首页> 外文期刊>The Journal of Chemical Physics >Importance learning estimator for the site-averaged turnover frequency of a disordered solid catalyst
【24h】

Importance learning estimator for the site-averaged turnover frequency of a disordered solid catalyst

机译:Importance learning estimator for the site-averaged turnover frequency of a disordered solid catalyst

获取原文
获取原文并翻译 | 示例
           

摘要

For disordered catalysts such as atomically dispersed "single-atom" metals on amorphous silica, the active sites inherit different properties from their quenched-disordered local environments. The observed kinetics are site-averages, typically dominated by a small fraction of highly active sites. Standard sampling methods require expensive ab initio calculations at an intractable number of sites to converge on the site-averaged kinetics. We present a new method that efficiently estimates the site-averaged turnover frequency (TOF). The new estimator uses the same importance learning algorithm [Vandervelden et al., React. Chem. Eng. 5, 77 (2020)] that we previously used to compute the site-averaged activation energy. We demonstrate the method by computing the site-averaged TOF for a simple disordered lattice model of an amorphous catalyst. The results show that with the importance learning algorithm, the site-averaged TOF and activation energy can now be obtained concurrently with orders of magnitude reduction in required ab initio calculations.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号