首页> 外文期刊>The Journal of Chemical Physics >Solvation and transport of lithium ions in deep eutectic solvents
【24h】

Solvation and transport of lithium ions in deep eutectic solvents

机译:Solvation and transport of lithium ions in deep eutectic solvents

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium based deep eutectic solvents (DESs) are excellent candidates as eco-friendly electrolytes for lithium ion batteries. While some of these DESs have shown promising results, a clear mechanism of lithium ion transport in DESs is not yet established. This work reports the study on the solvation and transport of lithium in a DES made from lithium perchlorate and acetamide using Molecular Dynamics (MD) simulation and inelastic neutron scattering. Based on hydrogen bonding (H-bonding) of acetamide with neighboring molecules/ions, two states are largely prevalent: (1) acetamide molecules that are H-bonded to lithium ions (similar to 36%) and (2) acetamide molecules that are entirely free (similar to 58%). Analyzing their stochastic dynamics independently, it is observed that the long-range diffusion of the former is significantly slower than that of the latter. This is also validated from the neutron scattering experiment on the same DES system. Furthermore, the analysis of the lithium dynamics shows that the diffusion of acetamide molecules in the first category is strongly coupled to that of lithium ions. On an average, the lithium ions are H-bonded to similar to 3.2 acetamide molecules in their first solvation. These observations are further bolstered through the analysis of the H-bond correlation function between acetamide and lithium ions, which shows that similar to 90% of lithium ionic transport is achieved by vehicular motion where the ions diffuse along with their first solvation shell. It is also observed that the ionic motions are largely uncorrelated and the conductivity of lithium ions in the DES is found to be 11 mS/cm. The findings of this work are an important advancement in understanding solvation and transport of lithium in the DES.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号