首页> 外文期刊>mendeleev communications >Stereocontrolled synthesis and cyclization of (+,-)-alpha;,alpha;'-dihydroxy-alpha;,alpha;',beta;-trimethylglutaric acid derivatives
【24h】

Stereocontrolled synthesis and cyclization of (+,-)-alpha;,alpha;'-dihydroxy-alpha;,alpha;',beta;-trimethylglutaric acid derivatives

机译:(+,-)-α,α'-二羟基-α,α',β-三甲基戊二酸衍生物的立体控制合成和环化

获取原文
获取外文期刊封面目录资料

摘要

Mendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47ndash;86) Stereocontrolled synthesis and cyclization of (+,ndash;)- , '-dihydroxy- , ', -trimethylglutaric acid derivatives Igor V. Vystorop,*a Ivan I. Chervin,b Andrei N. Utienyshev,a Carlos Jaime,c Xavier Saacute;nchez-Ruiz,c Sergei M. Aldoshina and Remir G. Kostyanovsky*b a Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation.Fax: +7 096 515 3588; e-mail: vystorop@icp.ac.rub N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 938 2156 c Department de Quiacute;mica, Universitat Autograve;noma de Barcelona, 08193 Bellaterra, Spain. Hydrocyanation of 3-methylpentane-2,4-dione stereospecifically gave trans,trans-iminolactone 1, whose configuration was established by X-ray diffraction of the corresponding lactone 2; the rate of cyclization of the diastereoisomeric lactonic acids 3a,b and their esters 4a,b into dilactone 5 was controlled sterically by the methyl groups with cis,cis-isomers 3b, 4b predominating; alcoholysis of 5 regiospecifically afforded ester 4b.In preceding papers1,2 we have reported the synthesis and stereochemical principles of cyclization in the series of a,a'-dihydroxy-a,a'-dialkylglutaric acids (DDG) derivatives. It was shown that an increase in the size of the alkyl substituents R by replacement of both Me groups with But groups leads to (i) a change of the stereoselectivity in the 1,3-diketone hydrocyanation from the formation of solely meso (R = Me)1 to that of solely (+,ndash;)-DDG derivatives (R = But)2 and (ii) the facilitation of the dilactone C formation from (+,ndash;)-DDG monolactones1,2 owing to an increase in the population of the conformer B, which has functional groups suitably cis-pseudoa, a-oriented for cyclization.In the present report,3 the influence of an additional b-methyl substituent upon the stereocontrolled formation and cyclization of DDG derivatives (R = Me) was investigated. Hydrocyanation of 3-methylpentane-2,4-dione (MPD) was carried out under the described4 reaction conditions (Scheme 1).The only compound obtained was the iminolactone 1. It follows that the introduction of a methyl group at the a-position of pentane-2,4-dione results in a change of the hydrocyanation stereoselectivity, as in the case of dipivaloylmethane.2 In the strong predominant keto-form of MPD (e.g. 97.2 in aqueous medium)5 the anti,anti-conformation (Scheme 1) is prefered6 due to a minimization of both the dipolendash;dipole interactions of the carbonyl groups and the nonbonded 1,2- interactions of the methyl groups. Therefore, the stereospecificity of formation of the intermediate (+,ndash;)- biscyanohydrin (+,ndash;)-BCH may be mainly attributed to the steric control of the a-methyl group upon approach of the attacking nucleophile (CNndash;) to the C=O group of MPD and then of intermediate monocyanohydrin (MCH, Scheme 1, only R,R-enantiomers are shown).Spontaneous cyclization of (+,ndash;)-BCH into the stereoisomer 1, with a trans,trans mutual arrangement of the methyl groups, is the result of repulsive 1,2-interactions between the methyl groups and also by lesser steric hindrance from the b-methyl group upon cyclization of anti-oriented functional groups (Scheme 1).The configuration of iminolactone 1, namely, the cis-orientation of CN and OH groups as well as the preferable pseudo-e-positions of all the methyl groups, was established by an X-ray diffraction studydagger; of the corresponding lactone 2 (Figure 1).The same configuration of lactone 2 in solution was determined by NMR spectroscopyDagger; by comparison of the spinndash;spin coupling constants (3JC,H) with the dihedral angles in the crystal (Figure 1). A mixture of the diastereomeric lactonic acids 3a and 3b (ca. 3 : 2, according to the 1H NMR spectrum) was prepared by hydrolysis of 2 followed by separation by fractional crystallization from acetonendash;benzene.The preference of the isomer 3a formation from intermediate (+,ndash;)-a,a'-dihydroxy- a,a',b-trimethylglutaric acid (+,ndash;)-DTG may be caused by the steric effects of the methyl groups, as in the case of stereocontrolled cyclization of (+,ndash;)-BCH (Scheme 1). The configuration of 3a and 3b assigned (+,ndash;), was confirmed by identification of the alkaline hydrolysis products of 3a,b and 5 with the (+,ndash;)-DTG salt.Dagger; The relative rates of acid-catalysed lactonization of the diastereomeric monolactones 3a and 3b (in the presence of CF3CO2H) as well as their esters 4a and 4b (TsOH, Scheme 1) to the unsymmetrical dilactone 5 were estimated by 1H NMR through the lsquo;half-livesrsquo; of the reactants.It was found that the cis,cis-isomers 3b and 4b react 8 and 4 times faster than do the trans,trans-isomers 3a and 4a, respectively. In contrast to the (+,ndash;)-DDG derivatives, the relative acceleration of cyclization of 3b and 4b cannot be explained by an increase in the population of the conformer B (the Cohen model9 of stereopopulation control), because this conformer strongly predominates over the conformer A in 3a (90.4) and 4a (91.7) in contrast to 3b (27.8) and 4b (28.8).The populations of conformers A and B were calculated using Allingerrsquo;s MM2(91) program,10 an improved version of the MM2(77) force field,11 and confirmed by spectroscopyDagger; of 3a and 4a (3JC-1,3-H and 3JC-5,3-H). dagger; Crystal data for 2: C8H11NO3, M =169.18, monoclinic, space group P21/c, a =11.140(2), b =13.334(3), c =12.266(2)Aring;, b =86.97(3)deg;, V =1819.5(3)Aring;3, Dc =1.235gcmndash;3, Z =4.Intensities of 3840 independent reflections with I 2s(I) were collected on an automatic four-circle diffractometer KM-4 using MoKa radiation. The structure was solved by the direct method (SHELX-86 program7) and refined by full-matrix least-squares technique in anisotropic approximation for non-hydrogen atoms.H atoms were defined in the difference Fourier synthesis. The final value of R-factor is 0.044. The characteristic feature of crystal packing of 2 is the presence of centrosymmetric dimer associates of R,R- and S,S-enantiomers (Figure 1), linked by intermolecular hydrogen bonds (IMHB): (i) O(2)middot;middot;middot;H(2a)=2.03Aring;, O(2)middot;middot;middot;O(3a)=2.858Aring;, C(1)=O(2)middot;middot;middot;H(2a) = 154.5deg;, O(2)middot;middot;middot;H(2a)ndash;O(3a)=171.6deg;, E1 =ndash;2.4kcalmolndash;1; (ii) O(2a)middot;middot;middot;H(2)=2.00Aring;, O(2a)middot;middot;middot;O(3) = 2.842 Aring;, C(1a)=O(2a)middot;middot;middot;H(2)=154.4deg;, O(2a)middot;middot;middot;H(2)ndash; O(3)=172.6deg;, E2 =ndash;2.7kcalmolndash;1.The IMHB energies (E1 and E2) (1 cal=4.184J) were calculated by a reported method.8 Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC).See Notice to Authors, Mendeleev Commun., 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 1135/14. a a a a b O R R O HO CO2R' O R R O HO CO2R' O O R R O H+ O A B C R = Me, But; R' = H, MeMendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47ndash;86) Dagger; Spectroscopic data IR (CHCl3) nmax/cmndash;1, 1H NMR (400.13MHz), 13C NMR (100.62MHz) (data in square brackets were obtained under conditions of {4-Me}), d/ppm, J/Hz for 1: yield 36.2; mp 149ndash;150 deg;C (from diethyl ether); IR: 1708 (C=N); 1HNMR (CDCl3) d 1.31 (3H, d, 3J 7.0, 3-Me), 1.48 (3H, s, 2-Me), 1.75 (3H, s, 4-Me), 1.98 (1H, q, 3-H). For 2: yield 83.5; mp 81ndash;82 deg;C (from benzene); IR: 1798 (C=O); 1H NMR (CDCl3) d 1.35 (3H, d, 3J 7.0, 3-Me), 1.46 (3H, s, 2-Me), 1.81 (3H, s, 4-Me), 2.06 (1H, q, 3-H); 13C NMR (CHCl3) d 7.03 dq (3-Me, 1J 128.6, 2J 4.4), 20.99 dq (2-Me, 1J 127.9, 3J3-H 2.5), 24.56 dq (4-Me, 1J 131.5, 3J3-H 4.4), 49.93 dm (C-3, 1J 130.8, J 3.6), 73.32 m (C-2, J 4.4), 78.03 m (C-4, J 5.1, dq, 2J 4.4, 3J 5.8), 117.02 dq (C-5, 3J3-H 8.7, 3J4-Me 4.4 d, 3J3-H 8.7), 175.50 q (C-1, 3J2-Me 4.4, 3J3-H 0.5).For 3a: yield 25; mp 119ndash;120 deg;C (from acetonendash;benzene); IR: 1786 C(1)=O, 1718 C(5)=O; 1H NMR (2H6acetone) d 1.14 (3H, d, 3J 7.3, 3-Me), 1.35 (3H, s, 2-Me), 1.61 (3H, s, 4-Me), 2.27 (1H, q, 3-H); 13C NMR (2H6acetone) d 7.20 dq (3-Me, 1J 127.9, 2J 4.4), 21.96 dq (Me, 1J 127.9, 3J3-H 3.6), 22.52 dq (Me, 1J 129.3, 3J3-H 5.1), 50.21 dm (C-3, 1J 130.0, J 4.4), 73.35 m (C-2, J 4.4), 84.76 m (C-4, J 5.1), 172.95 dq (C-5, 3J3-H 7.3, 3J4-Me 4.0), 176.61 q (C-1, 3J2-Me 4.4, 3J3-H 0.5).For 3b: yield 21; mp 148ndash;149 deg;C (from acetonendash;benzene); IR: 1784 C(1)=O, 1734 C(5)=O; 1H NMR (2H6acetone) d 1.11 (3H, d, 3J 7.3, 3-Me), 1.34 (3H, s, 2-Me), 1.50 (3H, s, 4-Me), 2.76 (1H, q, 3-H); 13C NMR (2H6acetone) d 9.13 dq (3-Me, 1J 127.2, 2J 3.6), 19.00 dq (2-Me, 1J 129.3, 3J3-H 2.9), 20.27 dq (4-Me, 1J 127.9, 3J3-H 2.4), 46.62 dm (C-3, 1J 133.0), 75.04 m (C-2, J 5.1, J 7.3), 82.94 m (C-4 dq, 2J 4.4, 3J 4.4), 173.10 dq (C-5, 3J3-H 4.4, 3J4-Me 4.4 d, 3J3-H 4.4), 176.67 dq (C-1, 3J3-H 4.4, 3J2-Me 4.0).For 4a: yield 86; mp 71ndash;72 deg;C (from light petroleum); IR: 1788 C(1)=O, 1728 C(5)=O; 1H NMR (CDCl3) d 1.07 (3H, d, 3J 7.0, 3-Me), 1.42 (3H, s, 2-Me), 1.64 (3H, s, 4-Me), 2.10 (1H, q, 3-H), 3.83 (3H, s, OMe).For 4b: yield 84; mp 88ndash;89 deg;C (from light petroleum); IR: 1786 C(1)=O, 1742 C(5)=O; 1H NMR (CDCl3) d 1.11 (3H, d, 3J 7.0, 3-Me), 1.40 (3H, s, 2-Me), 1.53 (3H, s, 4-Me), 2.79 (1H, q, 3-H), 3.79 (3H, s, OMe). For 5: yield 55, mp 48ndash;49 deg;C (from diethyl ether); IR: 1823 (C=O), 1808 (C=O); 1HNMR (CDCl3) d 1.09 (3H, d, 3J 6.7, 7-Me), 1.58 (3H, s, 4-Me), 1.63 (3H, s, 1-Me), 2.52 (1H, q, 7-H); 13C NMR (CDCl3) d 6.07 dq (7-Me, 1J 128.6, 2J 2.9), 10.88 q and 10.98 q (1-Me and 4-Me, 1J 129.3 and 1J 129.3), 54.96 m (C-7, 1J 135.2), 86.49 m and 88.70 m (C-1 and C-4), 170.77 q (C-3, 3J4-Me 4.4 s, 3J7-H 0.3), 170.87 dq (C-6, 3J7-H 7.3, 3J1-Me 4.4).(+,ndash;)-DTG salt from 3a,b and 5; 1H NMR (D2Ondash;KOH) d 0.93 (3H, d, 3J 7.0, b-Me), 1.23 and 1.32 (3H and 3H, 2s, a-Me and a'-Me), 2.45 (1H, q, b-H). Compounds 1ndash;5 gave satisfactory elemental analyses. On the other hand, by comparison of the MM2 models of the B conformer of 3a (or 4a), 3b (or 4b) and 5, the reaction rate enhancement observed for isomers 3b, 4b may be explained as follows.Firstly, the proximity of the reacting atoms the nonbonded O(3)ndash;C(5) distance is smaller in 3b, 4b (2.88 Aring;) compared to 3a (3.04 Aring;) and 4a (3.06 Aring;) (the Menger12 postulate of proximity factor). Secondly, the cyclization of 3b (or 4b), with the formation of the cycle C of 5, probably proceeds via a less sterically hindered diastereomeric transition state (or tetrahedral intermediate) compared to that for 3a (or 4a) cyclization, leading to a more strain cycle D closure (Scheme 1).This is confirmed by a decreasing in both the non-bonded contacts between the carbon atoms of the vicinal methyl groups (3.21 and 3.22 Aring;) and the torsional strain of the Cndash;Me bonds {jMendash;C(1)ndash;C(7)ndash;Me = 60.3deg;; jMendash;C(4)ndash; C(7)ndash;Me = ndash;60.5deg;} in 5 compared to that for 3b {2.92 and 2.94 Aring;; jMendash;C(2)ndash;C(3)ndash;Me) = 35.5deg;, jMendash;C(3)ndash;C(4)ndash; Me=ndash;30.5deg;} and in contrast with that for 3a (3.30 and 3.39 Aring;; ndash;77.2deg;, 84.2deg;). Moreover, the van der Waals 1,2-interactions between the methyl groups results in the increase of B conformer puckering of the g-lactone ring of 3b and 4b (ring-puckering amplitude13 tm is 35.1deg;) unlike that of 3a (33.5deg;) and 4a (32.9deg;). This is one cause of the enforced proximity of the reacting centres in 3b, 4b.Interestingly, alcoholysis of the dilactone 5 proceeds with only a ring C opening (Scheme 1) which is probably due to a steric control of the bridged 7-Me group. Thus, the relative acceleration of cyclization of (+,ndash;)-DTG monolactones is observed for the e,a,e-B-form (pseudo-e,a,eorientation of the methyl groups), contrary to what might be Figure 1 The structure of dimer associate of lactone 2 (dotted lines indicate possible H-bonds).Selected dihedral angles (deg;) in molecules I and Ia respectively: C(1)C(2)C(3)H(1) 79.9 and ndash;75.5, C(6)C(2)C(3)H(1) ndash;43.9 and 47.8, C(5)C(4)C(3)H(1) 165.8 and ndash;162.6, C(8)C(4)C(3)H(1) 40.4 and ndash;37.3. H(1a) C(8a) C(7a) C(3a) C(4a) O(1a) C(2a) O(2a) C(6a) C(1a) C(5a) N(a) H(2a) O(3a) H(2) N O(3) C(5) C(6) O(2) C(1) C(2) O(1) C(4) C(3) C(7) H(1) C(8) I Ia O O HO CO2R Me Me H Me O Me Me O HO CO2R H Me O Me HO CN X Me H Me Me Me OH NC H Me O Me Me OH NC H Me CN OH Me Me OH HO2C H Me CO2H OH O Me Me O HO CO2R Me H O O HO CO2R Me Me Me H H Me Me Me O O i, ii iii iv v vi HCN ndash;HCN v' O O Me O O Me H Me C D D C MCH (+,ndash;)-BCH 1 X=NH 2 X = O A B 3a R = H (+,ndash;)-DTG 5 A B 3b R = H Scheme 1 Reagents and conditions: i, KCNndash;H2O, ndash;10deg;C; ii, aq.HCl (34), ndash;15 to ndash;10 deg;C; iii, aq. HCl (10), 6 h, 20 deg;C; iv, aq. HCl (25), 3 h, reflux; then CH2N2ndash;diethyl ether; v,v', CF3COOH or TsOHndash;toluene, reflux; vi, MeOH, 0.5 h, 50deg;C. 1 2 3 4 5 1 2 3 4 5 6 7 b MPD 4a R=Me 4b R=Me 1 2 3 4 5 aMendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47ndash;86) expected for the e,e,e-B-form on the basis of previous studies.1,2 This work was supported by the Russian Foundation for Basic Research (grant no. 94-03-08730) and the International Science Foundation (grant no. MCO 300). References 1 R. G. Kostyanovsky, V. P. Leshchinskaya, Yu. I. Elrsquo;natanov, A. E. Aliev and I. I. Chervin, Izv.Akad. Nauk SSSR, Ser. Khim., 1989, 408 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 355). 2 I. V. Vystorop, Yu. I. Elrsquo;natanov and R. G. Kostyanovsky, Izv. Akad. Nauk, Ser. Khim., 1992, 1591 (Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 1227). 3 I. V. Vystorop, C. Jaime, X. Sanchez-Ruiz, I. I. Chervin and R. G. Kostyanovsky, Book of Abstracts of the 13th IUPAC Conference on Physical Organic Chemistry, Inchon, Korea, 1996, p. 126. 4 N. D. Zelinsky and L. A. Chugaev, Chem. Ber., 1895, 28, 2940. 5 C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca and London, 1969, ch.XI. 6 G. K. Schweitzer and E. W. Benson, J. Chem. Eng. Data, 1968, 13, 452. 7 G. M. Sheldrick, SHELX86, Program for Crystal Structure Determination, University of Cambridge, UK, 1986. 8 G. V. Timofeeva, N. Yu. Chernikova and P. M. Zorkii, Usp. Khim., 1980, 49, 966 (Russ. Chem. Rev., 1980, 49, 509). 9 S. Milstien and L. A. Cohen, J. Am. Chem. Soc., 1972, 94, 9158. 10 Version MM2(91) program is available from QCPE, University of Indiana, Bloomington, IN 47405, USA. 11 N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127. 12 F. M. Menger, Acc. Chem. Res., 1985, 18, 128. 13 N. S. Zefirov and V. A. Palyulin, Dokl. Akad. Nauk SSSR, 1980, 252, 111 Dokl. Chem. (Engl. Transl.), 1980, 252, 207. Received: Moscow, 11th October 1996 Cambridge, 4th December 1996; Com. 6/07094I
机译:门捷列夫通讯电子版,第 2 期。1997年(第47-86页) (+,–)-,'-二羟基-,',-三甲基戊二酸衍生物的立体控制合成和环化 伊戈尔·维斯托罗普,*a 伊万·切尔文,b 安德烈·乌蒂尼雪夫,a 卡洛斯·海梅,c 泽维尔·桑切斯-鲁伊斯,c 谢尔盖·阿尔多希纳和雷米尔·科斯佳诺夫斯基*b a 俄罗斯联邦莫斯科地区切尔诺戈洛夫卡切尔诺戈洛夫卡142432切尔诺戈洛夫卡化学物理研究所。 +7 096 515 3588;电子邮件:vystorop@icp.ac.rub N. N. Semenov化学物理研究所,俄罗斯科学院,117977,俄罗斯联邦莫斯科。传真: +7 095 938 2156 c Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.3-甲基戊烷-2,4-二酮立体特异性氢氰化得到反式,反式亚氨基内酯1,其构型由相应内酯2的X射线衍射确定;以顺式,顺式异构体3B,4B为主的甲基在空间上控制非对映异构乳酸3A,B及其酯类4A,B环化为地内酯5的速率;醇解 5 区域特异性提供酯 4b。在之前的论文1,2中,我们报道了a,a'-二羟基-a,a'-二烷基戊二酸(DDG)衍生物系列环化的合成和立体化学原理。结果表明,通过用Table基团取代两个Me基团来增加烷基取代基R的尺寸,导致(i)1,3-二酮氢氰化反应的立体选择性从仅形成内消旋(R = Me)1变为仅形成(+,–)-DDG衍生物(R = But)2和(ii)促进二内酯C的形成从(+,-)-DDG单内酯1,2由于构象者B的种群增加,其具有适当的顺假官能团,a-定向于环化。在本报告3中,研究了额外的b-甲基取代基对DDG衍生物(R = Me)的立体控制形成和环化的影响。3-甲基戊烷-2,4-二酮(MPD)的氢氰化反应在所述4反应条件下进行(方案1)。唯一获得的化合物是亚氨基内酯1。因此,在戊烷-2,4-二酮的a位引入甲基会导致氢氰化立体选择性的变化,如二戊酰甲烷.2在MPD的强优势酮形式(例如在水性介质中为97.2%)5中,由于羰基的偶极-偶极相互作用和甲基的非键合1,2-相互作用最小化,因此首选抗,反构象(方案1)6。因此,中间体(+,–)-双氰基丙烷[(+,–)-BCH]形成的立体特异性可能主要归因于攻击亲核试剂(CN–)接近MPD的C=O基团,然后是中间单氰醇时对a-甲基的空间控制(MCH,方案1,仅显示R,R-对映异构体)。(+,–)-BCH自发环化成立体异构体1,甲基的反式,反式互排,是甲基之间排斥1,2-相互作用的结果,也是在反取向官能团环化时b-甲基的空间位阻较小(方案1)。亚氨基内酯 1 的构型,即 CN 和 OH 基团的顺式取向以及所有甲基的优选赝 e 位,是通过对相应内酯 2 的 X 射线衍射研究确定的†(图 1)。通过核磁共振波谱‡,通过比较晶体中的自旋-自旋耦合常数(3JC,H)和二面角,确定了溶液中内酯2的相同构型(图1)。通过水解2,然后通过丙酮-苯分馏分离来制备非对映异构乳酸3a和3b(根据1H NMR谱图,约3:2)的混合物。异构体3a从中间体(+,–)-a,a'-二羟基-a,a',b-三甲基戊二酸[(+,–)-DTG]形成的偏好可能是由甲基的空间效应引起的,如(+,–)-BCH的立体控制环化(方案1)。通过用(+,–)-DTG盐鉴定3a,b和5的碱性水解产物,确认了3a和3b的构型(+,–)。 非对映异构体单内酯3a和3b(在CF3CO2H存在下)及其酯4a和4b(TsOH,方案1)的酸催化内酯化速率通过1H NMR通过反应物的“半衰期”估计。结果发现,顺式,顺式异构体3b和4b的反应速度分别是反式,反式异构体3a和4a的8倍和4倍。与(+,–)-DDG衍生物相比,3b和4b环化的相对加速不能用构象者B的种群增加来解释(立体种群控制的Cohen模型9),因为该构象者在3a(90.4%)和4a(91.7%)中强烈优于构象A,而3b(27.8%)和4b(28.8%)则相反。使用Allinger的MM2(91)程序10(MM2(77)力场的改进版本)11计算构象A和B的种群,并通过3a和4a(3JC-1,3-H和3JC-5,3-H)的光谱‡确认。† 2的晶体数据:C8H11NO3,M =169.18,单斜晶系,空间群P21/c,a =11.140(2),b =13.334(3),c =12。266(2)Å, b =86.97(3)°, V =1819.5(3)Å3, Dc =1.235gcm–3, Z =4.采用MoKa辐射在全自动四圆衍射仪KM-4上采集了I>2s(I)的3840次独立反射强度.采用直接法(SHELX-86程序7)求解结构,并采用全矩阵最小二乘法对非氢原子进行各向异性近似细化。H原子在差分傅里叶合成中被定义。R 因子的最终值为 0.044。2晶体堆积的特征是存在R,R-和S,S-对映异构体的中心对称二聚体缔合物(图1),通过分子间氢键(IMHB)连接:(i)O(2)···H(2a)=2.03Å, O(2)···O(3a)=2.858Å, C(1)=O(2)···H(2a) = 154.5°, O(2)···H(2a)–O(3a)=171.6°,E1=–2.4kcalmol–1;(ii) O(2a)···H(2)=2.00Å, O(2a)···O(3) = 2.842 Å, C(1a)=O(2a)···H(2)=154.4°, O(2a)···H(2)– O(3)=172.6°, E2 =–2.7kcalmol–1.IMHB 能量 (E1 和 E2) (1 cal=4.184J) 通过报告的方法计算.8 原子坐标、热参数以及键长和角度已存放在剑桥晶体学数据中心 (CCDC)。见《作者须知》,门捷列夫公社,1997年第1期。向CCDC索取本材料的任何请求均应引用完整的文献引用和参考编号1135/14。a a a a b O R R O HO CO2R' O R R O HO CO2R' O O R R O H+ O A B C R = 我,但是;R' = H,MeMendeleev Communications 电子版,第 2 期。1997 年(第 1997 页。47–86) ‡ 1的光谱数据[IR(CHCl3)nmax/cm–1,1H NMR(400.13MHz),13C NMR(100.62MHz)(方括号内的数据是在{4-Me}条件下获得的),d/ppm,J/Hz]:收率36.2%;熔点 149–150 °C (来自乙醚);红外线:1708 (C=N);1HNMR (CDCl3) d 1.31 (3H, d, 3J 7.0, 3-Me), 1.48 (3H, s, 2-Me), 1.75 (3H, s, 4-Me), 1.98 (1H, q, 3-H).对于2:收率83.5%;熔点 81–82 °C(以苯计);红外线:1798 (C=O);1H NMR (CDCl3) d 1.35 (3H, d, 3J 7.0, 3-Me), 1.46 (3H, s, 2-Me), 1.81 (3H, s, 4-Me), 2.06 (1H, q, 3-H);13C NMR (CHCl3) d 7.03 dq (3-Me, 1J 128.6, 2J 4.4), 20.99 dq (2-Me, 1J 127.9, 3J3-H 2.5), 24.56 dq (4-Me, 1J 131.5, 3J3-H 4.4), 49.93 dm (C-3, 1J 130.8, J 3.6), 73.32 m (C-2, J 4.4), 78.03 m (C-4, J 5.1, [dq, 2J 4.4, 3J 5.8]), 117.02 dq (C-5, 3J3-H 8.7, 3J4-Me 4.4 [d, 3J3-H 8.7])、175.50 q (C-1, 3J2-Me 4.4, 3J3-H <0.5).对于3a:收率25%;熔点 119–120 °C(来自丙酮-苯);IR:1786 [C(1)=O],1718 [C(5)=O];1H NMR([2H6]丙酮)d 1.14(3H,d,3J 7.3,3-Me),1.35(3H,s,2-Me),1.61(3H,s,4-Me),2.27(1H,q,3-H);13C NMR ([2H6]丙酮) d 7.20 dq (3-Me, 1J 127.9, 2J 4.4), 21.96 dq (Me, 1J 127.9, 3J3-H 3.6), 22.52 dq (Me, 1J 129.3, 3J3-H 5.1), 50.21 dm (C-3, 1J 130.0, J 4.4), 73.35 m (C-2, J 4.4), 84.76 m (C-4, J 5.1), 172.95 dq (C-5, 3J3-H 7.3, 3J4-Me 4.0), 176.61 q (C-1, 3J2-Me 4.4, 3J3-H<0.5)。对于3b:收率21%;熔点 148–149 °C(来自丙酮-苯);IR:1784 [C(1)=O],1734 [C(5)=O];1H NMR ([2H6]丙酮) d 1.11 (3H, d, 3J 7.3, 3-Me), 1.34 (3H, s, 2-Me), 1.50 (3H, s, 4-Me), 2.76 (1H, q, 3-H);13C NMR ([2H6]丙酮) d 9.13 dq (3-Me, 1J 127.2, 2J 3.6), 19.00 dq (2-Me, 1J 129.3, 3J3-H 2.9), 20.27 dq (4-Me, 1J 127.9, 3J3-H 2.4), 46.62 dm (C-3, 1J 133.0), 75.04 m (C-2, J 5.1, J 7.3), 82.94 m (C-4 [dq, 2J 4.4, 3J 4.4]), 173.10 dq (C-5, 3J3-H 4.4, 3J4-Me 4.4 [d, 3J3-H 4.4])、176.67 dq (C-1、3J3-H 4.4、3J2-Me 4.0)。对于4a:收率86%;熔点 71–72 °C(来自轻质石油);IR:1788 [C(1)=O],1728 [C(5)=O];1H NMR (CDCl3) d 1.07 (3H, d, 3J 7.0, 3-Me), 1.42 (3H, s, 2-Me), 1.64 (3H, s, 4-Me), 2.10 (1H, q, 3-H), 3.83 (3H, s, OMe).对于4b:收率84%;熔点 88–89 °C(来自轻质石油);IR:1786 [C(1)=O],1742 [C(5)=O];1H NMR (CDCl3) d 1.11 (3H, d, 3J 7.0, 3-Me), 1.40 (3H, s, 2-Me), 1.53 (3H, s, 4-Me), 2.79 (1H, q, 3-H), 3.79 (3H, s, OMe).对于5:收率55%,熔点48–49°C(来自乙醚);IR:1823 (C=O)、1808 (C=O);1HNMR (CDCl3) d 1.09 (3H, d, 3J 6.7, 7-Me), 1.58 (3H, s, 4-Me), 1.63 (3H, s, 1-Me), 2.52 (1H, q, 7-H);13C NMR (CDCl3) d 6.07 dq (7-Me, 1J 128.6, 2J 2.9), 10.88 q 和 10.98 q (1-Me 和 4-Me, 1J 129.3 和 1J 129.3), 54.96 m (C-7, 1J 135.2), 86.49 m 和 88.70 m (C-1 和 C-4), 170.77 q (C-3, 3J4-Me 4.4 [s, 3J7-H < 0.3]), 170.87 dq (C-6, 3J7-H 7.3, 3J1-Me 4.4)。(+,–)-DTG盐,来自3a,b和5;1H NMR (D2O–KOH) d 0.93 (3H, d, 3J 7.0, b-Me), 1.23 和 1.32 (3H 和 3H, 2s, a-Me 和 a'-Me), 2.45 (1H, q, b-H)。化合物1-5给出了令人满意的元素分析。另一方面,通过比较3a(或4a)、3b(或4b)和5的B构象体的MM2模型,观察到的异构体3b、4b的反应速率增强可以解释如下。首先,与3a(3.04 Å)和4a(3.06 Å)相比,3b、4b(2.88 Å)中反应原子的接近度[非键合O(3)–C(5)距离]较小(邻近因子的Menger12假设)。其次,与3a(或4a)环化相比,3b(或4b)的环化,以及5的循环C的形成,可能通过空间位阻较小的非对映异构体过渡态(或四面体中间体)进行,导致更多的应变循环D闭合(方案1)。与3b {2.92和2.94 Å;j[Me–C(1)–C(7)–Me])相比,5中的c[Me–C(1)–C(7)–Me]= 60.3°;j[Me–C(4)– C(7)–Me] = –60.5°}的5中,j[Me–C(4)– C(7)–Me] = –60.5°}证实了这一点{2.92和2.94 Å; j[Me–C(2)–C(3)–Me]) = 35.5°, j[Me–C(3)–C(4)– Me]=–30.5°},与3a(3.30和3.39 Å;–77.2°,84.2°)形成鲜明对比。此外,与3a(33.5°)和4a(32.9°)不同,甲基之间的范德华1,2-相互作用导致3b和4b的g-内酯环的B构象皱纹增加(环皱振幅13 tm为35.1°)。这是3b、4b中反应中心强制接近的原因之一。有趣的是,地内酯 5 的醇解仅以环 C 开口(方案 1)进行,这可能是由于桥接 7-Me 基团的空间控制。因此,观察到 (+,–)-DTG 单内酯的环化相对加速为 e,a,e-B 形式(甲基的伪 e,a,e取向),与图 1 内酯 2 的二聚体缔合结构相反(虚线表示可能的 H 键)。分子I和Ia中选定的二面角(°):C(1)C(2)C(3)H(1)79.9和–75.5,C(6)C(2)C(3)H(1)–43.9和47.8,C(5)C(4)C(3)H(1)165.8和–162.6,C(8)C(4)C(3)H(1)40.4和–37.3。H(1a) C(8a) C(7a) C(3a) C(4a) O(1a) C(2a) O(2a) C(6a) C(1a) C(5a) N(a) H(2a) O(3a) H(2) N O(3) C(5) C(6) O(2) C(1) C(2) O(1) C(4) C(3) C(7) H(1) C(8) I Ia O O HO CO2R Me Me H Me O Me Me O HO CO2R H Me O MeHO CN X Me H Me Me Me OH NC H Me O Me OH NC H ME CN OH ME OH HO2C H Me CO2H OH O ME O HO CO2R Me H O O HO CO2R Me H H Me Me O O i , ii iii iv v vi HCN –HCN v' O O Me O O Me H Me C D D C MCH (+,–)-BCH 1 X=NH 2 X = O A B 3a R = H (+,–)-DTG 5 A B 3b R = H 方案 1 试剂和条件:i,KCN–H2O,–10°C;II,水溶液。HCl (34%),-15 至 -10 °C;iii, HCl水溶液(10%),6小时,20°C;iv, HCl水溶液(25%),3小时,回流;然后是CH2N2-乙醚;v,v',CF3COOH或TsOH-甲苯,回流;vi, MeOH, 0.5 h, 50°C. 1 2 3 4 5 1 2 3 4 5 6 7 b MPD 4a R=Me 4b R=Me 1 2 3 4 5 a门捷列夫通讯电子版,第2期。1997 年(第 1997 页。47–86)在先前研究的基础上,e,e,e-B-形式的预期.1,2这项工作得到了俄罗斯基础研究基金会(批准号94-03-08730)和国际科学基金会(批准号)的支持。MCO 300)。参考文献 1 R. G. Kostyanovsky, V. P. Leshchinskaya, Yu.I. El'natanov、AE Aliev 和 I. I. Chervin、Izv.Akad。Nauk SSSR, Ser. Khim., 1989, 408 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 355)。2 I. V. Vystorop, Yu.I. El'natanov 和 R. G. Kostyanovsky,Izv。阿卡德。Nauk, Ser. Khim., 1992, 1591 (Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 1227)。3 I. V. Vystorop, C. Jaime, X. Sanchez-Ruiz, I. I. Chervin and R. G. Kostyanovsky, Book of Abstracts of the 13th IUPAC Conference on Physical Organic Chemistry, Inchon, Korea, 1996, p. 126.4 N. D. Zelinsky 和 L. A. Chugaev,Chem. Ber.,1895 年,第 28 页,第 2940 页。5 C. K. Ingold,《有机化学的结构和机制》,康奈尔大学出版社,伊萨卡和伦敦,1969年,第5章。XI. 6 G. K. Schweitzer 和 E. W. Benson, J. Chem. Eng. Data, 1968, 13, 452.7 G. M. Sheldrick,SHELX86,晶体结构测定程序,英国剑桥大学,1986年。8 G. V. Timofeeva, N. Yu.切尔尼科娃和 P. M. Zorkii,USP。Khim., 1980, 49, 966 (Russ. Chem. Rev., 1980, 49, 509)。9 S. Milstien 和 L. A. Cohen, J. Am. Chem. Soc., 1972, 94, 9158.10 版本 MM2(91) 程序可从美国印第安纳大学布卢明顿分校 QCPE 获得 47405。11 N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127.12 F.M.Menger, Acc. Chem. Res., 1985, 18, 128.13 N. S. Zefirov 和 V. A. Palyulin, Dokl.阿卡德。Nauk SSSR, 1980, 252, 111 [Dokl. Chem. (Engl. Transl.), 1980, 252, 207]。收稿日期: 莫斯科,1996 年 10 月 11 日 剑桥,1996 年 12 月 4 日;通讯 6/07094I

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号