首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Double redox couples manganese oxide nanorods with tunable oxygen defects and their catalytic combustion properties
【24h】

Double redox couples manganese oxide nanorods with tunable oxygen defects and their catalytic combustion properties

机译:Double redox couples manganese oxide nanorods with tunable oxygen defects and their catalytic combustion properties

获取原文
获取原文并翻译 | 示例
       

摘要

The activation process of oxygen is a key step for catalytic oxidation reaction. To accelerate the activation of oxygen, tris-valences manganese oxides with two redox couples of Mn2+/Mn3+ and Mn3+/Mn4+ were constructed. The introduction of Zn promoted an enhanced Mn3+/(Mn2++Mn3++Mn4+) ratio and then produced an appropriate stoichiometric compositions for the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. The results indicate that oxygen vacancies, as a significant influence factor for catalytic oxidation, heavily rely on the Mn3+ content of the resultant samples. Based on the double redox couples with suitable stoichiometry, the metal ion modified tris-valences manganese oxides presented an enhanced oxygen vacancies content and a better catalytic performance for toluene oxidation compared with the unmodified sample. This study offers a promising route to construct the manganese oxides with two redox couples synchronously with an enhanced Mn3+/(Mn2++Mn3++Mn4+) ratio and oxygen vacancies, resulting in a decreased activating temperature and an increased catalytic performance.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号