...
首页> 外文期刊>Computational mathematics and mathematical physics >Hodograph Method for Solving the Overturned Shallow Water Problem
【24h】

Hodograph Method for Solving the Overturned Shallow Water Problem

机译:Hodograph Method for Solving the Overturned Shallow Water Problem

获取原文
获取原文并翻译 | 示例
           

摘要

The behavior of overturned shallow water (a layer of water on the ceiling) described by a system of two first-order quasilinear partial differential equations is studied using the hodograph method based on a conservation law. The basic difference of these equations from the classical shallow water ones is that the force of gravity varies in direction. It is assumed that the fluid layer is "glued" to the horizontal solid surface and the gravity is directed away from the surface. As a result, the equations become elliptic. The considered evolution Cauchy problem is a model describing an unstable continuous medium of the quasi-Chaplygin gas type. By applying the developed method, the evolution Cauchy problem for the system of two first-order quasilinear partial differential equations is transformed into the Cauchy problem for a system of ordinary differential equations. The behavior of a stationary plane fluid layer subject to a spatially periodic smooth perturbation is considered as an example. It is shown that a nonsmooth spatially periodic structure representing a standing cnoidal wave develops on the fluid surface over a finite time interval.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号