法通过n.m.r.光谱进行检查,因此通过已经描述的路线转化为2-乙酰氨基化合物。从2-乙酰基-萘并[l,2-b]硫代肟的贝克曼重排得到相同的产物。接下来,我们尝试乙酰化4,5-二氢萘噻吩-2-羧酸乙酯(2),希望产物的结构可以与已经描述的二乙酰化合物的结构相关。然而,在温和条件下没有观察到反应;在更强的条件下,只得到难处理的产物。我们随后对酯 (2) 进行了硝化,以观察 2 位吸电子基团的存在如何影响二氢体系 (1) 的取代模式。然而,主要产物(73%)是萘并[1,2-b]噻吩-2-羧酸乙酯,从而证实了我们之前的观察,即酯(2)容易脱氢。其他产品为7-硝基萘并[l,2-b]噻吩-2-羧酸乙酯(9%)和4,5-二氢-7-硝基萘并[l,2-b]噻吩-2-羧酸乙酯(18%)。只有前者是纯的,但从混合物的光谱检查以及混合物通过脱氢几乎定量转化为前者产物这一事实中可以明显看出两种产物之间的结构关系。如前所述,7-硝基萘并[l,2-b]-噻吩-2-羧酸乙酯的n.m.r.谱图中的分裂模式与7-或8-取代基的存在一致。然而,苯中硝基的取代基化学位移得到了很好的验证;l7 知道萘并[l,2-b]噻吩-2-羧酸乙酯(分别为8 7.88、7.58、7.51和8.11)中6-H、7-、8-和9-H的化学位移,可以预测ABX系统对7-硝基和8-硝基取代基的化学位移。7-硝基化合物中6-H、8-H和9-H的8个值分别为8.83(8.85)、8.46(8.38)和8.28(8.30);观察到的值在 Paren-Theses 中引用。对于 8-硝基化合物,计算出的 8l5 参见 J. W. Krueger 和 E. Mosettig, J. Ovg.化学, 1938, 3,340;N. P. Buu-Hoi、P. Mabille 和 D.-C.唐,布尔特。法国, 1966, 1667.16 S. Gronowitz and N. Gjers, Acta Chey.Scand., 1967, 21, 2823.17 L. M. Jackman 和 S. Sternhell, Applications of NuclearMagnetic Resonance Spectroscopy in Organic Chemistry, ' 2ndedn., Pergamon, Oxford, 1969, p. 20266 J.C.S.Perkin I值为 8.05 (6-H)、8.53 (7-H) 和 9.06 (9-H)。这些数据表明,硝基化合物几乎可以肯定是7-硝基异构体。萘甲[1,241-噻吩-2-羧酸乙酯在5-位硝化,l因此刚才描述的7-硝基衍生物一定是由二氢化合物(2)的硝化形成的,然后是脱氢。我们计算了电子密度和局部能量(参见参考文献)。1)对于我们进行取代反应的每个萘并[L,2-b]噻吩;3-甲基-2-(邻甲苯基)噻吩被用作4,5-二氢萘并[L,2-b]噻吩计算的模型。除2-和3-甲基萘并[l,2-b]噻吩外,这些值与观察到的取代位置之间的相关性较差,从而突出了应用于多环噻吩衍生物的LCAO-MO Hiikel计算的不足之处(参见参考文献1)。实验第1部分描述了取代反应的一般实验细节和一般程序.l(4-溴-1-萘2硫代)丙酮.-通过通常的方法(参见参考文献19)从4-溴萘-l-硫醇la制备(6 1 年),这被制成油,b.p. 180-186“ a t 0.5 mmHg(Found: C, 52.7;H,3.7%;M+,第294/296页。Cl,HllBrOS需要C,52.9;H, 3.75% ;M+, 294/296), v,,,.(薄膜) 1 705cm-1 ( G O ) .3-甲基2萘并[1,2-b]噻吩.-用多磷酸处理(l-萘硫基)丙酮 a t 80-90 “Cfor 4 h 得到混合物 (8 : l),b.p. 120-126” a t 0.2 mmHg,m.p. 62-68' (lit.,19 m.p.60.5-61.5“),3-甲基萘-[l,Zb]噻吩和 3-甲基萘并[l,8-bc]噻喃。乙醇分馏结晶得到前者(39%)作为棱镜,熔点76-77“(lit.,11 7 7 O),6 2.46(d,Me)和7.08(4,2-H,J 1.0 Hz)。尝试通过苦味酸盐纯化后者,得到的材料纯度仅为70%,6 2.84(Me)。(4-溴-l-萘1硫基)丙酮的类似环化得到均相产物,从中得到5-溴-3-甲基-联苯并[1,2-b]硫酚(65%)作为针头,熔点115.5-117°[来自乙醇(木炭)](发现:C,56.6;H,3.5%;M+,第276/278页。Cl,HoBrS 要求 C,56.35;H,3.25% ;M f 276/278), 6 2.33 (d, Me) 和 7.02 (9, 2-H, J 0.8Hz).3-MethyZnaphtho[ 1,2-b]硫代苯-2-甲苯二甲醛.- 3-甲基萘并[ 1,2-b]噻吩用磷酰氯和二甲基甲酰胺甲酰化,得到醛 (75%),m.p.209-210“ (来自乙醇的棱镜) (Found: C, 74.5;H,4.6%;米,226。C,,H,,OS 需要 C, 74.3;H,4.45%;M,226),vmax。1640 cm-l ( G O ) , 6 10.34 (CHO) (无 2-H信号)。从5-溴-3-甲基萘[1,241-噻吩,5-溴-3-甲基萘并[l,2-b]硫~雌-2-碳水化合物醛(31%)获得类似,形成黄色棱柱,熔点163-166'(乙醇)(发现:C,55.35;H,3.0%;M+,304/306.Cl,HoBrOS需要C,55.1;H,2.95%;M+, 304/306),vmx.1665 cm-l (GO), 6 2.77 (s, Me), 8.08 (s, 4-H), and 10.28 ( s , CHO).2-A 十六烷基Z-3-甲基萘并[ 1,2-b]噻吩-3-甲基萘并[ 1,2-b]噻吩与乙酰基J的傅基乙酰化 .E. Banfield、W.Davies、NW Gamble 和 S. Middleton,J .Chem. SOC., 1956, 4791.氯化物在二氯甲烷中得到了棱镜 (70y0), m.p.138-139“ (1it.,l1 141”) (from ethanol), vmx.1 640 厘米-升 (GO)。乙酰基团通过Huang-Minlon方法还原,得到2-乙基Z-3-甲基Na$htho[1,2-双硫酚(55y0),熔点42-44“(来自乙醇的棱镜)(发现:C,79。9;H,6.4%;米,226。C15Hl,S 需要 C, 79.6;H,6.25% ;M,226)。3-甲基萘[1,2-b]噻吩的溴化反应 .-用溴(1摩尔当量)在四氯化碳中给予2-溴-3-甲基Znuphtho[ 1,2-b]噻吩(93%)针头,熔点120-122“(来自乙醇)(发现:C,56.0;H,3.4%;M+,第276/278页。Cl,H,BrS要求C,56.3;H,3.25% ;M+,第276/278页)。在沸腾冰醋酸中使用溴(2.01 mol.当量)得到 2,5-二溴-com~ound (78y0), m.p.133-136“(乙醇针) (发现:C, 43.8;H,2.6%;M+,354/356/358.C,,H,Br,S 需要 C , 43.85;H,2.3%;Mf,354/356/358)、6 2.35 (Me) 和 7.87 (4-H)。用溴(1摩尔当量)在乙酸中处理5-溴-3-甲基-或2-溴-3-甲基-萘并[1,2-b]噻吩,得到相同的产物(分别为70和SOY0)。3-甲基萘并[1,2-b]噻吩-硝化乙酸的硝化得到两种组分的混合物[3:2(g.l.c.)],其中3-甲基Z-2-硝基萘[1,ZbIthiophen(次要组分)通过乙醇的几次重结晶得到。它形成了黄色的羽毛,m.p.245-248“(发现:C,63.7;H,3.95;N,6.0%;M,243.Cl,H9N0,S要求C,64.15;H,3.75;N,5.75%;M,243)。5-硝基异构体取自母液淡红色针状物,m.p.154.5-155.5“(来自轻石油)(Found: C, 64.05;H,3.6;N,5.7%;M,243),6 2.51(d,Me),7.24(q,2-H,J 1.0 Hz)和8.48(s,4-H)。2-硝基化合物用雷尼镍和水合肼用5-硝基萘-[1,2-b]噻吩的方法还原。H,5.0;N,5.25%;M,255.C15Hl,NOS要求C,70.55;H,5.15;N,5.5%;M,255)。5-硝基异构体的类似还原得到了相应的积聚$mine,其盐酸盐具有m.p.230-233“(来自乙醇)。重氮化胺用溴化铜(1)在氢溴酸中处理,20 t o 得到5-溴-3-甲基萘并[1,2-b]噻吩,m.p.和mixedm.p。115-1 17“.2-甲基萘并[1,2-b]噻吩-1,2-噻吩-1,2-乙酚-2-羧酸l(4.56 g,0.02 mol)、三氯硅烷(1 6.3 g,0.12 mol)和干乙腈(40 ml)的混合物回流加热1 h。然后用三乙胺(5.75g,0.057mol)滴加处理冷却的溶液,使温度不超过15“C,并在回流下加热过夜。在冷却的溶液中加入乙醚(150毫升),使胺盐酸盐沉淀,然后将过滤后的溶液在减压下蒸发。将残油用甲基醇(10ml)煮沸1h,然后将混合物与氢氧化钾(1 1g)在甲醇(20ml)和水(5ml)中加热回流过夜,并倒入水中。与乙醚调出,产物呈淡黄色油(3.15 g,79%),b.p.108-115“ at 0.1 mmHg (Iit.,l 110-118” a t 0.1mmHg).lo W. Knapp, Monatsh., 1932, 60, 189.2o A. I. Vogel, 'A Text-book of Practical Organic Chemistry,'3rd edn., Longmans, London, 1956, p. 6021977 67类似地获得,5-溴-2-甲基Zna~htho[ 1,2-b]硫酚(48%)形成针,熔点90-90.5“(来自乙醇)(发现:C,56.55;H,3.7%;M+,第276/278页。C,,H,BrS要求C,56.35;H,3.25%;Mf, 276/278), 6 2.60 (d, Me) 和 6.96 (q, 3-H, J 1.0 Hz)。2-甲基萘并[ lJ2-b]噻吩-(a)甲酰基化的取代反应.使用磷酰氯和N-甲基甲酰苯胺得到2-甲基萘并[1,2-b]噻吩-3-柯醛(53%)作为灰白色针状物,熔点133.6135“(来自乙醇)(发现:C,74.4;H,4.4%;MI 226), vmx.1 665 cm-l (C=O), 6 10.01 (s, CHO).(b) 鲸蜡化。3-A 鲸蜡基Z-2-甲基萘并[ 1,2-b]噻吩(83%)作为棱镜获得,熔点81-83“(来自乙醇)(发现:C,74.8;H,4.9%;米,240。C,,H,,OS 要求 C, 74.95;H,5.05%;M,240),vmax。1 665 厘米-升 (GO)。(c) Brovninution。使用溴(1摩尔当量)四氯化碳得到3-溴-2-甲基Znu~htho[l,2-b]-噻吩(72%)作为针头,熔点98-100“(来自乙醇)(发现:C,56.0;H,3.25%;M+,第276/278页)。在沸腾乙酸中用溴(2摩尔当量)得到3-溴-2-溴甲基萘并[1,2-b]噻吩作为油(Found: M+, 354/356/358), 6 4.68 (s, 2 H, CH,Br)。用乙醇煮沸粗产物,得到3-溴-2-乙氧基甲基Zna~htho[1,2-b]噻吩(总31%)作为针,m.p.65-67'(来自乙醇)(Found: Mf, 319.9861.C15H13-7QBrOS 需要 M, 319.9870)、6 3.93 (9, O*CH,Me) 和 4.37 (s, ArCH,-0)。将通过在乙酸中进行硝化反应得到的混合物在硅胶上进行色谱。用苯洗脱得到2-甲基Z-5-硝基噻吩[1,2-b]噻吩(16y0),熔点156-157“(来自乙醇的黄色针头)(发现:C,64.5;H,(d) 硝化作用(与G. RAWSON合作).3.95;N,5.7%;M,243),6 7.13(7.16)(3-H),7.61(7.59)(7-H),7.63(7.67)(8-H),8.05(8.16)(6-H),8.43(8.43)(4-H)和8.59(8.56)(9-H);计算出的化学位移(见正文)在括号中给出。硝基化合物如前所述转化为5-溴-2-甲基萘并[1,241-噻吩,与真实材料相同。将硝化产物在氧化铝(11级)上层析,并用苯洗脱,先得到棕色油,然后得到黄色油。后者在用己烷-氯仿(1:l)研磨时凝固,得到2-甲基-2-硝基萘-[1,2-b]噻吩-3(2H)-酮(3)(10%)作为黄色棱镜,熔点139-141“(来自乙醇)(发现:M+,259.0328.C,,H,NO,S需要M,259.0303),vmax 1702(GO),1335和1465 cm-l(NO,),6 2.26(s,Me).2,3-二甲基萘并[ 1,2-b]噻吩.-通过Huang-Minlon还原(参见参考文献1)获得(70%)3-甲基萘-[1,2-b]噻吩-2-甲醛, 这有 M.P.100.5-102.5“(lit.,,, 108.5-109.5”)(来自乙醇)、6 2.44 和 2.51(2 x Me).5-溴-2,3-二甲基萘并[ 1,2-b]噻吩,同样通过还原适当的 2-甲醛变形棱镜 (68%)获得,M.P. 98-99。5“ (来自乙醇) (Found:C, 57.9;H,4.0%;M+,第290/292页。C1,H,,BrS 需要 C,57.75;H,3.8%;M , 290/292), 6 2.25 和 2.47 (2 x Me) 和 7.86 (4-H)。将2,3-二甲基萘并[1,2-b]噻吩与溴(1摩尔当量)用四氯化碳处理得到相同的溴化合物(62%).5-乙酰Z-2,S-二甲基萘并[1,2-b]噻吩-(a)将上述溴化合物(0.25 g)、氰化铜(1)和喹啉(10 ml)的搅拌红色混合物在回流下加热2 h,然后冷却并倒入过量的稀盐酸中。用氯仿萃取得到绿色油,在苯中通过氧化铝过滤,得到2,3-二甲基萘并[1,2-b]噻吩-5-腈(0.16克,78%)作为针,熔点140-142“(来自苯轻石油)(发现:C,75.95;H,4.5;N,5.9%;米,237。C,,H,,NS 需要 C, 75.9;H,4.65;N, 5.9% ;M , 237), v,, 2 225 cm-l ( E N ) .(b)在乙醚(20ml)中将5-甲腈(0.5g)在乙醚(20ml)中的溶液滴加15分钟,或将甲基碘化镁[来自镁(0.1g)]在乙醚(10ml)中的搅拌溶液中加入。将混合物保持在0“C过夜,然后倒入冰和浓盐酸中。用乙醚牵引得到酮(0.3g,56y0),m。p.117-119“(1it.,l1 116-117”)(来自乙醇),与2,3-二甲基萘[l,2-苯硫酚]的傅-克氏乙酰化得到的产物相同。Nuphtho[l,2-b]噻吩-3-甲酰甲醛。-(a) 3-甲基萘[ 1,241 噻吩与新鲜重结晶的 N-溴琥珀酰亚胺以通常的方式进行溴化,得到 3-溴甲基萘并[l,2-b]噻吩 (71%) 作为针头,M.p.85-87' (来自轻石油), M+ 276/278, 6 4.65 (CH,Br)。b)将溴甲基化合物(8.0g)吏氯仿(40ml)的溶液缓慢加入到六亚甲基四胺(4.0g)在氯仿(30ml)中的沸腾溶液中。将混合物在回流下加热3小时,然后冷却并过滤。将六方盐洗涤[轻质汽油(b.p.40-60')]并干燥,然后用50%乙酸水溶液(35ml)回流加热3小时。加入水(30ml)和浓盐酸(7ml),然后将混合物煮沸5分钟,并保持t 0“C过夜。将沉淀物过滤掉,从乙醇水溶液中结晶,得到黄色棱镜(3.8g,62%),熔点81.5-83'(发现:C,73.3;H,3.8%;米,212。C,,H,OS 要求 C, 73.55;H, 3.8% : M , 212), vmaX.1 675 cm-l (CEO), 6 10.15(s, CHO).2-溴萘并[ 1,2-b] 噻吩-3-cavbddehyde .-上述醛在氯仿中溴化9 h,温度为40'C,t o give needles(51%),m.p. 139-142“(来自乙醇水)(发现:C,53.6;H, 2.5% ;M+,第290/292页。C,,H,Br-0s 需要 C, 53.6;H, 2.4% ;M , 290/292), vmx, 1 675 cm-l(GO), 6 7.87 (d, 5-H), 8.38 (d, 4-H, J 8.6 Hz), and 10.13 (s,CHO) (无 2-H 信号).4,5-二氢萘并[ 1,2-b]噻吩 (1) .-酯(2)与乙醇氢氧化钠水解得到4,5-二氢萘并[1,2-b]噻吩-2-羧基Zic;酸(99%)作为棱镜,m.p.199-200“(来自乙醇)(发现:C,68.0;H, 4.5% ;米,230。C1,HloO,S需要C,67.8;H,4.4%;M,230),vmax。1 660 厘米-升 (GO)。在210'C下用喹啉中的铜脱羧(参见第1部分I),得到oiZ(87y0),b.p.97-106',t 0.1 mmHg(发现:C,77.5;H,5.4%;米,186。C,,HloS 需要 C, 77.35;H,5.4%;M ,186), 6 2.80 (m, CH,*CH,).4,5-二氢~htho[l,2-b]噻吩的溴化 (1) .-(a) 在已经描述的条件下使用N-溴琥珀酰亚胺给出了文中所示的结果。(b) 在铁催化剂存在下,在冰醋酸中使用溴(1 mol.equiv.),得到深色残留物,在氮气下蒸馏,得到 2-溴化合物 (81%) 作为不稳定的淡绿色油,b.p. 114-116',0.1mmHg(发现:M+,264/266。C,,H,BrS需要M,溴化合物在已经描述的条件下用氰化铜(1)氰化物喹啉加热,得到4,5-二氢~htho[1,2-b]噻吩-2-甲腈Ze(75%)为暗红色油,b.p. 176-178“ a t 1.0 mmHg(发现:C,73.4;H,4.35;N,6.8%;米,211。C,,HQNS要求C,73.9;H,4.3;N,6.65%;M,211),vmx。2 210 cm-l (C-“).264/266), 6 6.72 (s, 3-H)68 J.C.S. Perkin 将腈与氢氧化钠乙醇-水(1 : l)水解,得到4,5-二氢萘并[lJ2-b]-噻吩-2-羧酸(73 %),与真品相同。4,5-二氢-2-硝基萘并[1,2-b]噻吩--二氢化合物(1)在乙酸中的硝化反应得到起始原料和2-硝基化合物(g.1.c.)的油性混合物(1:2)。在硅胶上色谱并用苯洗脱得到硝基化合物作为运行较慢的组分。它形成了黄色棱柱(12%),m.p.117-119'(乙醇)(木炭)(发现:C,62.45;H,3.65;N,6.25%;米,231。C12H,N02S需要C,62.3;H,3.9;N,6.05%;M , 231), 6 2.92-2.98 (m, CH,*CH2).在AcOH-Ac,O a t 0“C中用硝酸或在Ac20中用硝酸铜(I1)在40”C下硝化得到相似的产物混合物,与柏油材料混合。鉴定 4,5-二氢-2-硝基萘并[ lJ2-b]噻吩.-(a) 2-乙酰氨基萘并[ 1,2-b]噻吩。将粉状的五氯化磷(0.5g)分批加入到2-乙酰萘[1,241噻吩肟(0.5g)在干乙醚(100ml)中的搅拌溶液中。将所得溶液在室温下保持3h,然后洗涤(H20和~M-N~O H),干燥,蒸发。残留物形成白色针状物(0.3 g,60%),熔点194-195.5'(来自苯)(木炭)(发现:C,69.6;H,4.7;N,5.8%;M , 241.C,,H,,NOS 需要 C, 69.7;H,4.6;N,5.8%;M , 241),vmaX 1 650 ( G O ) 和 3 240 (NH) cm-l.(b) 2-硝基萘并[1,2-b]噻吩。将4,5-二氢-2-硝基化合物用N-溴琥珀酰亚胺芳构化,方法如第1部分所述,l得到褐色针状物(Six),m.p.161.5-163.5“(来自乙醇)(Found:C,62.5;H,3.1;N,5.9%;米,229。C,,H,NO,S 要求 C, 62.85;H,3.1;N,6.1%;M,229),i.r.光谱与萘并[l,2-b]噻吩硝化产生的次要产物的光谱相同。(c) 2-硝基萘[1,2-b]噻吩的还原乙酰化。将硝基化合物(0.1g)在冰醋酸(30ml)和乙酸酐(1ml)中的溶液在Adams催化剂(30mg)存在下用氢气振荡过夜,然后过滤。将滤液倒入水中,用碳酸氢钠中和。用乙醚萃取得到2-乙酰氨基化合物(0.04 g,38%),熔点192-194“,与(a)中得到的相同。FriedeGCrafts 4,5-二氢萘并[ 1,2-b]-噻吩的乙酰化反应 使用乙酰氯(1 mol.当量)得到单乙酰和二乙酰化合物的混合物 (5 : 1) (g.l.c.),通过氯仿在硅胶和洗脱物上的色谱法进行分离。首先洗脱的2-乙酰基化合物形成黄色长针状物,熔点112-115“(来自乙醇)(发现:C,73.45;H,5.4%;米,228。C,,H,,OS需要C,73.65;H, 5.3%: M , 228), vmax.1 640 cm-l (GO)、6 2.54 (s, Ac) 和 2.90 (m, CH,CH,)。继续洗脱得到2,7-二乙酰基化合物,其从乙醇中结晶为淡黄色针状,熔点141-143.5“(发现:C,70.8;H,5.25%;米,270。C,,H,,O,要求C,71.1;H,5;2%;M,270),vmx。1650 和 1 670cm-l (CSO)、6(C、D、) 2.10 和 2.17 (s, 2 x Ac)、2.30-2.57(m, CH,CH、)、7.01 (s, 3-H)、7.19 (dd, 9-H)、7.52 (dd, 8-H) 和 7.66 (dd, 6-H) (JS,* 8.5, J6.8 1.5, J6.9 0.5 Hz)。当乙酰氯(2摩尔当量)用于乙酰化时,以40%的收率获得二乙酰基化合物。2-乙酰基化合物在二恶烷中与次碘酸钠氧化得到4,5-二氢萘[ 1,241噻吩-2-羧酸(68%),与真实材料相同.4,5-二氢萘并[ 1,2-b]硫代苯-2-甲酰醛.-二氢化合物(1)与氯化磷酰胺和二甲基甲酰胺的甲酰化反应得到淡黄色油(70%),b.p. 138-142' a t 0.1 mmHg(发现:C,72.7;H,4.9%;米,214。C,,H,,OS 需要 C, 72.85;H,4.7%;M,214),vmx。1660 cm-l (GO), 6 2.82-2.97 (马 CH,*CH2) 和 9.82 (s, CHO)。它被氧化银(参见参考文献1)氧化成相应的2-羧酸(70%),与真正的1材料相同。4,5-二氢萘并[1,2-b]噻吩-2-羧酸乙酯(2)的硝化反应 (2) 在冰醋酸沸腾 1 小时后得到固体产物,其中含有三种组分 ( 8 : 2 : 1) (g.1.c.)。层析有机硅凝胶并用苯洗脱首先得到主要组分,萘甲酰乙酯[ 1,241噻吩-2-羧酸乙酯,熔点和混合熔点86-88'(lit.,l 87-88“)(来自乙醇)。继续洗脱得到7-硝基萘[1,241噻吩-2-羧酸乙酯和相应的4,5-二氢化合物的结晶混合物(1:2)。乙醇重结晶得到前者为黄色针状物,熔点194-195.5'(乙醇),M+ 301,v,,1 715 cm-l ( G O ) ;有关n.m.r.频谱的详细信息,请参见Discus-sion。通过用N-溴琥珀酰亚胺在四氯化碳中加热1小时,将7-硝基化合物及其4,bdihydro衍生物的混合物完全转化为前者。我们感谢 F. Brown、G. Collier、A. D. Roberts 和 D. F. Ewing 博士获取物理数据。[6/1053 收稿日期: 1976-06-03

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号