首页> 外文期刊>Developmental genetics >Embryonic and fetal rat myoblasts express different phenotypes following differentiation in vitro
【24h】

Embryonic and fetal rat myoblasts express different phenotypes following differentiation in vitro

机译:Embryonic and fetal rat myoblasts express different phenotypes following differentiation in vitro

获取原文
           

摘要

AbstractMyosin heavy chain (MHC) is encoded by a multigene family containing members which are expressed in developmental and fiber type‐specific patterns. In developing rats, primary (1°) and secondary (2°) myotjbes can be disfinguished by differences in MHC expression: 1° myotubes coexpress embryonic and slow MHC, while 2° myotubes initially express only embryonic MHC. We have used monoclonal antibodies which recognize the embryonic, slow, neonatal, and adult fast IIB/IIX MHCs to examine MHC accumulation in myoblasts obtained from hindlimbs of embryonic day (ED) 14 and ED 20 Sprague‐Dawley rats during differentiation in vitro. Embryonic myoblasts (ED 14), which develop into 1° myotubes in vivo, differentiate as myocytes or small myotubes (i.e., 1–4 nuclei) which express both embryonic and slow MHC. They do not accumulate detectable levels of neonatal or adult fast IIB/IIX MHC. Fetal myoblasts, which develop into secondary myotubes in vivo, fuse to form large myotubes (i.e., 10–50 nuclei) and express predominantly embryonic MHC at 3 days in culture. These myotubes accumulate neonatal and adult fast IIB/IIX isoforms of MHC and eventually contract spontaneously. In contrast to embryonic myotubes, they do not accumulate slow MHC. Our results demonstrate that embryonic and fetal rat myoblasts express different phenotypes in vitro and suggest that they represent distinct myoblast lineages similar to those previously described in chickens and mice. These two lineages may be responsible for the generation of distinct populations of 1° and 2° myotubes in vivo. © 1993

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号