首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Chemistry and occurrence of taxane derivatives. Part 16. Rearranged taxoids fromTaxustimes;mediaRehd. cv Hicksii. X-Ray molecular structure of 9-O-benzoyl-9,10-dide-O-acetyl-11(15 rarr; 1)abeo-baccatin VI
【24h】

Chemistry and occurrence of taxane derivatives. Part 16. Rearranged taxoids fromTaxustimes;mediaRehd. cv Hicksii. X-Ray molecular structure of 9-O-benzoyl-9,10-dide-O-acetyl-11(15 rarr; 1)abeo-baccatin VI

机译:紫杉烷衍生物的化学和发生。第 16 部分。重新排列了来自 Taxus×mediaRehd 的 taxoids。简历 Hicksii.9-O-苯甲酰基-9,10-二-O-乙酰基-11(15 → 1)abeo-baccatin VI的X射线分子结构

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. soc. PERKIN TRANS. 1 1994 Chemistry and Occurrence of Taxane Derivatives. Part 16.' Rearranged Taxoids from Taxus x media Rehd. cv Hicksii. X-Ray Molecular Structure of 9-0-Benzoyl-9,lO-dide-0-acetyl-I 1(15 -1)abeo-baccatin VI Luciano Barboni," Pierluigi Gariboldi,'ea Elisabetta Torregiani.a Giovanni AppendinO? Giancarlo Cravotto,b Ezio Bombardelli,c Bruno GabettaC and Davide Viterbod a Dipartimento di Scienze Chimiche, Via S. Agostino 7, 62032 Camerino (MC), Italy Dipartimento di Scienza e Tecnologia del Farmaco, Via Giuria 9,70725 Torino, Italy lndena S.p.A., Via Ripamonti 99, 20747 Milano, Italy Dipartimento di Chimica lnorganica, Chimica Fisica e Chimica dei Materiali, Via Giuria 7, 70125 Torino, Italy The roots of Taxus x media Rehd. cv Hicksii gave four new taxoids of the abeo 11(1 5 -1 )-type (2-5).Structures were elucidated by spectroscopic techniques, including X-ray analysis for compound 4. Compound 2 is conformationally fixed, whereas compounds 3-5 exist in solution as a mixture of rotamers, whose interconversion was investigated by variable-temperature NMR spectroscopy. Compound 2 has a C-13, C-15 oxygen bridge, and is the first natural taxoid with a b-oxygen function at C-13. 1 1 (15 -1)abeo-Taxanes are an emerging major structural type of taxoids.' Brevifoliol 1 was the first compound of this type isolated,' but its rearranged structure was recognised only Compound 1 is available in large amounts from HO--@13~15 the needles of Taxus breuifolia Nutt.,' whereas the other compounds of this type isolated to date are only minor 'OH H iBZc) e o 20constituents of yew extracts.All 11( 15 +1)abeo-taxanes 17 HO l6 17 isolated to date bear a hydroxy group at C-15, whereas compounds of the A1'*16-type have been obtained only from 1 2 the acid rearrangement of 1-hydroxylated taxanes.6-8 In spite of their widespread occurrence, 11(1 5 --+ 1)abeo-taxanes escaped detection for a long time, probably because of (i) their low concentration and (ii) some ambiguities in their NMR AcO-analysis. Indeed, the NMR spectra of abeo-taxanes are often very broad at room temperature, and of limited utility for structure el~cidation.~.~ Furthermore, when sharp 'H NMR spectra are observed, chemical shifts, multiplicities and NOE effects are similar to those of their corresponding taxanes, and a 3 R1=R4=H, R2=R3=Ac clear-cut distinction cannot be made without 13CNMR data.2 4 R'=Ac, R2=Bz, R3=R4=H As a result, several abeo-taxanes were originally reported as 5 R'=R3=Ac, R2=amp; R4=H1-hydroxylated taxanes.' As part of an ongoing investigation into taxoids from various 6 R' = Fl'l= CbCCONHCO, R2= R3= AC yew species, we report the isolation of four new abeo-taxanes from the roots of Taxus x media Rehd.cv Hicksii. This 7 R' = R3 = Ac, R2= Bz. R4= CIamp;CONHCO ornamental yew is popular as landscape material, and is extensively cultivated in nurseries. Previous studies had shown the presence of taxol and some related taxanes in this cultivar. *1 Results and Discussion The crystalline compounds 2-5 were obtained after repeated chromatographic separation of fractions containing baccatin VI 913 as the major constituent.? Compound 2 (C35H42012) showed sharp NMR spectra at room temperature.The presence of acetoxy groups at C-7, C-9, C-10 and of a benzoyloxy group 9 at C-2 was evident from the presence of diagnostical 'H and 13C signals (Tables 1 and 2) and the detection of a long-range 'H-carbonyl. The signals of the 4-acetoxy-5(20)-oxetane moiety "C correlation between the C-2 methine and the benzoate were also evident from the 'H and 13C NMR spectra. A rearranged abeo-taxane structure (singlet at 6 67.1)' and two t Full spectroscopical data on baccatin VI are not available in the additional oxygenated carbons S 81.4 (d) and 78.6 (s), C-13 literature, and are reported in Tables 1 and 2.and C-15 respectivelyl were also present. Since compound 2 3234 J. CHEM. SOC. PERKIN TRANS. 1 1994 Table 1 'H NMR spectra of compounds 2,3,7,9 (300 MHz; CDCl,; 6, in ppm from internal SiMe, ~ ~~ H 2 3" 7 9 2 3 5 6a 6.62 d (7.6) 3.26 d (7.6) 4.93 dd (9.9, 5.2) 2.46 m 6.60 d (8.0) 2.38 d (8.0) 4.72 dd (8.0,2.7) 2.37 m 6.47 d (7.3) 3.12 d (7.3) 4.93 d (7.2) 2.68 m 5.85 d (6.2) 3.16 (d (6.2) 4.95 br d (8.9) 2.48 m 6P 2.00 m 1.97 m 1.80 m 1.84 m 7 9 10 13 14a 16 14P 5.32 dd (12.5, 5.5) 5.00 d (5.7) 6.01 d (5.7) 4.37 br d (1.8) 1.67 br d (8.2) 2.20 dd (8.2, 1.8) 0.94 s 5.26 br s 20 5.94 br s 40 6.18 d (9.3) 5.60 t (7.6) 2.29 dd (14.0, 7.0) 2.49 dd (14.0, 7.3) 1.13 s 5.55 dd (7.9, 7.2) 6.11 d (10.6) 6.48 d (10.6) 5.75 br t (7.3) 2.04 dd (14.7, 7.4) 2.54 dd (14.7, 7.2) 1.66 s 5.50 dd (9.7, 7.8) 5.98 d (1 1.5) 6.20 d (1 1.5) 6.14 dt (8.6, 1.4) 2.20 m 1.76 s 17 1.08 s 1.13 s 1.58 s 1.21 s 18 19 1.78 s 1.74 s 1.85 s 1.69 s 1.93 s 1.79 s 2.01 d (1.4) 1.58 s 20a MeCO 2OP 4.25 d (7.8) 4.56 d (7.8) 2.22, 2.17, 1.99, 1.98 s 3.96 d (7.8) 4.56 d (7.8) 2.15, 2.07, 2.03, 1.99 s 4.16 d (7.3) 4.38 d (7.3) 2.19, 2.18, 1.76, 1.62 s 4.31 d (8.3) 4.10 d (8.3) 2.27,2.17,2.09,2.08, 1.98 s 4-OH 2.70 s 15-OH 2.44 s 2',6' 3'3' 4' 8.09 d (7.3) 7.62 t (7.3) 7.49 t (7.3) 7.95 d (7.8) 7.46 t (7.8) 7.59 t (7.8) 8.01 d (7.8), 7.97 d (7.8) 7.64 t (7.Q 7.62 t (7.8) 7.49 t (7.8), 7.48 t (7.8) 8.09 d (7.7) 7.46 t (7.7) 7.59 t (7.7) a 50 "C.Values in square brackets are linewidths in Hz. Table 2 NMR spectra of compounds 2,3,7,9 (75.43 MHz; CDCl,; 6, in ppm from internal SiMe,) C 2 3" 7 9 1 67.1 s 67.9 s (24) 67.9 s 78.8 s 2 65.8 d 69.8 d (1 5) 67.6 d 73.2 d 3 44.9 d 49.4 d (1 6) 44.1 d 47.2 d 4 82.0 s 73.7 s (26) 83.6 s 81.5 s 5 84.0 d 86.4 d 84.6 d 83.8 d 6 31.8 t 34.0 t (15) 34.8 t 34.5 t 7 70.5 d 70.8 d 70.4 d 71.7 d 8 43.4 s 43.3 s 43.8 s 45.7 s 9 73.2 d 76.2 d (1 8) 77.8 d 75.0 d 10 65.8 d 68.3 d 67.1 d 70.3 d 11 133.6s 136.5s (15) 135.1 s 133.6 s 12 148.0 s 146.3s (65) 148.9 s 141.2 s 13 81.4 d 79.7 d 78.1 d 69.6 d 14 45.8 t 36.8 t 36.7 t 35.1 t 15 78.6 s 75.4 s 78.8 s 42.7 s 16 26.0 q 26.1 q (50) 22.5 q 22.2 q 17 28.6 q 28.0 q (12) 22.3 q 28.2 q 18 11.8 q 11.9q 12.1 q 14.9 q 19 13.1 q 12.8 q 13.6 q 12.7 q 20 77.5 t 78.8 t (28) 74.3 t 76.3 t MeCO 21.8 q, 21.2 q, 21.1 q, 21.1 q, 22.0 q, 21.7 q, 22.7 q, 21.3 q, 21.1 q, 20.6 q 20.6 q, 20.6 q 21.1 q, 20.6q 21.2 q, 20.9 q, 20.7 q MeCO 170.0 s, 169.9 s, 170.9 s, 169.9 s, 170.6 s, 170.0 s, 170.4, s, 170.1 s, 169.3s, 168.7 s 169.4 s, 167.9 s 168.9 s, 168.9 s 169.8 s, 169.1 s, 168.8s 1' 129.9 s 129.7 s 129.3, 128.7 s 129.2 s 2',6' 130.0 d 129.4 d 130.4, 129.7 d 130.1 d 3'3' 128.8 d 128.1 d 128.8, 128.6 d 128.6 d 4' 133.7 d 133.6 d 134.0, 134.0 d 133.6 d 7' 166.4 s 165.5 s 168.9, 165.9 s 166.9 s acylcarbamate 159.3 s, 148.8 s, 91.0 s " 50 "C.Values in parentheses are linewidths in Hz. an observation consistent had no hydroxy groups (IR spectroscopy) and one additional oxygen bridge, and thus 13-H is CC, unsaturated degree had yet to be accounted for, the presence of with its unusual splitting pattern (br d, J 1.8 Hz).Compound 2is an oxygen bridge between these two oxygenated carbons the first natural taxoid with a P-oxygenated function at C-13,I4 seemed likely. This was unambiguously confirmed by the and the oxygen bridge between C-13 and C-15 is presumably functiondetection of a long-range correlation between 13-H and C-15. formed by SN2-type displacement of a 13~~-oxygenated Stereochemical constraints require a p-orientation for the by the tertiary C-15 hydroxy group. Ring B has a twist-chair J. CHEM. SOC. PERKIN TRANS.I 1994 H9 RO OR OH A B Fig. 1 Newman projection along C,,-C, and endocyclic torsion- angle sequence (Bucourt notation) of ring B in abeo-taxanes. A: twist-boat conformation; B: twist-chair conformation (ref. 15). conformation in compound 2, with the oxygen function at C-9 and C-10 pseudoaxial and 9-H and 10-H pseudoequatorial (J,,,o 5.7 Hz) (Fig. 1). This arrangement is different from that found in taxanes, where ring B has a twist-boat conformation and 9-H and 10-H are pseudoaxial (J -10 Hz).~ In taxoids, values of J9,10 -5 Hz can be misleading as regards the configuration at C-9 and C-10. Both cis and trans protons can in fact display values of this type, depending on the conformation of ring B.* In compound 2, a rotating frame NOE (ROESY) cross-peak between the C-19 methyl and 9-H and between the C-16 (pro-R)i methyl and the acetate at C-10 confirmed the trans relationship between 9-H and 10-H.The splitting pattern of 5-H in compound 2 (dd, J 9.0 and 5.2 Hz) is also somewhat unusual, since in oxetane-type taxoids this proton resonates as a broad doublet or as a doublet of narrow doublets. The 'H NMR spectrum of compound 3 (C3amp;4013) was rather broad at room temperature, but heating to 50deg;C sharpened all signals with the exception of those for 7-H and 9-H. In the I3C NMR spectrum taken at this temperature, only one set of lines was present, although some of them were rather broad ( 10-65 Hz). Compound 3 was stable at 50 "C, and its NMR spectra could be fully assigned at this temperature by mono-and bi-a241 C(251 Fig. 2 Molecular structure of compound 4 f0.25 ppm, respectively) could be rationalised in terms of anisotropic deshielding from the newly introduced carbamate carbonyl at C-4, in the concave face of the molecule.Acetylation of the C-15 hydroxy group is instead responsible for the downfield shift of the gem-dimethyl groups (Ab +0.48 and +0.51 for 16-H and 17-H, respectively). J,, measured at 50 OC, under conditions of fast exchange, was 9.7 Hz, only slightly lower than normal (10-11 Hz). This indicates that the conformational equilibrium of compound 3 is highly biased, with a large predominance of the rotamer with ring B in a twist- boat conformation. The biscarbamate derivative 6 displayeddimensional techniques (COSY, ROESY, J and 233Jc-Hsharp NMR spectra at room temperature, suggesting that correlations).A singlet at 6 67.9 in the 13C NMR spectrum indicated an abeo-taxane structure,2 and multiplicity and coupling patterns of all protons and carbons were identical with those of abeo-baccatin VI 8.17 Comparison of the molecular formulae revealed that compounds 3 and 8 differ by the absence of one acetyl group in compound 3. All esters group of compound 3 were bound to methine carbons (chemical-shift considerations and diagnostic JC-Hcorrelations). Therefore C-15 and C-4 bear free hydroxy groups, and compound 3 is 4-0-deacetyl-aheo-baccatin VI. This was confirmed by the formation of a biscarbamate 6 by in situ reaction with trichloroacetyl isocyanate (TAI).* The downfield acylation shifts observed for 3-H, 5-H and 7-H (Ad +0.78, +0.30 and * A value of 5.5 Hz for J9,10was reported in a synthetic taxane having a cis 9,lO-diolsystem (ref. 16). t The numbering of the gem-dimethyls of abeo-taxanes is ambiguous; we suggest considering the methyl pointing toward ring B (pro-R methyl, when the hydroxy group is oriented toward the oxygen function at C-10) C-16, and the other, pointing toward ring A (pro3 methyl, when the hydroxyisopropyl side chain is oriented as above) C-17. This numbering maintains the topological relationship between the methyls and the rest of the diterpenoid core observed in taxanes, although prochirality descriptors are inverted, owing to changes in prochirality .intramolecular hydrogen bonding plays a role in the conformational equilibration of compound 3 (see below). Compound 4 (C4oH4amp;1 3) showed very broad NMR spectra at room temperature, where most signals were featureless humps. Upon cooling to -40 "C, a spectrum containing two sets of sharper signals was obtained, whereas heating to 120 "C was required to get fast exchange and one set of signals. The spectrum at low temperature was too complex, and compound 4 was not stable enough at 120deg;C to allow thorough spectroscopic characterisation to be made. Eventually, crystals suitable for an X-ray analysis were obtained. The results showed that compound 4 is an abeo-baccatin VI derivative lacking the C-10 0-acetyl and with a benzoate in place of the acetate at C-9.The asymmetric unit is made up of two independent molecules having similar conformations. Only one of them is shown in Fig. 2. In the solid state, ring B adopts a twist-boat conformation and ring C an almost ideal 1,2-diplanar (= sofa) conformation. Both hydroxy groups are involved in hydrogen bonds: the one at C-10 acts as a donor toward that at C-15, which in turn acts as a donor toward the C-9 benzoate carbonyl of another molecule. A packing analysis showed that these are the only short contacts found in the structure. Acetylation of compound 4 gave the monoacetyl derivative 5, identical with a compound isolated from the fractions J. CHEM. SOC. PERKIN TRANS.1 1994 I I I I I I I I 6.0 5.5 5.0 4.5 4.0 3.5 3.0 9+12 I I I I 6.5 6.0 5.5 5.0 10+2 1 I I I I6.5 6.0 5.5 5.0 Fig. 3 'H NMR spectra of compound 5: (a) at room temperature; (b) at (CDCI,; 300 MHz). * Minor rotamer. containing compounds 2-4. The 'H NMR spectrum of tetraacetate 5 showed two sets of broad signals at room temperature, which sharpened upon cooling. At -20 "C two sets of sharp signals in a -4:l ratio were observed (Fig. 3), and all signals could be assigned. The value of Jg,lowas 10.4 Hz in the major rotamer and 4.7 Hz in the minor one. Thus, ring B has a twist-boat conformation with diequatorial ester groups at C-9, C-10 in the major rotamer and a twist-chair conformation with these group diaxial in the minor rotamer.An in situ reaction of compound 5 and TAI gave the carbamate 7, whose NMR spectra were sharp at room temperature (Fig. 3) and could be fully assigned. J9,10(1 1.5 Hz) showed that ring B adopts a twist-boat conformation in carbamate 7. The conformational features of abeo-taxanes 2-5 are dif- ferent. Compound 2 is anancomeric (conformationally fixed) and adopts a ring B twist-chair conformation to avoid a severe steric interaction between the pro-R methyl at C- 15 (1 6-H) and 9-H. Compounds 3-5 are instead each a mixture of rotamers, whose equilibration is governed by several factors, the major one being the formation of intramolecular hydrogen bonding between the hydroxy group at C-15 and the oxygen function at C-10.The a-hydroxyisopropyl group of abeo-taxane adopts a conformation that mimics the gem-dimethyl bridge of taxane: the pro-S methyl points towards ring A, and the other methyl towards ring B, allowing the formation of hydrogen bonding between the hydroxy group at C-15 and the C-10 oxygen. This arrangement is found in the solid-state conformation of both compound 4 and all the abeo-taxanes investigated by X-ray crystallography.2*20.t' Depending on the acylation state of the oxygen function at C-10, the hydroxy group at C-15 can act as a donor (acyloxy group at C-10) or as an acceptor (hydroxy at C-10) of hydrogen bonding. The existence of this arrangement also in solution is consistent with the ROE pattern of the geminal methyls and with the presence of an ROE correlation between 9-H and the 15-hydroxy proton.2 The C-15 hydroxy I I I I 4.5 4.0 3.5 3.0 I I I I4.5 4.0 3.5 3.0 6, -20 "C;(c)after addition of TAI (ie.,during formation of compound 7) group and the oxygen at C-10 are much closer when ring B adopts a twist-chair conformation, to the point that an oxygen bridge can form between C-15 and C-lO.'** Therefore, intra- molecular hydrogen bonding between the oxygen functions at C-15 and C-10 is expected to stabilise the twist-chair conformation more than the twist-boat.Acylation of the C-15 hydroxy group gives anancomeric compounds, since this hydrogen bonding is not possible any more, and the twist-boat conformation, having diequatorial oxygen functions at C-9 and C-10, is the only detectable conformation in solution (cf: carbamates 6 and 7).Since the abeo-taxane skeleton has a crowded topology, functionalities can strongly interact with each other, and the conformational equilibration of ring B is also affected by the formation of additional intramolecular hydrogen bonds as well as by the nature of the ester groups. Free hydroxy groups at C-4 and C-10, as in compounds 3 and 4, can act as hydrogen- bonding donors toward ester carbonyls at C-13 and C-9 respectively, and the phenyl ring of benzoate esters can be involved in lipophobic interactions. This subtle interplay of functionalities is responsible for the wide range of temperatures over which fast exchange is observed in abeo-taxanes (e.g., 50 "C for 3, 120 "C for 4).In oxetane-type taxoids, ring C is conformationally biased on account of the presence of the oxetane ring. In brevifoliol-type abeo-taxanes, where a C-4-C-20 double bond is present, ring C is instead flexible and the conformational analysis of these compounds is therefore more complex. Our results suggest that the broad NMR spectra sometimes observed in abeo-taxanes are related to stabilisation of the 'unusual' twist-chair conformation of ring B by intramolecular hydrogen bonding between the tertiary hydroxy group at C-15 and the oxygen function at C-10. Acylation of the tertiary hydroxy group at C- 15 gives anancomeric compounds, whose spectra are amenable to routine structure elucidation. The isolation of baccatin VI 9 and the abeo-taxanes 24from J.CHEM. soc. PERKIN TRANS. 1 1994 T. x media confirms the trend, already observed in other yew species, that taxanes and abeo-taxanes generally show different acylation patterns. Benzoylation at C-9, as in compounds 4 and 5, and deacylation at C-4, as in compound 3, are in fact unprecedented within baccatin VI derivatives. Baccatin VI has been obtained from at least four different species of yew. 13*21,22 abeo-Baccatin VI is still unknown as a natural product, since only partially deacylated or more benzoylated derivatives have been isolated. Migration of ester groups from 0-9 to 0-10 is documented in taxoids under conditions similar to the isolation procedure,23 and compound 4 may thus be an extraction artefact derived from the corresponding C-10 benzoate, a hitherto unknown compound.Experimental M.p.s were determined on a Biichi SMP 20 apparatus; optical rotations were measured on a Perkin-Elmer 24 1 polarimeter; a,-values are given in units of lo-' deg cm2 g-'; UV spectra were recorded on a Beckmann DB-GT spectrophotometer, IR spectra on a Perkin-Elmer model 127 spectrophotometer, EIMS spectra on a VG EQ apparatus, and 'H and 13C NMR spectra on a Varian UNITY 300 spectrometer operating at 299.94 MHz for 'H and 75.43 MHz for 13C; J-values are given in Hz. Silica gel LiChroprep Si 60 (1 5-25 pm, Merck) was used for medium-pressure (5-1 5 bar) column chromatography and silica gel 60 (70-230 mesh, Merck) for atmospheric-pressure column chromatography.HPLC purifications were carried out using a Hewlett-Packard series 1050 instrument equipped with an HP 1047 A refractive index detector; a Waters microporasil column (0.8 x 30 cm) was used for compounds 2 and 3, and a Waters Delta Pack C,, column (0.78 x 30 cm) for compounds 4 and 5. Commercially available roots of Taxus x media Rehd. cv Hicksii were identified by Dr. U. Boni (Indena S.p.A); a voucher specimen is kept at the Indena labs, Milano, Italy. Isolation of Compounds.-Finely ground roots (1 200 kg) were stirred at room temp. with MeOH-water (1 :1) and filtered. Counter-current extraction of the percolates with CH2C12 provided, after evaporation to dryness, a residue (28 kg), which was chromatographed on silica gel and eluted with toluene- Me2C0 (9:1),Three fractions A (12 kg), B (3.9 kg) and C (8 kg) were collected.Fraction B was chromatographed on silica gel and eluted with cyclohexane-Me2C0 (6 :4); fractions D (0.5 kg) and E (0.4 kg) were obtained. A portion (20 g) of fraction E was chromatographed on silica gel (hexane containing increasing amounts of EtOAc as eluent). Fractions eluted with hexane-EtOAc (1 : 1) gave a mixture of taxoids (2.7g), which was further separated by column chromatography to give baccatin VI 9 (290 mg) and a mixture of compounds 2 and 3, which were separated by HPLC hexane-EtOAc (6 :4) to give compounds 2 (42 mg) and 3(36 mg). 13-Deacetoxy-13,15-epoxy-1 1(15 ---+ 1)abeo- 13-epi-baccatin VI 2 (42 mg, 7 x lo-' ), powder, m.p.150deg;C (decomp.); a? +23.9 (c 0.58, CHCl,) (Found: C, 64.4; H, 6.4. C35H42012 requires C, 64.2; H, 6.5); A,,,(EtOH)/nm 230 and 265; v,,,(KBr)/cm-' 1745, 1720, 1370, 1240, 1040,995 and 710; m/z (negative ions) 654 (M-, 100). 4-De-0-acetyl-1 1 (15 -1)abeo-baccatin V1 3 (36 mg, 6 x lo-' ), powder, m.p. 222 "C (decomp.); aj$' -73.1 (c 0.33, CHC1,) (Found: C, 62.4; H, 6.7. Camp;4amp;13 requires C, 62.5; H, 6.6); A,,,(EtOH)/nm 230 and 268; v,,,(KBr)/cm-' 3550, 1730, 1380, 1240, 1200, 980 and 720; m/z (negative ions) 672 (M-, 100). Baccatin VI 9 (290 mg, 4.8 x lo4 ), m.p. 236-237 "C (from MeCN-water) (lit.,', 244-245 "C); a;' -8.7 (c 0.92, 3237 CHCl,) (lit.,I3 -5) (Found: C, 62.3; H, 6.7. Calc.for C37H46014: C, 62.2; H, 6.5). A portion (6 g) fraction D was chromatographed on a silica gel column (medium pressure) and eluted with CHC1,-MeOH (97: 3). The first twenty fractions were collected (2.7 g) and chromatographed at medium pressure with hexane-Me,CO (7 :3) as eluent; a crude mixture (580mg) containing compounds 4 and 5 was obtained. This mixture was chromatographed by HPLC MeCN-water-MeOH (75 :25 :4) to afford crude compounds 4 and 5. After final purification by HPLC MeCN- water-MeOH (70: 30 :4) and MeCN-water (7 :3) for com-pounds 4 and 5, respectively the dibenzoates 4 (35 mg) and 5 (40mg) were obtained. 9-0-Benzoyl-9,lO-dide-0-acetyl-1 1 (15 -+ 1)abeo-baccatin V14 (35 mg, 2.4 x lo4 ), m.p. 238 "C(from MeOAc-hexane); a;' -30.5 (c 0.91, CHCl,) (Found: C, 65.3; H, 6.2.C40H46013 requires C, 65.4; H, 6.3); A,,,(EtOH)/nm 232 and 265; v,,,(Nujol)/cm-' 3300, 1720, 1240, 1020 and 715; m/z (negative ions) 735 (M-, 100). 9-0-Benzoyl-9-de-O-acetyl-11(15-1)abeo-baccatin V1 5 (40 mg, 2.8 x lo4 ), oil; aj$O -32.5 (c 0.92, CHCl,) (Found: C, 64.9; H, 6.3. C42H4amp;14 requires C, 64.9; H, 6.2); A,,,(EtOH)/nm 230 and 265; v,,,(Nujol)/cm-' 3290, 1720, 1240, 1025 and 720; m/z (negative ions) 777 (M-, 100). Reaction of Compounds 3 and 5 with TAL-An excess TAI was added to an NMR tube containing a solution of substrate 3 or 5. The formation of the carbamate derivatives was monitored by 'H NMR spectroscopy, and the reaction was complete in 4 h. The solution of these carbamates was stable for several days.X-Ray Analysis.-Diffraction data were collected with a Siemens P4 diffractometer equipped with a graphite mono- chromator. The intensities were measured by o-scan with variable speed; the cell parameters were obtained and refined from 35 reflections. The intensities were corrected for background and Lorentz-polarisation effects, but no correction was applied for absorption. The structure was solved by direct methods using the SIR92 All subsequent calcul- ations were carried out by the SHELXTL IRIS ~ystern.~' The structure was refined by full-matrix least-squares techniques. Not all non-hydrogen atoms could be assigned anisotropic thermal parameters because of the limited number of observed reflections, due to the poor quality of the crystals; the phenyl and methyl groups were thus treated as fixed groups with hydrogen atoms in calculated positions.Atomic co-ordinates, bond lengths, angles, torsion angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. Crystal data. C4oH4amp;13, M = 734.8, monoclinic, space group P2,, a = 9.233(3), b = 19.819(7), c = 21.098(6) A; = 99.01(2)"; Z = 4, D, = 1.282 (Mg rn-,); Mo-Ka radi- ation, A = 0.710 69 A, p = 0.096 mm-'; R = 0.104 for 3273 observed reflections having F 4.0a(F). References 1 Part 15, G. Appendino, M. Varese, P. Gariboldi and B. Gabetta, Tetrahedron Lett., 1994,35,22 17. 2 G.Appendino, L, Barboni, P. Gariboldi, E. Bombardelli, B.Gabetta and D. Viterbo, J. Chem. SOC.,Chem. Commun., 1993, 1587. 3 F. Blaza, S. Tachibana, H. Barrios and G. N. H. Towers, Phytochemistry, 1991,30, 1613. 4 G. I. Georg, S. R. Gollapudi, G. L. Grunewald, C. W. Gunn, R. H. Himes, B. K.Rao, X.Z. Liang, Y.W. Mirhom, L. A. Mitscher, D. G. Vander Velde and 0.M. Ye, Biorg.Med. Chem. Lett., 1993,3,1345. 5 A. Chu, J.Zajicek, G. H. N.Towers,C. M. Coucy-Breau, N. G. Lewis and R. Croteau, Phytochemistry, 1993,34,269. 6 G. Samaranayake, N. F. Magri, C. Jitrangsri and D. G. 1. Kingston, J. Org. Chem., 1991,56,5114. 7 A. Wahl, F. Gueritte-Voegelein, D. Guenard, M. T. Le Goff and P. Potier, Tetrahedron, 1992,48, 6966. 8 G. Appendino, H. C. Ozen, P. Gariboldi, E. Torregiani, B. Gabetta, R.Nizzola and E. Bombardelli, J. Chem. Soc., Perkin Trans. I, 1993, 1563. 9 G. Appendino, S. Tagliapietra, H. C. Ozen, P. Gariboldi, B. Gabetta and E. Bombardelli, J. Nat. Prod., 1993, 56, 514. 10 G. Kriissmann, Handbuch der Nadelgeholze, Verlang Paul Parey, Berlin, 1983, pp. 317-333. 11 L. Barboni, P. Gariboldi, E. Torregiani, G. Appendino, B. Gabetta and E. Bombardelli, Phytochemistry, 1994, 36,987. 12 G. Appendino, G. Cravotto, R. Enriu, P. Gariboldi, L. Barboni, E. Torregiani, B. Gabetta, G. Zini and E. Bombardelli, J.Nat. Prod., 1994,57,607. 13 D. P. Della Casa de Marcano and T. G. Halsall, J. Chem. SOC., Chem. Commun., 1975, 365. 14 D. G. I. Kingston, A. A. Molinero and J. M. Rimoldi, in Prog. Chem. Org. Nat. Prod., 1993,61, 1-206.15 E. Toromanoff, Tetrahedron, 1980,36,2809. 16 K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Clairbome, J. Renaud, E. A. Couladouros, K. Paulvannan and E. J. Sorensen, Nature, 1994,367,630. J. CHEM. SOC. PERKIN TRANS. 1 1994 17 G. Appendino, G. Cravotto, R. Enriu, J. Jakupovic, P. Gariboldi, B. Gabetta and E. Bombardelli, Phytochemistry, 1994, 36,407. 18 Z. Samek and M. Budesinsky, Collect. Czech. Chem. Commun., 1979, 44,558. 19 M. J. 0. Artenius, Conformational Analysis, Scope and Present Limitations, Academic Press, New York, 1971, p. 32. 20 K. Fuji, K. Tanaka, B. Li, T. Shingu, H. Sun and T. Taga, Tetrahedron Lett., 1992,33, 79 15. 21 B. Li, K. Tanaka, K. Fuji, H. Sun and T. Taga, Chem. Pharm. Buff., 1993,41, 1672. 22 2.D. Min, H. Jiang and J. Y. Liang, Acta Pharm. Sin., 1989,24,673. 23 G. Appendino, P. Gariboldi, A. Pisetta, E. Bombardelli and B. Gabetta, Phytochemistry, 1992,31,4253. 24 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994,27,435. 25 SHELXTL IRIS, Siemens Analytical X-Ray Instruments Inc., Madison, WY, 1990. Paper 4/01 777C Received 24th March 1994 Accepted 6th July 1994
机译:J. CHEM. soc. PERKIN TRANS. 1, 1994 紫杉烷衍生物的化学和发生。第 16 部分。重新排列了来自 Taxus x media Rehd 的 Taxoids。简历 Hicksii.9-0-苯甲酰基-9,lO-二-二-乙酰基-I 1(15 -1)abeo-baccatin VI Luciano Barboni的X射线分子结构,“Pierluigi Gariboldi,'ea Elisabetta Torregiani.a Giovanni AppendinO?Giancarlo Cravotto,b Ezio Bombardelli,c Bruno GabettaC and Davide Viterbod a Dipartimento di Scienze Chimiche, Via S. Agostino 7, 62032 Camerino (MC), 意大利 Dipartimento di Scienza e Tecnologia del Farmaco, Via Giuria 9,70725 Torino, 意大利 lndena S.p.A., Via Ripamonti 99, 20747 Milano, 意大利 Dipartimento di Chimica lnorganica, Chimica Fisica e Chimica dei Materiali, Via Giuria 7, 70125 都灵, 意大利 红豆杉 x media Rehd 的根源。cv Hicksii 给出了 abeo 11(1, 5, -1, )型 (2-5) 的四个新类单元。通过光谱技术阐明结构,包括化合物 4 的 X 射线分析。化合物 2 在构象上是固定的,而化合物 3-5 以旋转体的混合物形式存在于溶液中,通过变温 NMR 波谱研究了其相互转化。化合物 2 具有 C-13、C-15 氧桥,是第一个在 C-13 处具有 b 氧功能的天然紫杉类。1 1 (15 -1)紫杉烷是一种新兴的主要结构类型的紫杉烷。Brevifoliol 1 是第一个分离出的此类化合物,但其重排结构仅被识别为 化合物 1 可大量获得 HO--@13~15 红豆杉 Nutt 的针叶。“,而迄今为止分离出的其他此类化合物仅是红豆杉提取物的次要 'OH H iBZc) e o 20 成分。迄今为止分离出的所有 11( 15 +1) 紫杉烷 17 HO l6 17 在 C-15 处都带有羟基,而 A1'*16 型化合物仅从 1 2 1-羟基化紫杉烷的酸重排中获得.6-8 尽管它们广泛存在,但 11(1 5 --+ 1)abeo-紫杉烷在很长一段时间内都没有被发现, 可能是因为 (i) 它们的浓度低,以及 (ii) 它们的 NMR AcO 分析中的一些歧义。事实上,紫杉烷的核磁共振波谱在室温下通常非常宽,对结构el~cidation的效用有限.~.~ 此外,当观察到尖锐的'H NMR波谱时,化学位移、多重性和NOE效应与其相应的紫杉烷相似,如果没有13CNMR数据,就无法进行3 R1=R4=H,R2=R3=Ac的明确区分.2 4 R'=Ac, R2=Bz,R3=R4=H 因此,最初报道的几种紫杉烷为5 R'=R3=Ac,R2=&R4=H1-羟基紫杉烷。作为对各种 6 R' = Fl'l= CbCCONHCO、R2= R3= AC 红豆杉物种的紫杉类植物进行的持续研究的一部分,我们报告了从 Taxus x media Rehd.cv Hicksii 的根中分离出四种新的紫杉烷。这种7 R' = R3 = Ac, R2= Bz. R4= CI&CONHCO观赏红豆杉作为景观材料很受欢迎,在苗圃中广泛种植。先前的研究表明,该品种中存在紫杉醇和一些相关的紫杉烷类。*1 结果与讨论 对以baccatin VI 913为主要成分的馏分进行反复色谱分离后,得到结晶化合物2-5。化合物2(C35H42012)在室温下显示出清晰的NMR波谱。从诊断性'H和13C信号的存在(表1和表2)和检测到长程'H-羰基,可以看出C-7、C-9、C-10处存在乙酰氧基,C-2处存在苯甲酰氧基9。从'H和13C NMR谱图中,C-2甲胺和苯甲酸盐之间的4-乙酰氧基-5(20)-氧杂环丁烷部分“C相关性的信号也很明显。在额外的含氧碳中没有重排的abeo-紫杉烷结构(单线态在6 67.1)'和2 t baccatin VI的完整光谱数据[S 81.4(d)和78.6(s),C-13文献,并在表1和表2中报道,C-15也分别存在。由于化合物 2 3234 J. CHEM. SOC. PERKIN TRANS. 1 1994 表 1 '化合物 2,3,7,9 的 H NMR 谱图(300 MHz;CDCl,;6、内部SiMe的ppm,~ ~~ H 2 3“ 7 9 2 3 5 6a 6.62 天 (7.6) 3.26 天 (7.6) 4.93 DD (9.9, 5.2) 2.46 米 6.60 天 (8.0) 2.38 天 (8.0) 4.72 滴 (8.0,2.7) 2.37 米 6.47 天 (7.3) 3.12 天 (7.3) 4.93 天 (7.2) 2.68 米 5.85 天 (6.2) 3.16 (天 (6.2) 4.95 千里 天(8.9) 2.48 米 6P 2.00 米 1.97 米 1.80 米 1.84 米 7 9 10 13 14a16 14P 5.32 DD (12.5, 5.5) 5.00 D (5.7) 6.01 D (5.7) 4.37 BR D (1.8) 1.67 BR D (8.2) 2.20 DD (8.2, 1.8) 0.94 S 5.26 BR S [20] 5.94 BR S [40] 6.18 D (9.3) 5.60 T (7.6) 2.29 DD (14.0, 7.0) 2.0 49 DD (14.0, 7.3) 1.13 秒 5.55 DD (7.9, 7.2) 6.11 D (10.6) 6.48 D (10.6) 5.75 BR T (7.3) 2.04 DD (14.7, 7.4) 2.54 DD (14.7, 7.2) 1.66 秒 5.50 DD (9.7, 7.8) 5.98 D (1 1.5) 6.20 D (1 1.5) 6.14 dt (8.6, 1.4) 2.20 米 1.76 秒 17 1.08 秒 1.13 秒 1.58 秒 1.21 秒 18 19 1.78 秒 1.74 秒 1.85 秒 1.69 秒 1.93 秒 1.79 秒2.01 天 (1.4) 1.58 秒 20a MeCO 2OP 4.25 天 (7.8) 4.56 天 (7.8) 2.22, 2.17, 1.99, 1.98 秒 3.96 天 (7.8) 4.56 天 (7.8) 2.15, 2.07, 2.03, 1.99 秒 4.16 天 (7.3) 4.38 天 (7.3) 2.19, 2.18, 1.76, 1.62 秒 4.31 天 (8.3) 4.10 天 (8.3) 2.27,2.17,2.09,2.08, 1.98 秒 4-OH 2.70 秒 15-OH 2.44 秒 2',6' 3'3' 4' 8.09 天 (7.3) 7.62 吨 (7.3) 7.49 吨 (7.3) 7.95 天 (7.8) 7.46 吨 (7.8) 7.59 吨 (7.8) 8.01 天 (7.8), 7.97 天 (7.8) 7.64 吨 (7.Q 7.62 吨 (7.8) 7.49 吨 (7.8), 7.48 吨 (7.8) 8.09 天 (7.7) 7.46 吨 (7.7) 7.59 吨 (7.7) 一个 50 “C.方括号中的值是线宽,单位为Hz。 表2 化合物2,3,7,9的NMR谱图(75.43 MHz;CDCl,;6,以 ppm 为单位,来自内部 SiMe,) C 2 3“ 7 9 1 67.1 s 67.9 s 67.9 s (24) 67.9 s 78.8 s 2 65.8 d 69.8 d (1 5) 67.6 d 73.2 d 3 44.9 d 49.4 d (1 6) 44.1 d 47.2 d 4 82.0 s 73.7 s (26) 83.6 s 81.5 s 5 84.0 d 86.4 d 84.6 d 83.8 d 6 31.8 t 34.0 t (15) 34.8 t 34.5 t 7 70.5 d70.8 天 70.4 天 71.7 天 8 43.4 秒 43.3 秒 43.8 秒 45.7 秒 9 73.2 天 76.2 天 (1 8) 77.8 天 75.0 天 10 65.8 天 68.3 天 67.1 天 70.3 天 11 133.6秒 136.5秒 (15) 135.1 秒 133.6 秒 12 148.0 秒 146.3秒 (65) 148.9 秒 141.2 秒 13 81.4 天 79.7 天 78.1 天 69.6 天 14 45.8吨 36.8吨 36.7吨 35.1吨 15 78.6 秒 75.4 秒78.8 秒 42.7 秒 16 26.0 问 26.1 问 (50) 22.5 问 22.2 问 17 28.6 问 28.0 问 (12) 22.3 问 28.2 问 18 11.8 问 11.9 问 12.1 问 14.9 问 19 13.1 问 12.8 问 13.6 问 12.7 问 20 77.5 吨 78.8 吨 (28) 74.3 吨 76.3 吨 碳酸酯 21.8 q, 21.2 q, 21.1 q, 21.1 q, 22.0 q, 21.7 q, 22.7 q, 21.3 q, 21.1 q, 20.6 q 20.6 q, 20.6 Q 21.1 Q, 20.6Q 21.2 Q, 20.9 Q, 20.7 Q MeCO 170.0 秒, 169.9 秒, 170.9 秒, 169.9 秒, 170.6 秒, 170.0 秒, 170.4, 秒, 170.1 秒, 169.3 秒, 168.7 秒 169.4 秒, 167.9 秒 168.9 秒 169.8 秒, 169.1 秒, 168.8秒 1' 129.9 秒 129.7 秒 129.3, 128.7 秒 129.2 秒 2',6' 130.0 天 129.4 天 130.4, 129.7 天 130.1 天 3'3' 128.8 天 128.1 天 128.8, 128.6 天 128.6 天 4' 133.7 天 133.6 天 134.0, 134.0 天 133.6 天 7' 166.4 秒 165.5 秒 168.9, 165.9 秒 166.9 秒 酰基氨基甲酸酯 159.3 秒, 148.8 秒, 91.0 秒“ 50 ” C.括号中的值是线宽,单位为Hz。 一致的观察结果没有羟基(红外光谱)和一个额外的氧桥, 因此13-H是CC,不饱和度尚未说明,其存在具有不寻常的分裂模式(br d,J 1.8 Hz)。化合物 2 是这两种含氧碳之间的氧桥,第一个在 C-13,I4 处具有 P 氧合功能的天然紫杉类似乎是可能的。C-13 和 C-15 之间的氧桥明确证实了这一点,推测 13-H 和 C-15 之间存在长程相关性。由SN2型置换形成的13~~-含氧立体化学约束要求由叔C-15羟基取向。环 B 有一把扭椅,J. CHEM. SOC. PERKIN TRANS.I 1994 H9 RO 或 OH A B 图1 沿 C,,-C 的纽曼投影,以及紫杉烷中环 B 的内环扭转角序列(布考特符号)。A: 扭舟构造;B:扭椅构象(参考文献15)。化合物 2 中的构象,在 C-9 和 C-10 伪轴以及 9-H 和 10-H 伪赤道 (J,,,o 5.7 Hz) 处具有氧官能团(图 1)。这种排列与紫杉烷中的排列不同,在紫杉烷中,环B具有扭曲的构象,而9-H和10-H是伪轴(J -10 Hz).~在紫杉类中,J9,10 -5 Hz的值可能会对C-9和C-10的构型产生误导。顺式质子和反式质子实际上都可以显示这种类型的值,这取决于环B的构象。 在化合物2中,C-19甲基和9-H之间以及C-16(pro-R)i甲基和C-10处乙酸盐之间的旋转框架NOE(ROESY)交叉峰证实了9-H和10-H之间的反式关系。 J 9.0 和 5.2 Hz)也有些不寻常,因为在氧杂环丁烷型紫杉醇中,该质子作为宽双峰或窄双峰的双峰共振。化合物3(C3&4013)的'H NMR谱图在室温下相当宽,但加热到50°C会使除7-H和9-H的信号外的所有信号都锐化。在此温度下拍摄的I3C NMR谱图中,仅存在一组谱线,尽管其中一些谱线相当宽(10-65 Hz)。化合物3在50“C下稳定,其NMR谱图完全由mono和bi-a241 C(251图2 化合物4的分子结构f0.25 ppm)在分子凹面的C-4处与新引入的氨基甲酸羰基的各向异性脱屏蔽来合理化。相反,C-15 羟基的乙酰化负责 gem-二甲基的下场移动(16-H 和 17-H 的 Ab 分别为 +0.48 和 +0.51)。J,在50 OC下,在快速交换条件下测量,为9.7 Hz,仅略低于正常值(10-11 Hz)。这表明化合物 3 的构象平衡是高度偏斜的,在扭曲舟构象中,环 B 的旋转体占主导地位。双羧甲基酯衍生物6显示了维数技术(室温下的COSY、ROESY、J和233Jc-Hsharp NMR谱图,表明相关性)。在13C NMR谱图中,6 67.9处的单重态表明其具有abeo-紫杉烷结构,2并且所有质子和碳的多重性和偶联模式与abeo-baccatin VI 8.17相同,分子式的比较表明,化合物3和8的区别在于化合物3中缺少一个乙酰基。化合物 3 的所有酯基都与甲烷碳结合(化学位移考虑和诊断性 JC-H相关性)。因此 C-15 和 C-4 具有游离羟基,化合物 3 是 4-0-脱乙酰基-aheo-baccatin VI。通过与三氯乙酰异氰酸酯 (TAI) 原位反应形成双羧甲基氨基甲酸酯 6 证实了这一点。 观察到的 3-H、5-H 和 7-H 的下场酰化位移 (Ad +0.78, +0.30 和 * 在具有顺式 9,lO-二醇体系的合成紫杉烷中,J9,10 的值为 5.5 Hz(参考文献 16)。 t 紫杉烷的宝石二甲基编号不明确; 我们建议考虑甲基指向环 B (pro-R甲基,当羟基朝向 C-10) C-16 处的氧官能团时,另一个朝向环 A(pro3 甲基,当羟基异丙基侧链取向如上)C-17 时。该编号保持了紫杉烷中观察到的甲基与其余二萜核心之间的拓扑关系,尽管由于促性的变化,促性描述符是反转的,分子内氢键在化合物 3 的构象平衡中起作用(见下文)。化合物4(C4oH4&1 3)在室温下显示出非常宽的NMR波谱,其中大多数信号是无特征的驼峰。当冷却到-40“C时,获得了包含两组更尖锐信号的频谱,而加热到120”C以获得快速交换和一组信号。低温下的光谱过于复杂,化合物4在120°C下不够稳定,无法进行彻底的光谱表征。最终,获得了适合X射线分析的晶体。结果表明,化合物4是一种不含C-10 0-乙酰基的abeo-baccatin VI衍生物,在C-9位点用苯甲酸盐代替乙酸盐。不对称单元由两个具有相似构象的独立分子组成。图 2 中仅显示其中之一。在固态下,环 B 采用扭曲舟构象,环 C 采用几乎理想的 1,2 双平面(= 沙发)构象。两个羟基都参与氢键:C-10 处的羟基充当 C-15 处的供体,而 C-15 处的羟基又充当另一个分子的 C-9 苯甲酸羰基的供体。填料分析表明,这些是结构中唯一发现的短接触点。化合物 4 的乙酰化得到单乙酰衍生物 5,与从馏分中分离出的化合物相同 J. CHEM. SOC. PERKIN TRANS.1 1994 I I I 6.0 5.5 5.0 4.5 4.0 3.5 3.0 9+12 I I I I 6.5 6.0 5.5 5.0 10+2 1 I I I I6.5 6.0 5.5 5.0 图 3 'H 化合物 5 的 NMR 谱图: (a) 在室温下;(b) 在(CDCI;300 MHz)时。* 次要旋转器。含有化合物2-4。四乙酸酯5的'H NMR谱图在室温下显示出两组宽信号,冷却后信号变清晰。在-20“C处,观察到两组-4:l比例的尖锐信号(图3),所有信号都可以分配。Jg,lo在主旋翼器中为10.4 Hz,在小旋翼器中为4.7 Hz。因此,环 B 在主要旋翼体中具有 C-9、C-10 处的二赤道酯基团的扭曲舟构象,而在次要旋翼体中具有这些基团的全轴旋椅构象。化合物 5 和 TAI 的原位反应得到氨基甲酸酯 7,其 NMR 谱在室温下清晰(图 3),可以完全分配。J9,10(1 1.5 Hz)表明,环B在氨基甲酸酯7中采用扭曲舟构象。紫杉烷2-5的构象特征是不同的。化合物 2 是无构象的(构象固定的),并采用环 B 扭椅构象,以避免 C-15 (1 6-H) 和 9-H 处的 pro-R 甲基之间发生严重的空间相互作用。 相反,化合物 3-5 都是旋转体的混合物,其平衡受几个因素控制,主要因素是在 C-15 处的羟基和 C-10 处的氧官能团之间形成分子内氢键。紫杉烷的 a-羟基异丙基采用模仿紫杉烷的 gem-二甲基桥的构象:pro-S 甲基指向环 A,另一个甲基指向环 B,允许在 C-15 处的羟基和 C-10 氧之间形成氢键。这种排列存在于化合物 4 和所有通过 X 射线晶体学研究的紫杉烷的固态构象中.2*20.t' 根据 C-10 处氧官能团的酰化状态,C-15 处的羟基可以充当氢键的供体(C-10 处的酰氧基)或受体(C-10 处的羟基)。这种排列在溶液中的存在也与双甲基的ROE模式以及9-H和15-羟基质子之间存在ROE相关性一致.2 C-15羟基II I I I 4.5 4.0 3.5 3.0 I I I I4.5 4.0 3.5 3.0 6,-20“C;(c)加入TAI后(即在化合物7形成过程中),当环B采用扭椅构象时,基团与C-10处的氧更加接近,以至于C-15和C-lO之间可以形成氧桥。** 因此,C-15 和 C-10 处氧官能团之间的分子内氢键有望比扭结舟更稳定扭椅构象。C-15 羟基的酰化产生无氧化合物,因为这种氢键不再可能,并且在 C-9 和 C-10 处具有二赤道氧官能团的扭曲舟构象是溶液中唯一可检测到的构象(参见:氨基甲酸酯 6 和 7)。由于紫杉烷骨架具有拥挤的拓扑结构,官能团可以相互强烈相互作用,并且环B的构象平衡也受到其他分子内氢键的形成以及酯基性质的影响。与化合物 3 和 4 一样,C-4 和 C-10 位点的游离羟基可以分别作为 C-13 和 C-9 位点酯羰基的氢键供体,苯甲酸酯的苯基环可以参与疏脂相互作用。这种微妙的功能相互作用是导致在紫杉烷中观察到快速交换的宽温度范围的原因(例如,50“C代表3,120”C代表4)。在氧杂环丁烷型紫杉醇中,由于氧杂环丁烷环的存在,环 C 在构象上偏倚。在存在 C-4-C-20 双键的 brevifoliol 型紫杉烷中,环 C 反而具有柔韧性,因此这些化合物的构象分析更加复杂。我们的结果表明,有时在紫杉烷中观察到的宽核磁共振波谱与通过C-15处的叔羟基和C-10处的氧官能团之间的分子内氢键稳定B环的“不寻常”扭椅构象有关。C-15 位点叔羟基的酰化得到无构化合物,其光谱适合常规结构解析。从J.CHEM. soc. PERKIN TRANS. 1 1994 T. x media分离出的baccatin VI 9和abeo-taxanes 24证实了在其他红豆杉物种中已经观察到的趋势,即紫杉烷和紫杉烷通常表现出不同的酰化模式。在化合物 4 和 5 中,C-9 的苯甲酰化和化合物 3 中 C-4 的脱酰基化,实际上在巴卡丁 VI 衍生物中是前所未有的。Baccatin VI 已从至少四种不同种类的红豆杉中获得。13*21,22 abeo-Baccatin VI 作为天然产物仍然未知,因为仅分离出部分脱酰基化或更多苯甲酰化衍生物。在与分离程序相似的条件下,类虫记录了酯基从 0-9 到 0-10 的迁移,23 因此化合物 4 可能是从相应的 C-10 苯甲酸盐(一种迄今为止未知的化合物)衍生的提取伪影。实验 MP 是在 Biichi SMP 20 设备上测定的;在Perkin-Elmer 24 1旋光仪上测量旋光度;[a],-值以 lo-' deg cm2 g-' 为单位给出;在 Beckmann DB-GT 分光光度计上记录紫外光谱,在 Perkin-Elmer 127 型分光光度计上记录红外光谱,在 VG EQ 设备上记录 EIMS 光谱,在瓦里安 UNITY 300 光谱仪上记录 'H 和 13C NMR 谱图,工作频率为 299.94 MHz('H),75.43 MHz(13C);J值以Hz为单位。 硅胶LiChroprep Si 60(1 5-25 pm,Merck)用于中压(5-1 5 bar)柱层析,硅胶60(70-230目,Merck)用于常压柱层析。使用配备HP 1047 A示差折光检测器的Hewlett-Packard 1050系列仪器进行HPLC纯化;化合物2和3使用Waters微孔柱(0.8 x 30 cm),化合物4和5使用Waters Delta Pack C,色谱柱(0.78 x 30 cm)。红豆杉 x 媒体 Rehd 的市售根。cv Hicksii 由 U. Boni 博士 (Indena S.p.A) 鉴定;凭证样本保存在意大利米兰的 Indena 实验室。化合物的分离-将细磨碎的根(1 200 kg)在室温下用MeOH-水(1:1)搅拌并过滤。用CH2C12逆流萃取渗滤物,蒸发至干后,留下残留物(28 kg),在硅胶上色谱并用甲苯-Me2C0(9:1)洗脱,收集3个馏分[A(12 kg)、B(3.9 kg)和C(8 kg)]。馏分B在硅胶上色谱,并用环己烷-Me2C0(6:4)洗脱;获得馏分D(0.5kg)和E(0.4kg)。将一部分(20g)馏分E在硅胶(己烷含有越来越多的EtOAc作为洗脱液)上进行色谱分析。用己烷-EtOAc(1:1)洗脱的馏分得到紫杉醇(2.7g)的混合物,通过柱层析进一步分离得到baccatin VI 9(290mg)和化合物2和3的混合物,通过HPLC[己烷-EtOAc(6:4)]分离得到化合物2(42mg)和3(36mg)。13-脱乙酰氧基-13,15-环氧-1 1(15 ---+ 1)abeo-13-epi-baccatin VI 2 (42 mg, 7 x lo-' %),粉末,熔点150°C(分解);[一个]?+23.9 (c 0.58, CHCl,) (发现: C, 64.4;H,6.4。C35H42012需要 C, 64.2;H, 6.5%);A,,,(EtOH)/nm 230 和 265;v,,,(KBr)/cm-' 1745、1720、1370、1240、1040,995 和 710;m/z(负离子)654(M-,100)。4-De-0-acetyl-1 1 (15 -1)abeo-baccatin V1 3 (36 mg, 6 x lo-' %),粉末,熔点 222“C(分解);[a]j$' -73.1 (c 0.33, CHC1,) (发现: C, 62.4;H,6.7。C&4&13 需要 C, 62.5;H, 6.6%);A,,,(EtOH)/nm 230 和 268;v,,,(KBr)/cm-' 3550、1730、1380、1240、1200、980 和 720;m/z(负离子)672(M-,100)。Baccatin VI 9(290 mg,4.8 x lo 4 %),m.p. 236-237“C(来自MeCN-水)(lit.,',244-245”C);[a];'-8.7 (c 0.92, 3237 CHCl,) (lit.,I3 -5) (发现值: C, 62.3;H,6.7。C37H46014计算: C, 62.2;H,6.5%)。将部分(6g)馏分D在硅胶柱(中压)上色谱,并用CHC1,-MeOH(97:3)洗脱。收集前20个馏分(2.7 g),用己烷-Me,CO(7:3)作为洗脱液在中压下进行色谱分析;得到含有化合物4和5的粗混合物(580mg)。该混合物通过HPLC [MeCN-水-MeOH(75:25:4)]色谱,得到粗化合物4和5。HPLC最终纯化后[MeCN-水-MeOH(70:30:4)和MeCN-水(7:3)分别为com-pounds4和5],得到二苯甲酸盐4(35mg)和5(40mg)。9-0-苯甲酰基-9,lO-二-0-乙酰基-1 1 (15 -+ 1)abeo-baccatin V14 (35 mg, 2.4 x lo4 %), m.p. 238 “C(来自 MeOAc-己烷);[a];'-30.5 (c 0.91, CHCl,) (发现值: C, 65.3;H, 6.2.C40H46013 需要 C, 65.4;H,6.3%);A,,,(EtOH)/nm 232 和 265;v,,,(Nujol)/cm-' 3300、1720、1240、1020 和 715;m/z(负离子)735(M-,100)。9-0-苯甲酰基-9-de-O-乙酰基-11(15-1)abeo-baccatin V1 5(40mg,2.8×lo4%),油;[a]j$O -32.5 (c 0.92, CHCl,) (发现: C, 64.9;H,6.3。C42H4&14 需要 C, 64.9;H, 6.2%);A,,,(EtOH)/nm 230 和 265;v,,,(Nujol)/cm-' 3290、1720、1240、1025 和 720;m/z(负离子)777(M-,100)。化合物 3 和 5 与 TAL-A 的反应 将过量的TAI加入到含有底物3或5溶液的NMR管中。通过'H NMR波谱监测氨基甲酸酯衍生物的形成,反应在4 h内完成。这些氨基甲酸酯的溶液稳定了几天。X射线分析-衍射数据是用配备石墨单色仪的西门子P4衍射仪收集的。通过变速O扫描测量强度;从35次反射中获得并细化了细胞参数。对背景和洛伦兹偏振效应的强度进行了校正,但对吸收没有进行校正。该结构采用SIR92直接方法求解,后续所有计算均采用SHELXTL IRIS~ystern.~'进行,采用全矩阵最小二乘技术对结构进行细化。由于观察到的反射数量有限,由于晶体质量差,并非所有非氢原子都可以分配各向异性热参数;因此,苯基和甲基被视为固定基团,氢原子处于计算位置。原子坐标、键长、角度、扭转角和热参数已存放在剑桥晶体学数据中心。晶体数据。C4oH4&13, M = 734.8, 单斜晶系, 空间群 P2,, a = 9.233(3), b = 19.819(7), c = 21.098(6) A;= 99.01(2)“;Z = 4, D, = 1.282 (Mg rn-,);Mo-Ka辐射, A = 0.710 69 A, p = 0.096 mm-';R = 0.104,对于 F > 4.0a(F) 的 3273 次观察到的反射。参考文献 1 第 15 部分,G. Appendino、M. Varese、P. Gariboldi 和 B. Gabetta,Tetrahedron Lett.,1994,35,22 17.2 G.Appendino, L, Barboni, P. Gariboldi, E. Bombardelli, B.Gabetta and D. Viterbo, J. Chem. SOC.,Chem. Commun., 1993, 1587.3 F. Blaza、S. Tachibana、H. Barrios 和 G. N. H. Towers,植物化学,1991,30,1613。4 G. I. Georg, S. R. Gollapudi, G. L. Grunewald, C. W. Gunn, R. H. Himes, B. K. Rao, X.Z. Liang, Y.W. Mirhom, L. A. Mitscher, D. G. Vander Velde and 0.M. Ye, Biorg.Med.化学学报, 1993,3,1345.5 A. Chu, J.Zajicek, G. H. N.Towers,C. M. Coucy-Breau, N. G. Lewis 和 R. Croteau, 植物化学, 1993,34,269.6 G. Samaranayake、N. F. Magri、C. Jitrangsri 和 D. G. 1.金斯顿,J.组织化学,1991,56,5114。7 A. Wahl、F. Gueritte-Voegelein、D. Guenard、M. T. Le Goff 和 P. Potier,四面体,1992,48,6966。8 G. Appendino, H. C. Ozen, P. Gariboldi, E. Torregiani, B. Gabetta, R.Nizzola and E. Bombardelli, J. Chem. Soc., Perkin 译.我,1993年,1563年。9 G. Appendino, S. Tagliapietra, H. C. Ozen, P. Gariboldi, B. Gabetta and E. Bombardelli, J. Nat. Prod., 1993, 56, 514.10 G. Kriissmann, Handbuch der Nadelgeholze, Verlang Paul Parey, 柏林, 1983, pp. 317-333.11 L. Barboni, P. Gariboldi, E. Torregiani, G. Appendino, B. Gabetta and E. Bombardelli, 植物化学, 1994, 36,987.12 G.Appendino、G.Cravotto、R.Enriu、P.Gariboldi、L.Barboni、E.Torregiani、B.Gabetta、G.Zini和E.Bombardelli,J.Nat.Prod.,1994,57,607。13 D. P. Della Casa de Marcano 和 T. G. Halsall, J. Chem. SOC., Chem. Commun., 1975, 365.14 D. G. I. Kingston, A. A. Molinero 和 J. M. Rimoldi, in Prog. Chem. Org. Nat. Prod., 1993,61, 1-206.15 E. Toromanoff, Tetrahedron, 1980,36,2809.16 K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Clairbome, J. Renaud, E. A. Couladouros, K. Paulvannan and E. J. Sorensen, Nature, 1994,367,630.J. CHEM. SOC. PERKIN TRANS. 1 1994 17 G. Appendino, G. Cravotto, R. Enriu, J. Jakupovic, P. Gariboldi, B. Gabetta and E. Bombardelli, Phytochemistry, 1994, 36,407.18 Z. Samek 和 M. Budesinsky,收集。捷克语。化学通讯, 1979, 44,558.19 MJ 0.Artenius, Conformational Analysis, Scope and Present Limitations, Academic Press, New York, 1971, p. 32.20 K. Fuji, K. Tanaka, B. Li, T. Shingu, H. Sun and T. Taga, Tetrahedron Lett., 1992,33, 79 15.21 B. Li, K. Tanaka, K. Fuji, H. Sun and T. Taga, Chem. Pharm. Buff., 1993,41, 1672.22 2.D. Min, H. 江, 梁建英, 药学学报, 1989,24,673.23 G. Appendino, P. Gariboldi, A. Pisetta, E. Bombardelli 和 B. Gabetta, 植物化学, 1992,31,4253.24 A.Altomare、G.Cascarano、C.Giacovazzo、A.Guagliardi、M.C.Burla、G.Polidori和M.Camalli,J.Appl.Crystallogr.,1994,27,435。25 SHELXTL IRIS,西门子分析X射线仪器公司,怀俄明州麦迪逊市,1990年。论文 4/01 777C 收稿日期: 1994年3月24日 录用日期: 1994年7月6日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号