首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Chemistry of tetra-alkoxyethenes. Part VI. Cycloadditions with alpha;beta;-unsaturated carbonyl compounds and chemistry of the resulting tetra-alkoxydihydropyrans
【24h】

Chemistry of tetra-alkoxyethenes. Part VI. Cycloadditions with alpha;beta;-unsaturated carbonyl compounds and chemistry of the resulting tetra-alkoxydihydropyrans

机译:四烷氧基乙烯的化学性质。第六部分.αβ-不饱和羰基化合物的环加成反应及其所得四烷氧基二氢吡喃的化学性质

获取原文
获取外文期刊封面目录资料

摘要

1976 1533Chemistry of Tetra-alkoxyethenes. Part V1.l Cycloadditions with ag-Unsaturated Carbonyl Compounds and Chemistry of the Resulting Tetra-a I koxyd i hyd ropyransBy Pieter H. J. Ooms, Leon P. C. Delbressine, Hans W. Scheeren, and Rutger J. F. Nivard," Departmentof Organic Chemistry, Catholic University, Toernooiveld, Nijmegen, The NetherlandsHeating tetra-alkoxyethenes (1) at 100 "C with a-cyano-orp-unsaturated carbonyl compounds (2) gives 4 + 21cycloaddition products in high yields. Mild acidic hydrolysis of the resulting 2.2.3.3-tetra-alkoxy-5-cyano-3.4-dihydro-2H-pyrans (4) gives separable mixtures containing a 6-oxo-ester (1 I ) , formed by ring opening, and an a-pyrone (1 2). which arises by recyclization of the 8-oxo-ester after hydrolysis of its acetal function.In concentratedsulphuric acid, compounds (4) are converted either into 3.3-dialkoxy-5-cyano-3.4-dihydro-2-pyrones (1 3) orinto 3-alkoxy-5-cyano-2-pyrones (1 4). depending on the reaction temperature. Treatment of (4) with baseyields 2.2.3-trialkoxy-5-cyan0-2H-pyrans (1 5) by elimination of alcohol.WE have reported that cycloadditions between electron-rich tctra-alkoxyethenes (1) and electron-poor cyano-ethenes (2), activated by a second electron-withdrawingR'O .#:R1 OR' OR'R'O OR'R'd 'OR''amp; / c R 2 + )=c,H XR'O 0 R'( 4 )action with an a@-unsaturated carbonyl compound.Only the extremely nucleophilic tetra-aminoethene (5)has been shown to react in a different way. It yields lo afive-membered ring compound, probably as a conse-quence of elimination of the highly stabilized diamino-carbene 11s12 (7) from an initially formed dipolar adduct(6) (Scheme 2).Recently Bdlanger and Brassard l3 succeeded in con-verting the cycloaddition products (9) from p-chloro-keten acetals and ap-unsaturated carbonyl compoundsinto a-pyrones (lo), by elimination of hydrochloric acidand hydrolysis of the orthoester function (Scheme 3).Inview of the wide occurrence of pyran and pyrone de-rivatives in nature,14 and the applications of a-pyrones 15in synthetic organic chemistry, such simple preparationsof dihydropyrans and a-pyrones may be of value. Wenow give a more extensive report on the synthesis of di-hydropyran derivatives from tetra-alkoxyethenes andap-unsaturated carbonyl compounds, and discuss thepossibility of selective removal of the orthoester andacetal functions in these products.SCHEME 1RESULTSa-substituent (X), yield cyclobutane derivatives,3 whenX = CN, SO,Ph, or C0,R.However, when X is an acylgroup, 4 + 21 cycloadditions take place, yielding di-hydropyran derivatives (4) (Scheme 1). Similar six-membered ring compounds have been obtained previouslyfrom several other types of electron-rich olefins, such asenol ethers,3-5 enamines,697 and keten acetal~,*~~ by re-Tetramethoxyethene did not react with cinnamdde-hyde or crotonaldehyde at 100 "C. With acrylddehydeand methyl vinyl ketone at the Same temperature onlysmall ~*ounts of a dihYdroPYran derivative wereformed, together with large m-~~ounts of PolymericProducts.Higher temperatures, as used in CYClO-additions of enol ethers 334 (150-200 "C) and ketenPart v. P. H. J. Ooms, J. W. Scheeren, and R. J. F. Nivard,P. 13. J. Ooms, J. W. Scheeren, and R. J. F. Nivard, Syn-13. I. Longley, jun., and W. S. Emerson, J . Amer. Chem.C. W. Smith, D. G. Norton, and S. A. Ballard, J . Amer.L. . Tietze, Chem. Ber., 1974, 107, 2491.amp;I. von Strandtmann, M. P. Cohen, and J. Shavel, jun.,' I. Fleming and M. H. Karger, J . Chem. SOC. ( C ) , 1967, 226. * S. M. McElvain, E. R. Degginger, and J. D. Behun, J . Amer.J.C.S. Perkin I , 1976, 1048.thesis, 1975, 860.SOL, 1950, 72, 3079.CIbem. SOG.. 1951, 73, 6267.Tetvahedvon Letters, 1965, 3103.Chem. SOC., 1954, 76, 5736.A.B6langer and P. Brassard, J.C.S. Chem. Comm., 1972,10 H. W. Wanzlick and H. J. Kleiner, Chem. Ber., 1965, 98,11 H. Wiberg, Angew. Chem., 1968, 80, 809; Angew. Chem.l2 R. W. Hoffmann, Angew. Chew., 1968, 80, 823; Angew.13 A. BClanger and P. Brassard, Canad. J . Clzem., 1975, 55,14 See, e.g., F. M. Dean, ' Naturally Occurring Oxygen Ring15 N. P. Shusherina, N. D. Dmitrieva, E. A. Luk'yanets. and863.3024.Internat. Edn., 1968, 7, 766.Ckem. Ifltemat. Edn., 1968, 7, 754.195, 201.Compounds,' Buttenvorths, London, 1963, ch. 4.R. Y a . Levina, Russ. Chem. Rev., 1967. 36, 1751534 J.C.S. Perkin Iacetals (150 "C) cannot be applied in reactions of tetra-methoxyethene, since it decomposes l6 homolytically atabout 150deg;C.Faster cycloadditions were found with aP-unsaturatedcarbonyl compounds, R2CH = CY*COR3, having anelectron-withdrawing a-substituent. The reactivity at100 "C towards tetra-alkoxyethenes was apparently stilltoo low for practical use with Y = S02Ph, Bz, or C0,R.the mixture under reflux for about 1 h (Table 2).Sul-phuric acid and toluene-9-sulphonic acid are less effectivecatalysts for the conversion (4) _+ (11). In these casesthe reaction mixture contained many more side-products,which were not identified.1.r. data revealed that the side-products (12) exist inthe enol (3-hydroxypyrone) form (12b) , after crystalliz-ation (Table 3). Normally treatment of compounds (4)Ph PhPh Ph I PhI II I q N . c " ,. N H PhPh 2 2(8)SCHEME 2However, the cyano-derivatives (Y = CN) reacted with concentrated sulphuric acid gave only products con-smoothly, giving 2,2,3,3-tetra-alkoxy-5-cyano-3,4-dihy- taining the a-pyrone ring (Scheme 5).Below 0 "C 3,3-dro-2H-pyrans (4). In this way several ring-substituted dialkoxy-5-cyano-3,4-dihydropyrones (13) were obtained(Table 4). At higher temperatures these compoundsapparently eliminate alcohol in the acidic medium; at25 "C 3-alkoxy-5-cyano-2-pyrones (14) were isolated(Table 5). The same products were obtained when thepure compounds (13) were treated with concentratedsulphuric acid at 25 "C. These reactions failed withcompounds (4; R2 = a-furyl); in this case a complexmixture arose, perhaps owing to acidolytic cleavage of the@?+ pi;: - PoR H R R2(9) (10)SCHEME 3a-cyano-cinnamaldehydes and -benzylideneacetophen-ones could be converted into dihydropyran derivatives inyields of 80-95 (Table 1).Extension of the reactionto the preparation of compounds (4; R2 = H or alkyl)was not studied, since useful syntheses of the necessarystarting compounds are not available.Hydrolysis of 2,2,3,3- Tetra-alko;~.y-5-cyano-3,4-dihydro-2H-pyrans (4) in the Presence of Acids.-Acidic hydro-lysis of compounds (4) yields different products accordingto the reaction conditions. Refluxing in dioxan-waterwith hydrogen chloride as catalyst yielded substituted8-oxo-esters (11) as the main products. In all casesa-pyrone derivatives (12) were formed as principal side-products, in 20-250/, yields (Scheme 4). The oxo-esters could be separated easily from the side-products,because of the low solubility of the latter.In generalhighest yields of oxo-esters (1 1) were obtained on heatingCN R31' CN R3HO' 0(12b)SCHEME 4fury1 group.in reactions with (4; R3 = H).Unsatisfactory results were also obtainedl6 R. W. Hoffmann, J. Schneider, and H. Hauser, Chem. Ber., Reactivity of 2,2,3,3-Tetra-alkoxy-5-cyano-3,4-dihydro-2H-pyrans (4) towards Bases.-Treatment of compounds 1966, 99, 18921976 1535(4) with sodium methoxide in 1 ,Z-dimethoxyethaneusually caused elimination of alcohol, yielding 2,2,3-tri-alkoxy-5-cyano-2H-pyrans (1 5) (Table 6). CompoundsCN R30 conc. H2SOL , :2c: conc.H2S0~, 25 O C-10 t o oocRrsquo;0Rrsquo; 0(13 1 11L)SCHEME 5(4; R3 = H) did not react with methoxide.Use of astronger base (t-butoxide) resulted in complex mixtures,independent of the nature of R3. Hydrolysis of theCN R 3(15)SCHEME 6products (15) with sulphuric acid again yielded thea-pyrone derivatives (14) (Scheme 6).DISCUSSIONComparison of the reactivity of tetra-alkoxyetheneswith that of other electron-rich olefins reveals thatenamines add much faster to ap-unsaturated carbonylcompounds. In general, enamines give six-memberedcycloaddition products at room temperature, even withless activated ap-unsaturated ketones6. 7 The reactivityof enol ethers and keten acetals seems not very differentfrom that of tetra-alkoxyethenes. Ethyl vinyl ether and1,l-dialkoxyisobutene add smoothly to 2-benzylidene-2-cyanoacetophenone. They both even add to lessactivated carbonyl compounds, e.g.cinnamaldehyde andacrylaldehyde, although at higher temperatures. How-ever, the presence of the acetal function in the cyclo-addition products (4) from tetra-alkoxyethenes providesthese compounds with a much more varied reactivitythan the related dihydropyrans without this group. Ingeneral 2,2-dialkoxydihydropyrans give only open-chainproducts, viz. 8-oxo-esters, on acidic hydrolysis,**13 with-out formation of side-products corresponding to (12).The formation of the compounds (12) on acidic hydrolysisof 2,2,3,3-tetra-alkoxydihydropyrans may be ascribed tohydrolysis of the acetal function in the primarily formedl7 A. Roedig and H. A. Renk, Chem. Bey., 1973, 106, 3877.l* P.Schiess and H. L. Chia, Helv. Chim. Actu, 1970, 53, 486.l9 P. H. J. Ooms, J. W. Scheeren, and R. J. F. Nivard, Syn-thesis, 1975, 263.6-0x0-ester (1 1). The resulting product (16) will enolize (16a) (lGb), favouring recyclization by intra-molecular transesterification (Scheme 7).CN R 3HO(16b)SCHEME 7The hydrolysis of the acetal function in (11) is slow incomparison with the hydrolysis of the orthoester functionin (4). The products (11) can be obtained in higheryields when compounds (4) are subjected to brief treat-ment with dilute hydrochloric acid; compounds (12) areobtained only after longer reaction times. The cycliz-ation of (16), giving (12) in acidic medium is apparentlycomplete. The occurrence of the a-oxo-ester (16a) or itstautomer (16b) in the reaction mixture has never beenobserved. Similarly, acidic hydrolysis of (15) yields onlythe cyclic product (14) ; the a-alkoxy-analogue of (l6b),which must be an intermediate in this reaction, could notbe detected.An alternative route for the conversion of (15) into (14)may be via valence isomerization of (15) into the di-enones (17), as described for several other a-pyran de-rivatives,9J7J* However, compounds (15), dissolved inORrsquo; Rrsquo; 0phenyl cyanide, are apparently completely stable at200 ldquo;C, whereas the isomerization products (17), beingketen acetals, should decompose at this tempera-ture.16J9ym The thermal stability of (15) may beexplained by arguments similar to those used for 4,6,6-t rialkylpyrans.al20 S.M. McElvain and C. L. Stevens, J . Azner. Chem. Soc.,z1 A. F. Kluge and C . P. Lillija, J . Org. Chem., 1971, 36, 1977.1946, 68, 19171536 J.C.S. Perkin ITABLE 12,2,3,3-Tetra-alkoxy-5-cyano-3,4dihydro-2H-pyrans (4; Rf = Me) (Scheme 1)Yield M.p.() ("C) W e87 158 426 (M), 411 (M - CH,),90 134 416/414 (Ad), 401/399395 (M - OCH,)(M - OCH,)(M - CH,), 385138395 120 411 (M), 396 (M - CH,),88 81 371 (M), 356 (M - CH,),380 (M - OCHJ340 (M - OCH,)80 122 335 (M), 320 (M - CH,),304 (M - OCH,)Analyses ("/)7 N6.556.553.353.43.43.43.753.84.24.21 x6.86.73.53.43.53.83.53.63.94.03.43.4vrnax.(KBr)/cm--l2 212 ( E N ) ,2 210 ( E N ) .1620 ( e C - 0 )1625 (C=C-0)CC,,H,,N,O, Reqd. 61.95H5.35.35.355.46.16.25.76.96.36.4Found 62.1Found 63.7C,,H,,ClNO, Rcqd.63.65C,,H,,NOB Reqd. 67.15Found 66.9C2,H,,N0, Reqd. 64.7Found 65.02 208 (CZN),2 218 ( E N ) ,1 618 (C=C-0)164011 632(c-0)2 212 (CZN),1646 ( e C - 0 )C,,H2,N06 Reqd. 60.9Found 61.0TABLE 2act-Dialkoxyy-cyano-8-oxo-esters (1 1 ; R3 = Ph) (Scheme 4)Yield75(70)7070804585M.p.67("C12012512210983Analyses (yo)rC,,H,,N20, Reqd. 61.15amp;CFound 60.5R1 RSMe p-N02C6H4Me p-C1Camp;,Me PhMe p-MeO0C6H4Me 2-Fury1Et Ph___.-amp;I4.94.96.04.95.755.85.855.95.355.46.656.7mle381 (M - OCHJ, 363(M - COOCHJ4031401 (M), 3721370 (M -OCH,), 3441342 (M -CO-OCH,)367 (M).336 (M - OCH,),397 (M). 366 (M - OCH,),357 (M), 326 (M - OCH,),308 (M - COOCH,)338 (M - COOCH,)298 (M - COOCH,)409 (M), 364 (M - OCZH,),336 (M - COOC2H5)v,,,.(KBr) Icn1-l2 235 (CZN),1735 (C=O),1692 ( e 0 )1 735(C=O),1 693 (C=O)1 760 ( e O ) ,1696 (C=O)1761 (C=O),1690 (C=O)1731 (C=O),1692 (C=O)1731 (C=O),1692 ( G O )2 237 ( E N ) ,2 240 (CZN) ,2 239 ( E N ) ,2 240 (CZN),2 239 (CZN),C2,H,,C1N05 Reqd. 62.76Found 63.0C,,H,,N05 Reqd. 68.65Found 68.8C,,H,,TU'O, Reqd. 66.5Found 66.7CIQH,,NO, Reqd. 63.85Found 63.8C,,H,,NO, Reqd. 70.4Found 70.1TABLE 35-Cyano-3-hydroxy-2-pyrones ( 12b) (Scheme 4)Analyses ()Yield M.p.R2 () ("C) mleP-NO,.C,H, 25 216 334 (M), 306 (M - CO),277 (M - CO - COH)p-ClC6H, 22 226 3251323 ( M ) , 297/295(M - CO), 2681266(M - CO - COH)Ph 20 197 289 (M), 261 (M - CO),232 (M - CO - COH)Lsx.(CHC13) I ,v,,.(KBr) 1crn-l nm2 222 ( C 3 ) , 345 Cl*Hl,N,O51 710 (GO),1 625 (GC-0)2 230 ( E N ) ,1710 (C=O),1627 (CkC-0)2 225 ( E N ) ,1710 fC=O).3 362 (OH), 33 1 C,,H,,ClNO,3 350 (OH), 33 1 C,,H,,NO,7 N8.48.2C HReqd. 64.65 3.0Found 63.05 3.1Reqd. 66.8 3.1Found 66.7 3.14.354.15Reqd. 74.75 3.85Found 74.1 3.94.854.81620 ( G C a )3 355 (OH), 342 C,9H,,N0, Reqd. 71.45 4.12 22s (CZN), Found 71.3 4.04.44.35p-MeOC,H, 25 228 319 (M), 304 (M - CH,),288 ( M - OCH,), 291(M -l CO), 262 -'(M - CO - COH)1 710 (C=O),1620 (GC-0)EXPERIMENTALand i.r.data (KBr pellets).~-Cyano-a~-unsatuyated CaybovGyl Compounds R2CH:C(CN)*COR3.-The compounds with R3 = Ph were pre-pared by Knoevenagel condensations between an appro-priate aldehyde and cyanoacetophenone, with piperidine aswas isolated. New compounds are those with R2 =fi-C1C6H4 (m.p- 87" ; yield 80) and R2 = a-furyl (m.p-1 1 7 O ; yield 75).All products were characterized by m.p.s, mass spectra, In cases Only One probably the22 H. Kaufflnann, BEY., 1917, 50, 5271976TABLE 43,3-Dialkoxy-5-cyano-3,4dihydro-2-pyrones ( 13 ; R3 = Ph) (Scheme 5)1537Yield M.p.R' R2 () ("C) mleMe fi-02W.Camp;4 95 163 380 (M), 349 (M - OCH,),Me P-C1C6H, 90 125 370/368 (M), 339/337 (M334 (M - H,COCH,)- OCII,), 324/322 (M - H,COCHamp;Me 1'11 90 154 335 (M), 304 (M - OCH,),289 (M - H,COCH,)Me p-AlcOC,II, 90 164 365 ( M ) , 334 (M - OCH,),319 (M - H,COCH,)Bt 1'11 88 121 363 (M), 318 (M - OC,H,),259 (A - H5C20C2H,)vniax.( KBr) /cm-'2 212 (CEN),1745 (C=O),2 210 (CEN),1 745 (M),1 757 (C=O),1753 (C=O),1 630 (C=C-0)1630 (GC-0)2 216 ( E N ) ,1635 (GC-0)2 202 (CEN),1631 ( e C - 0 )1751 (C=O),2 210 (CEN),1636 (GC-0)Yield M.p.("C)Analyses ()rC20Hl,N206 Reqd.63.15 4.25Found 63.0 4.25C HC2,Hl,C1N0, Reqd. 64.95 4.3Found 65.2 4.3C2,Hl,N0, Reqd. 71.65 5.1Found 71.4 5.1C2,HlDN0, Reqd. 69.05 5.25Found 68.9 5.2C22H,1N0, Reqd. 72.7 5.8Found 72.5 6.8TABLE 53-Alkoxy-5-cyano-2-pyrones (14; R3 = Ph) (Scheme 5 )228 348 ( A l ) , 333 (144 - CH,),152 339/337 (M), 3241322 (M317 ( M - OCHJ- CH,), 305/306 (A4303 (M), 288 (A4 - CH,),- OCH,)272 ( M - OCH,)153194 333 (M), 318 (M - CHJ,302 ( M - OCH,)124 317 (M), 288 (A1 - C2H5),272 (M - OCZH,)-N77.357.33.83.84.24.13.853.83.853.9Analyses ()Amax.(CHC1,) I, avmaX. (KBr) /cm-l nm C H N2 229 (CEN),1732 (C=O),1606 (GC-0)1731 (C=O),1611 (C=C-0)2 232 (CEN),2 225 ( E N ) ,S 220 (CZN),1735 (C=O),1611 (GC-0)1732 (GO),1 609 (C=C-0)1726 (GO),1610 (c---c-O)2 230 (CEN),295 C19H12N205 Reqd. 66.5 3.45 8.05300 Cl9H,,C1NO, Reqd. 67.55 3.6 4.15Found 67.2 3.6 4.2301 ClgHl,NO, Reqd. 75.25 4.3 4.6Found 75.1 4.36 4.7294 C20Hl,N0, Reqd. 72.05 4.55 4.2Found 71.9 4.5 4.2303 C2,H15N03 Reqd.75.7 4.75 4.4Found 75.7 4.85 4.4Found 65.7 3.45 8.1TABLE 62,2,3-Trialkoxy-5-cyano-2H-pyrans (16) (Scheme 6)Me p-ClC6H4 73 96 385/383 ( M ) , 2 218 (CEN),370/368 (A1 1639 (C=C-0)- CH,), 354/352( A l - OCHJ- CHJ, 318 (MMe 1'11 92 102 349 (M), 334 (M 2 210 (CZN),Me SIeO*C,H, 90 152 379 (M), 2 210 ( E N ) ,1636 (M-0)- OCH,)364 (M - CHJ,348 (M - OCH,)324 (M - CH,),308 (M - OCH,)362 (M - C,H,),346 (M - OC2H5)1639 (GC-0)Me 2-Fury1 90 95 339 (M), 2 210 ( E N ) ,1638 (C=C-0)Et PI1 75 Oil 391 (M), 2 215 ( E N ) ,1 635 (GC-0)332 C21H,,ClN0, Reqd. 65.7 4.75 3.65 25 "C/Found 65.9 4.8 3.7 8 h332 C2,H1,NO4 Reqd. 72.2 5.5 4.0 Reflux/Found 72.4 5.6 3.9 3 h336 C2,H2,N0, Reqd. 69.65 5.6 3.7 Reflux1Found 69.3 5.5 3.6 8 h331342Reqd.67.25 5.05 4.15 Reflux/Found 67.6 5.1 4.1 3 hReflux/3 1538 J.C.S. Perkin Ip-Cyanocinnamaldehydes ( R3 = H) were prepared asdescribed by Wa~serman.~~ The p-methoxy-compound(R2 = fi-MeO*C,H,) was obtained in 33 yield and hadm.p. 137".(4)(Table 1) .-A mixture of a tetra-alkoxyethene (0.02 mol)and a @-acyl-@-cyanostyrene (0.01 mol) was heated withoutsolvent a t 100 "C. After 1 h the excess of tetra-alkoxy-ethene was evaporated off and the residual oil crystallizedfrom methanol.aa-Dialkoxyy-cyano-8-oxo-esters (1 1) (Table 2) .-Theproduct (4) from the previous preparation (3 mmol), dis-solved in dioxan (35 ml) and water (35 ml) , was treated withconcentrated hydrochloric acid (0.3 ml) and refluxed for 1 h.Evaporation left a residue which was dissolved in chloro-form.The solution was washed three times with a satur-ated sodium chloride solution (until neutral), dried (Na,-SO,), filtered, and evaporated. The residue was crystallizedfrom methanol.5-Cyano-3-l~ydroxy-2-pyromx (1 2b) (Table 3) .-The sameprocedure was used as in the foregoing preparation, but re-fluxing was continued for 24 h. The solvent was thenremoved, and on addition of chloroform to the oily residuethe crystalline product (12b) was precipitated.3,3-Dialko~y-5-cyano-3,4-dihydro-2-j1yrones ( 13) (Table 4).-Finely divided tetra-alkoxycyanodihydropyran (4) ( 1mmol) was dissolved in concentrated sulphuric acid (5 ml)at 0 "C with ctirring. After 1 h the solution was poured on2 , 2,3,3- Tetra-alk oxy- 5-cyan o- 3,4-dihydro - 2H-pyransto crushed ice. The mixture was then extracted three timeswith chloroform, and the combined extracts were washedthree times with saturated sodium chloride solution (untilneutral), dried (Na,SO,), filtered, and evaporated. Theresidual oil was crystallized from methanol.3-A lkoxy-5-cyano-2-pyrones (14) (Table 5) .-The pro-cedure was the same as the foregoing, but the reaction mix-ture was stirred for 1 h a t 25 "C.2,2,3-Trialkoxy-5-cyano-SH-pyrans (16) (Table 6) .-Sod-ium methoxide (2 mmol) was added to a solution of thetetra-alkoxycyanodihydropyran (4) (1 mmol) in dry 1,2-di-methoxyethane (10 ml). The mixture was stirred for thetime and a t the temperature indicated in Table 6. Thesolution was then evaporated and the residue dissolved inwater. This solution was extracted three times with chloro-form and the combined extracts were washed three timeswith saturated sodium chloride solution, dried (Na2S04),filtered, and evaporated. The residue was crystallized frommethanol.The investigation was carried out under the auspices ofthe Netherlands Foundation for Chemical Research (S.O.N.)with financial support from the Netherlands Organizationfor Advancement of Pure Research (Z.W.O.).5/2518 Received, 23rd December, 1978123 H. H. Wasserman, B. Suryanarayana, and D. D. Grassetti,J . Amer. Cham. SOC., 1956, 78, 2808
机译:1976 1533四烷氧基乙烯的化学。第 V1.l 部分 Cycloadditions with ag-Unsaturated Carbonyl Compounds and Chemistry of the Derived Tetra-a I koxyd i hyd ropyrans作者:Pieter H. J. Ooms, Leon P. C. Delbressine, Hans W. Scheeren, and Rutger J. F. Nivard,“ Schoolof Organic Chemistry, Catholic University, Toernooiveld, Nijmegen, The Netherlands用 a-cyano-orp-unsaturated carbonyl compounds (2) 在 100 ”C 下加热四烷氧基乙烯 (1) 得到高产率的 [4 + 21 环加成产物。所得的2.2.3.3-四烷氧基-5-氰基-3.4-二氢-2H-吡喃(4)的弱酸性水解得到含有6-氧代酯(1I)和a-吡喃酮(1,2)的可分离混合物。这是由8-氧代酯在其缩醛官能团水解后回收而产生的。在浓硫酸中,化合物(4)转化为3.3-二烷氧基-5-氰基-3.4-二氢-2-吡喃酮(1,3)或3-烷氧基-5-氰基-2-吡喃酮(1,4)。取决于反应温度。用碱处理(4)通过消除醇产生2.2.3-三烷氧基-5-氰基0-2H-吡喃(1,5)。我们已经报道了富电子的 tctra-烷氧基乙烯 (1) 和贫电子的氰基乙烯 (2) 之间的环加成反应,由第二个吸电子的 R'O .#:R1 OR' OR'R'O OR'R'D 'OR''& / C R 2 + )=c,H XR'O 0 R'( 4 )与a@不饱和羰基化合物作用。只有亲核性极强的四氨基乙烯 (5) 被证明以不同的方式反应。它产生 lo a5 元环化合物,可能是从最初形成的偶极加合物 (6) 中消除高度稳定的二氨基卡宾 11s12 (7) 的结果(方案 2)。最近,Bdlanger 和 Brassard l3 通过消除盐酸和原酯官能团的水解,成功地将对氯-酮缩醛和 ap-不饱和羰基化合物的环加成产物 (9) 转化为 α-吡喃酮 (lo)(方案 3)。鉴于吡喃和吡喃酮衍生物在自然界中的广泛存在,14以及a-吡喃酮15在合成有机化学中的应用,这种简单的二氢吡喃和a-吡喃酮的制备可能具有价值。本文对四烷氧基乙烯和不饱和羰基化合物合成二氢吡喃衍生物进行了更详尽的报道,并讨论了选择性去除这些产物中原酯和缩醛官能团的可能性。方案1结果a-取代基(X),产生环丁烷衍生物,3 当X = CN,SO,Ph或C0,R.然而,当X是酰基时,发生[4 + 21环加成反应,产生二氢吡喃衍生物(4)(方案1)。类似的六元环化合物以前已经从其他几种类型的富电子烯烃中得到,如己烯醇醚,3-5烯胺,697和酮缩醛~,*~~通过re-四甲氧基乙烯在100“C下不与肉桂-海德或巴豆醛反应。与丙烯醛和甲基乙烯基酮在相同温度下仅形成小~*ounts的二HYdroPYran衍生物,以及大的m-~~ounts的聚合物产品.更高的温度,如用于CYClO-烯醇醚334(150-200“C)和ketenPart v. P. H. J. Ooms, J. W. Scheeren, and R. J. F. Nivard,P. 13.J. Ooms、JW Scheeren 和 R. J. F. Nivard,Syn-13。I. Longley, jun. 和 WS Emerson, J. .美国化学公司W.史密斯,DG诺顿和SA巴拉德,J.Amer.L. %。Tietze, Chem. Ber., 1974, 107, 2491.&I. von Strandtmann, M. P. Cohen, and J. Shavel, jun.,' I. Fleming 和 MH Karger, J .Chem. SOC. ( C ) , 1967, 226.* SM McElvain、ER Degginger 和 JD Behun,J.Amer.J.C.S. Perkin I , 1976, 1048.thesis, 1975, 860.SOL, 1950, 72, 3079.CIbem.索县。。1951, 73, 6267.Tetvahedvon Letters, 1965, 3103.Chem. SOC., 1954, 76, 5736.A.B6langer and P. Brassard, J.C.S. Chem. Comm., 1972,10 H. W. Wanzlick and H. J. Kleiner, Chem. Ber., 1965, 98,11 H. Wiberg, Angew.化学, 1968, 80, 809;安格。Chem.l2 R. W. Hoffmann, Angew.咀嚼, 1968, 80, 823;Angew.13 A. BClanger 和 P. Brassard, Canad. J .Clzem., 1975, 55,14 参见,例如,F. M. Dean, ' Natural Occurrence Oxygen Ring15 N. P. Shusherina, N. D. Dmitrieva, E. A. Luk'yanets.和863.3024.Internat. Edn., 1968, 7, 766.Ckem.伊夫尔特马特。Edn., 1968, 7, 754.195, 201.Compounds,' Buttenvorths, London, 1963, ch. 4.R. Y a .Levina, Russ. Chem. Rev., 1967.36、1751534 J.C.S.Perkin Iacetals(150“C)不能应用于四甲氧基乙烯的反应,因为它在大约150°C时均匀分解l6.发现aP-不饱和羰基化合物R2CH = CY*COR3具有脱电子a-取代基的更快环加成反应。在100“C下对四烷氧基乙烯的反应性显然仍然太低,无法实际使用,Y=S02Ph,Bz或C0,R.混合物在回流下约1小时(表2)。硫酸和甲苯-9-磺酸是转化(4)_+(11)的催化剂效果较差。在这些情况下,反应混合物含有更多的副产物,这些副产物没有被鉴定出来。数据显示,副产物(12)在结晶后以烯醇(3-羟基吡喃酮)形式(12b)存在(表3)。通常处理化合物 (4)Ph PhPh Ph I PhI II I q N .[c“,。N H PhPh 2 2(8)方案2然而,氰基衍生物(Y=CN)与浓硫酸反应得到的产物仅平稳,得到2,2,3,3-四烷氧基-5-氰基-3,4-二氢基-吡喃酮环(方案5)。0“C以下,3,3-二氢吡喃-2H-吡喃(4)。通过这种方式,获得了几种环取代的二烷氧基-5-氰基-3,4-二氢吡喃酮(13)(表4)。在较高温度下,这些化合物显然可以消除酸性介质中的酒精;在25“C中分离出3-烷氧基-5-氰基-2-吡喃酮(14)(表5)。当纯化合物(13)在25“C下用浓硫酸处理时,得到相同的产物。这些反应在化合物(4;R2 = a-呋喃基);在这种情况下,出现了络合物混合物,可能是由于the@?+ pi的酸解裂解; - PoR H R R2(9) (10)方案 3a-氰基肉桂醛和亚苄基苯乙酮可转化为二氢吡喃衍生物,收率为80-95%(表1)。将反应扩展到化合物的制备(4;R2 = H 或烷基)没有研究,因为没有必要起始化合物的有用合成。2,2,3,3-四醛;~.y-5-氰基-3,4-二氢-2H-吡喃 (4)在酸存在下水解化合物(4)根据反应条件生成不同的产物。以氯化氢为催化剂,在二噁烷水中回流生成取代的8-氧代酯(11)。在所有情况下,吡喃酮衍生物(12)作为主要副产物形成,产率为20-250/(方案4)。由于副产物的溶解度低,氧代酯很容易从副产物中分离出来。一般而言,在加热CN R31' CN R3HO' 0(12b)方案4fury1 group.in 反应(4;R3 = H)。也获得了不令人满意的结果l6 R. W. Hoffmann, J. Schneider, and H. Hauser, Chem. Ber., Reactivity of 2,2,3,3-Tetra-alkoxy-5-cyano-3,4-dihydro-2H-pyrans (4) to Bases.-化合物1966,99,18921976 1535(4)中用甲醇钠处理1,Z-二甲氧基乙烷通常引起醇的消除,产生2,2,3-三烷氧基-5-氰基-2H-吡喃(1,5)(表6)。化合物CN R30 conc.H2SOL , :2c: 浓度。H2S0~, 25 O C-10 t o oocR'0R' 0(13 1 11L)方案 5(4;R3 = H)不与甲醇反应。使用更强碱(叔丁醇)会产生复杂的混合物,与R3的性质无关。CN R 3(15)方案6产物(15)与硫酸水解再次得到茶吡喃酮衍生物(14)(方案6)。讨论四烷氧基乙烯与其他富电子烯烃的反应性比较表明,烯胺对不饱和羰基化合物的添加速度要快得多。一般来说,烯胺在室温下会产生六元环加成产物,即使没有活化的ap-不饱和酮6。7 烯醇醚和酮缩醛的反应性似乎与四烷氧基乙烯没有太大区别。乙基乙烯基醚和1,l-二烷氧基异丁烯顺利加入到2-亚苄基-2-氰基苯乙酮中。它们甚至都添加了活性较低的羰基化合物,例如肉桂醛和丙烯醛,尽管温度较高。无论如何,来自四烷氧基乙烯的环加成产物 (4) 中缩醛官能团的存在使这些化合物比没有该基团的相关二氢吡喃具有更多样化的反应性。一般来说,2,2-二烷氧基二氢吡喃只给出开链产物,即。8-氧代酯,在酸性水解中,**13 不形成与(12)相对应的副产物。化合物(12)在2,2,3,3-四烷氧基二氢吡喃的酸性水解上形成可归因于主要形成l7 A. Roedig 和 H. A. Renk, Chem. Bey., 1973, 106, 3877.l* P.Schiess 和 H. L. Chia, Helv.奇姆。Actu, 1970, 53, 486.l9 P. H. J. Ooms, J. W. Scheeren, and R. J. F. Nivard, Syn-thesis, 1975, 263.6-0x0-酯 (1 1).所得产物(16)将[(16a)(lGb)],有利于通过分子内酯交换反应进行回收(方案7)。CN R 3HO(16b)方案 7与原酯官能团的水解相比,(11)中缩醛官能团的水解速度较慢(4)。当化合物(4)用稀盐酸进行短暂处理时,可以得到较高的收率的产品(11);化合物(12)只有在较长的反应时间后才能获得。(16)的环化反应,在酸性介质中得到(12)显然是完全的。从未观察到反应混合物中a-氧代酯(16a)或其自身异构体(16b)的出现。类似地,(15)的酸性水解仅产生环状产物(14);(L6B)的α-烷氧基类似物必须是该反应的中间体,但无法检测到。将(15)转化为(14)的另一种途径可能是通过(15)的价异构化成二烯酮(17),如其他几种a-吡喃衍生物所描述的那样,9J7J*然而,溶解在OR'R'0苯基氰化物中的化合物(15)在200“C下显然是完全稳定的,而异构化产物(17),即缩醛,应该在这种温度下分解.16J9ym(15)的热稳定性可以用类似于4,6,6-t里亚烷基吡喃的论点来解释。al20 S.M. McElvain 和 CL Stevens, J .阿兹纳。Chem. Soc.,z1 A. F. Kluge 和 C .P.莉莉亚,J .Org. Chem., 1971, 36, 1977.1946, 68, 19171536 J.C.S. Perkin ITABLE 12,2,3,3-四烷氧基-5-氰基-3,4二氢-2H-吡喃 (4;Rf = Me) (方案 1)产量 M.p.(%) (“C) W e87 158 426 (M), 411 (M - CH, ),90 134 416/414 (Ad), 401/399395 (M - OCH,)(M - OCH,)(M - CH,), 385138395 120 411 (M), 396 (M - CH,),88 81 371 (M), 356 (M - CH,),380 (M - OCHJ340 (M - OCH,)80 122 335 (M), 320 (M - CH,),304 (M - OCH,)分析 (”/)7 N6.556.553.353.43.43.753.84.24.21 x6.86.73.53.43.53.83.53.53.63.94.03.43.4vrnax.(KBr)/cm--l2 212 ( E N ) ,2 210 ( E N ) .1620 ( e C - 0 )1625 (C=C-0)CC,,H,,N,O, 要求 61.95H5.35.35.355.46.16.25.76.96.36.4找到 62.1找到 63.7C,,H,,ClNO, Rcqd.63.65C,,H,,NOB 要求 67.15找到 66.9C2,H,,N0, 要求 64.7实测结果 65.02 208 (CZN),2 218 ( 英 N ) ,1 618 (C=C-0)164011 632(c%-0)2 212 (捷克语),1646 ( e C - 0 )C,,H2,N06 要求 60.9找到 61.0表2act-二烷氧基氰基-8-氧代酯(1,1;R3 = Ph) (方案4)产率75(70)7070804585M. p.67(“C>12012512210983分析(yo)rC,,H,,N20,Reqd. 61.15&CFound 60.5R1 RSMe p-N02C6H4Me p-C1C&,Me PhMe p-MeO0C6H4Me 2-Fury1Et Ph___.-&I4.94.96.04.95.755.85.855.95.355.46.656.7mle381 (M - OCHJ, 363(M - COOCHJ4031401 (M), 3721370 (M -OCH,), 3441342 (M -CO-OCH,)367 (M).336 (M - OCH,),397 (M).366 (M - OCH,),357 (M), 326 (M - OCH,),308 (M - COOCH,)338 (M - COOCH,)298 (M - COOCH,)409 (M), 364 (M - OCZH,),336 (M - COOC2H5)v,,,.(KBr)ICN1-l2 235 (捷克语),1735 (C=O),1692 ( e 0 )1 735(C=O),1 693 (C=O)1 760 ( e O ) ,1696 (C=O)1761 (C=O),1690 (C=O)1731 (C=O),1692 ( C=O)1731 (C=O),1692 ( G O )2 237 ( 英 N ) ,2 240 ( 捷克) ,2 239 ( 英 N ) ,2 240 (捷克),2 239 (CZN),C2,H,,C1N05 Reqd. 62.76发现 63.0C,,H,,N05 Reqd. 68.65发现 68.8C,,H,,TU'O, Reqd. 66.5发现 66.7CIQH,,NO, Reqd. 63.85发现 63.8C,,H,,NO, Reqd. 70.4发现 70.1表35-氰基-3-羟基-2-吡喃酮 ( 12b) (方案4)分析 (%)收率 M.p.R2 (%) (“C) mleP-NO,.C,H, 25 216 334 (M), 306 (M - CO),277 (M - CO - COH)p-ClC6H, 22 226 3251323 ( M ) , 297/295(M - CO), 2681266(M - CO - COH)Ph 20 197 289 (M), 261 (M - CO),232 (M - CO - COH)Lsx.(CHC13) I ,v,,.(KBr) 1crn-l nm2 222 ( C 3 ) , 345 Cl*Hl,N,O51 710 (GO),1 625 (GC-0)2 230 ( E N ) ,1710 (C=O),1627 (CkC-0)2 225 ( E N ) ,1710 fC=O).3 362 (OH), 33 1 C,,H,,ClNO,3 350 (OH), 33 1 C,,H,,NO,7 N8.48.2C HReqd.64.65 3.0找到 63.05 3.1要求66.8 3.1找到 66.7 3.14.354.15要求74.75 3.85找到 74.1 3.94.854.81620 ( G C a )3 355 (OH), 342 C, 9H,,N0, Reqd. 71.45 4.12 22s (CZN), 实测值 71.3 4.04.44.35p-MeOC,H, 25 228 319 (M), 304 (M - CH,),288 ( M - OCH,), 291(M -l CO), 262 -'(M - CO - COH)1 710 (C=O),1620 (GC-0)EXPERIMENTALand i.r.data (KBr pelets).~-氰基-a~-未饱和的CaybovGyl化合物[R2CH:C(CN)*COR3].-R3 = Ph的化合物采用适当的醛和氰基苯乙酮之间的Knoevenagel缩合反应制备, 用哌啶分离。新化合物是R2 =fi-C1C6H4(熔点-87“;产率80%)和R2=a-呋喃基(熔点-1 1 7 O;产率75%)的化合物。所有产物均采用熔点、质谱、 22 H. Kaufflnann, BEY., 1917, 50, 5271976表43,3-二烷氧基-5-氰基-3,4二氢-2-吡喃酮 ( 13 ;R3 = Ph) (方案 5)1537收率 M.p.R' R2 (%) (“C) mleMe fi-02W.C&4 95 163 380 (M), 349 (M - OCH,),Me P-C1C6H, 90 125 370/368 (M), 339/337 (M334 (M - H,COCH,)- OCII,), 324/322 (M - H,COCH&Me 1'11 90 154 335 (M), 304 (M - OCH,),289 (M - H,COCH,)Me p-AlcOC,II, 90 164 365 ( M ) , 334 (M - OCH,),319 (M - H,COCH,)Bt 1'11 88 121 363 (M), 318 (M - OC,H,),259 (A[ - H5C20C2H,)vniax.(KBr) /cm-'2 212 (CEN),1745 (C=O),2 210 (CEN),1 745 (M),1 757 (C=O),1753 (C=O),1 630 (C=C-0)1630 (GC-0)2 216 ( E N ) ,1635 (GC-0)2 202 (CEN),1631 ( e C - 0 )1751 (C=O),2 210 (CEN),1636 (GC-0)Yield M.p.(“C)Analyses (%)rC20Hl,N206 Reqd.63.15 4.25Found 63.0 4.25C HC2,Hl,C1N0, 要求 64.95 4.3找到 65.2 4.3C2,Hl,N0, 要求 71.65 5.1找到 71.4 5.1C2,HlDN0, 要求 69.05 5.25发现 68.9 5.2C22H,1N0, 要求 72.7 5.8找到 72.5 6.8表 53-烷氧基-5-氰基-2-吡喃酮 (14;R3 = Ph) (方案 5 )228 348 ( A l ) , 333 (144 - CH,),152 339/337 (M), 3241322 (M317 ( M - OCHJ- CH,), 305/306 (A4303 (M), 288 (A4 - CH,),- OCH,)272 ( M - OCH,)153194 333 (M), 318 (M - CHJ,)124 317 (M), 288 (A1 - C2H5),272 (M - OCZH,)-N77.357.33.83.84.24.13.853.83.853.9分析 (%)Amax.(CHC1,) I, avmaX.(KBr) /cm-l nm C H N2 229 (CEN),1732 (C=O),1606 (GC-0)1731 (C=O),1611 (C=C-0)2 232 (CEN),2 225 ( E N ) ,S 220 (CZN),1735 (C=O),1611 (GC-0)1732 (GO),1 609 (C=C-0)1726 (GO),1610 (c---c-O)2 230 (CEN),295 C19H12N205 Reqd. 66.5 3.45 8.05300 Cl9H,,C1NO, Reqd. 67.55 3.6 4.15找到 67.2 3.6 4.2301 ClgHl,否,要求 75.25 4.3 4.6找到 75.1 4.36 4. 7294 C20Hl,N0, 要求 72.05 4.55 4.2找到 71.9 4.5 4.2303 C2,H15N03 要求75.7 4.75 4.4找到 75.7 4.85 4.4找到 65.7 3.45 8.1表 62,2,3-三烷氧基-5-氰基-2H-吡喃 (16) (方案6)Me p-ClC6H4 73 96 385/383 ( M ) , 2 218 (CEN),370/368 (A1 1639 (C=C-0)- CH,), 354/352( A l - OCHJ- CHJ, 318 (MMe 1'11 92 102 349 (M), 334 (M 2 210 (CZN),Me SIeO*C,H, 90 152 379 (M), 2 210 ( 英 N ) ,1636 (M-0)- OCH,)364 (M - CHJ,348 (M - OCH,)324 (M - CH,),308 (M - OCH,)362 (M - C,H,),346 (M - OC2H5)1639 (GC-0)Me 2-Fury1 90 95 339 (M), 2 210 ( E N ) ,1638 (C=C-0)Et PI1 75 油 391 (M), 2 215 ( E N ) ,1 635 (GC-0)332 C21H,,ClN0, Reqd. 65.7 4.75 3.65 25 “C/Found 65.9 4.8 3.7 8 h332 C2,H1,NO4 Reqd. 72.2 5.5 4.0 Reflux/Found 72.4 5.6 3.9 3 h336 C2,H2,N0, Reqd. 69.65 5.6 3.7 反流1发现 69.3 5.5 3.6 8 h331342Reqd.67.25 5.05 4.15 反流/发现 67.6 5.1 4.1 3 h反流/3 1538 J.C.S. Perkin Ip-氰基肉桂醛 ( R3 = H) 按Wa~serman.~~~制备的对甲氧基化合物(R2 = fi-MeO*C,H,),收率为33%,hadm.p.137".(4)(表1)将四烷氧基乙烯(0.02mol)和@-酰基-@氰基苯乙烯(0.01mol)的混合物加热,无溶剂a t 100“C。1 h后,蒸发掉过量的四烷氧基乙烯,残油从甲醇中结晶出来.aa-二烷氧基-氰基-8-氧代-酯(1 1)(表2).-先前制备的产物(4),溶于二氧六环(35ml)和水(35ml),用浓盐酸(0.3ml)处理并回流1 h.蒸发留下溶解在氯型中的残留物。将溶液用饱和氯化钠溶液洗涤三次(直至中性),干燥(Na,-SO,),过滤,蒸发。5-氰基-3-l~ydroxy-2-pyromx(1,2b)(表3).-使用与前述制备相同的方法,但继续回熔剂24小时。然后除去溶剂,在油状残渣中加入氯仿后析出结晶产物(12b).3,3-二烷基~y-5-氰基-3,4-二氢-2-j1yrones(13)(表4).将细碎的四烷氧基氰基二氢吡喃(4)(1mmol)溶于浓硫酸(5ml)中,在0“C下用ctirring。1小时后将溶液倒在2,2,3,3-四烷氧基-5-青色o-3,4-二氢-2H-吡喃的碎冰上。然后用氯仿将混合物萃取3次,合并的萃取液用饱和氯化钠溶液(未中性)洗涤3次,干燥(Na,SO,),过滤,蒸发。3-A lkoxy-5-氰基-2-吡喃酮(14)(表5).-pro-cedure与前述相同,但将反应混合物搅拌1小时a t 25“C.2,2,3-三烷氧基-5-氰基-SH-吡喃(16)(表6).-甲醇钠(2mmol)加入到四烷氧基氰基二氢吡喃(4)(1mmol)在干燥的1,2-二甲氧基乙烷(10ml)中的溶液中。将混合物搅拌的时间和温度如表6所示。然后蒸发溶液,将残留物溶解在水中。该溶液用氯仿萃取3次,合并提取液用饱和氯化钠溶液洗涤3次,干燥(Na2S04),过滤,蒸发。残余物由甲醇结晶而成。该调查是在荷兰化学研究基金会(S.O.N.)的主持下进行的。在荷兰纯研究促进组织(Z.W.O.)的财政支持下。[5/2518 12月23日收到,1978123 H. H. Wasserman, B. Suryanarayana, and D. D. Grassetti,J . Amer. Cham. SOC., 1956, 78, 2808

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号