首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reactions of 19-ethoxycarbonyl-19-demethylvincadifformine: synthesis of 19-ethoxycarbonyl-19-demethylapovincamine
【24h】

Reactions of 19-ethoxycarbonyl-19-demethylvincadifformine: synthesis of 19-ethoxycarbonyl-19-demethylapovincamine

机译:19-乙氧羰基-19-脱甲基长春草地甚胺的反应:19-乙氧羰基-19-脱甲基氯联苯胺的合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1992 Reactions of 19-Ethoxycarbonyl-19-demethylvincadifformine: Synthesis of 19-Ethoxycarbonyl-19-demethylapovincaminet Abdelhamid Belattar and J. Edwin Saxton * School of Chemistry, The University, Leeds LS2 WT, UK ( f) -1 9-Ethoxycarbonyl-19-demethylapovincamine has been prepared by the oxidative rearrangement of ( f) -19-ethoxycarbonyl-19-demethylvincadifformine. An attempt to prepare strem- peliopine by the reductive rearrangement of 1 9-ethoxycarbonyl-I 9-demethyl-l,2-dehydroaspido-spermidine, obtained from the same starting material, was unsuccessful. ( f)-19-Ethoxycarbonyl-19-demethylvincadifformine1, which we prepared earlier ' en route to (+)-12-demethoxycylin-drocarine 2 and related alkaloids, is a versatile intermediate which we hoped to transform into a number of other alkaloids by taking advantage of the several rearrangement reactions reported on the parent alkaloid, vincadifformine.2 In our first experiments we envisaged the possibility of converting 1 by an oxidative rearrangement into (+)-19- ethoxycarbonyl- 19-demethylvincamine 3.However, the 16-hydroxyindolenine derivative 4, prepared by reaction of 1with rn-chloroperbenzoic acid, followed by reduction of the N,-oxide function by means of hydrogen and palladium, did not rearrange smoothly in acid solution to give the corresponding vincamine derivative as has been reported3 for the analogous derivative of vincadifformine; instead, inseparable mixtures, which may have contained some of the desired product 3, or intractable gums, were obtained.Similarly, ozonization of 1 in methanol and sulfuric acid at 60deg;C, as described by Danieli at ~l.,~resulted in the formation of a very polar, unidentified product. In contrast, the 16-hydroxyindolenine derivative 5, prepared by the reaction of 1 with N-chlorosuccinimide, rearranged smoothly when heated in trifluoroacetic acid, to give (+)-19- ethoxycarbonyl- 19-demethylapovincamine 6 in 56 unopti- mised yield. The apovincamine derivative 6 was identified from its spectroscopic properties, and in particular its mass and 13C NMR spectra. Its mass spectrum is dominated by McLafferty loss of the elements of ethyl acetate from the molecular ion, which gives rise to the base peak at m/z 306, owing to the ion a (Scheme 1).The second important fragmentation is the familiar retro-Diels-Alder fission of ring C; the resulting ion b then loses either the acetic ester residue to give the second most intense peak at rn/z 307, owing to the ion c, or it loses the remnants of ring D to give the ion at rn/z 324, owing to d. The facility of both these primary fragmentations is a direct consequence of the cis stereochemistry at the C/D and D/E ring junctions. The further fragmentation follows that observed with apovincamine (methyl apovincaminate, 7a).6 The 3C NMR spectrum of 19-ethoxycarbony1-19-demethy1-apovincamine also confirms the structure 6. The spectrum is very closely similar to that of ethyl (+)-apovincaminate 7b (see Experimental section),$ apart from the signals owing to C-18 and C-19.Hydrolysis and decarboxylation of the vincadifformine ~ ~~~~ ~~ ~ t Throughout this paper the biogenetic numbering system is adopted. $ The I3CNMR spectrum ofethyl apovincaminate appears not to have been recorded in the literature. We therefore wish to thank Dr. Cs. Szantay very warmly for the generous gift of a sample of ethyl apovincaminate, on which the quoted ''C NMR data were determined. 5 3 IHH C02Me H 1 12-Demethoxycylindrocarine 2 C0,Me 3 4 SITamp;Me02C amp;02Me bsol;CO2Et 5 /9 6 derivative 1has already been shown ' to give the rather unstable indolenine derivative 8, which adds the elements of hydrogen cyanide to give the more stable, easily isolated nitrile ester 9.Regeneration of the indolenine 8 by means of silver tetra- fluoroborate, followed by a reductive rearrangement, should give the amino ester 10, which is conveniently set up for cyclization to strempeliopine 11, the alkaloid of Strempeliopsis strempelioides K. Schum.' This alkaloid has already been synthesised by Trojanek and HajiEek by a procedure which involved the reductive rearrangement of the indolenine related to 8, but with an allyl group in place of the acetic ester residue, followed by appropriate manipulation of the allyl group in the rearranged species. This reductive rearrangement, which in- volved the use of zinc and copper sulfate in acetic acid, proved to 1584 J. CHEM. SOC. PERKIN TRANS.I 1992* (McLafferty) Me02C C02Et 6+'M+,394 bsol; a, m/z 306 -CH2C02Et1 'C02Et m/z 307 b, m/z 394 / CO2Et c, m/z 307 d,m/z 324 Scheme 1 7a R=Me 7b R=Et be a very capricious reaction, in which the quality and particle size of the zinc used were of crucial importance. Unfortunately, we have been unable to obtain information concerning the exact source of the zinc used by the Czech workers. In our hands the analogous reduction of the indolenine 8, using the zinc samples available in our laboratory, gave a multiplicity of products, of which three were identified. However, none of these was the result of the desired rearrangement to the strempeliopine ring system. The three products identified were 19-ethoxycarbonyl-Na-ethyl-19-demethylaspidospermidine 12, which presumably arises by reduction of the second product, Na-acetyl- 19-ethoxycarbonyl- 19-demethylaspidospermidine 13, and 19-ethoxycarbonyl- 19- demet hylaspidospermidine 14.Experimental M.p.s were determined on a Kofler hot-stage apparatus and are uncorrected. IR spectra were recorded on either a Perkin- Elmer 1420 or 13 10 spectrophotometer. UV absorption spectra were obtained on a Unicam PU 8800 spectrometer. NMR spectra were recorded on either a JEOL FX90Q FT ('H 90 MHz and ' ,C), GE QE 300 ('H 300 MHz and ' 3C) or a Bruker 400 MHz spectrometer ('H 400 MHz and ',C). Solutions in deuteriochloroform, with tetramethylsilane as internal stan-dard, were used, unless otherwise stated. J values are given in Hz.Mass spectra were recorded on a Kratos MS 25 CO2Et I I CN/i C02Me H 1 9 ,.*-*. i,N -CO2Et *.-* C02Et 10 8 1 H Strempeliopine 11 12 R=Et 13 R=Ac 14 R=H instrument; accurate mass measurements were carried out on an AEI/Kratos MS 902/50 spectrometer. 19-Ethoxycarbonyl- 19-demethylapovincamine 6.-A solution of 19-ethoxycarbonyl- 19-demethylvincadifformine 1 (0.2 g, 0.5 mmol)' and N-chlorosuccinimide (66 mg, 0.5 mmol) in dry trifluoroacetic acid (20 cm3) was stirred at room temp. for 4 h in a nitrogen atmosphere, then heated at reflux for 3 h. The solution was concentrated under reduced pressure, the residue was taken up in ethyl acetate, washed with 2 mol dm-3 sodium hydroxide and dried (MgS04).The crude product was chromatographed on Kieselgel G (35 g), using ethyl acetate as eluent, which gave 19-ethoxycarbonyl- 19-demethylapouinca- mine (105 mg, 55) as a colourless gum (Found: C, 69.75; H, 6.8; N, 6.85; M+, 394.1905. C,,H,,N,O, requires C, 70.05; H, 6.60; N, 7.1; M, 394.1893); ~,~,(CHCl,)/crn-' 1720 and 1638; I1,,,(EtOH)/nrn 202, 226, 272 and 313; Lmi,,/nm 215, 244 and 294; G,(CDCl,; 400 MHz) 7.47-7.1 (4 H, m, Ar-H), 6.47 (1 H, s, 17-H), 4.28 (1 H, br s, 21-H), 4.18 (2 H, q, J7, CO,CH,CH,), 3.94 (3 H, s, OMe), 2.17 (2 H, s, 19-H), 3.3-1.2 (10 H, m) and 1.28 (3 H, t, J7, CO2CH,CH3); hC 171.37 (CO,Et), 163.65 (C02Me), 134.13 (C-13), 130.34 (C-2), 128.96 (C-8), 127.61 (C-16), 126.86 (C-l7), 122.07 (C-1 l), 120.33 (C-lo), 118.26 (C-9), 112.52 (C-12), 108.98 (C-7), 60.45 (CH,CH3), 56.32 (C-21), 52.47 (OMe), 51.40 (C-5), 44.71 (C-3), 39.53 (C-19), 36.81 (C-20), 29.31 (C-15), 20.42 (C-14), 16.35 (C-6) and 14.24 (C02CH2CH3); m/z () 394 (M+, 3.8), 324 (1.6), 321 (1.2), 307 (24.7), 306 (47.3) and 248 (0.7).Ethyl apouincaminate 7b.-hc 163.34 (CO,Et), 133.89 (C-l3), 130.93 (C-2), 128.93 (C-8), 128.32 (C-16), 127.84 (C-l7), 121.62 (C-1 l), 120.03 (C-lo), 118.05 (C-9), 112.42 (C-12), 108.51 (C-7), 61.64 (CO,CH,CH,), 55.58 (C-21), 51.37 (C-5), 44.81 (C-3), 37.57 (C-20), 28.60 (C-19), 27.20 (C-15), 20.28 (C-14), 16.28 (C- 6), 14.12 (CO,CH,CH,) and 8.68 (C-18). 19-Ethoxycarbonyl- 19-demethyl- 1,2-dehydroaspidosperm- idine 8.-(a) A stirred mixture of 19-ethoxycarbonyl-19-demethylvincadifformine 1 (1.8 g, 4.5 mmol) and sodium cyanide (4.5 g, 92 mmol) in dry hexamethylphosphoramide J.CHEM. SOC. PERKIN TRANS. 1 1992 (HMPA) (225 cm3) was heated at 75deg;C for 4.5 d in an atmosphere of nitrogen. The mixture was cooled, diluted with water (400 cm3) and extracted with diethyl ether (5 x 250 cm3). The combined extracts were washed with water (5 x 400 cm3), dried (Na,SO,) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (100 g), with chloroform as eluent, to give 2-cyano-19-ethoxycarbonyl-19-demethylaspidospermidine 9 (0.78 g, 4779, which was crystallised from aqueous methanol and obtained as colourless prisms, m.p. 113-1 14 "C (lit.,' m.p. 115.5 "C) (Found: M+, 365.19768.C2,H,,N,O, requires M, 365.2103 1); vmax(Nujol)/ cm-' 3340, 2220, 1720, 1604 and 1590; A,,,(EtOH)/nm 204, 239 and 290 6,(CDCl,; 90 MHz) 7.0 (2 H, m, Ar-H), 6.8 (2 H, m, Ar-H), 4.0 (2 H, q, J 7, CO,CH,CH,), 3.4-1.3 (18 H, m) and 1.2 (3 H, t, J 7, C0,CH2CH3); m/z () 365 (M', 4.9), 338 (20.6), 320 (3.1), 277 (13.9), 250 (18.2), 210 (4.3, 182 (loo), 154 (16.2) and 109 (9.1). The second fraction, eluted with chloroform containing 1 methanol, contained 19-ethoxycarbonyl- 19-demethyl- 1,Zdehy- droaspidospermidine 8 (0.32 g, 21) as an orange-yellow oil (lit.,' unstable); vma,(CHC13)/cm-' 1720 and 1570; A,,,-(EtOH)/nm 220, 225 and 259; 6,(CDC13 ; 90 MHz) 7.67.0 (4 H, m, Ar-H), 3.95 (2 H, q, J7, C02CH2CH3), 3.29-1.2 (17 H, m) and 1.1 (3 H, t, J 7, C02CH2CH,); m/z () 338 (M+, 100), 294 (7.9), 268 (40.2), 250 (84.7) and 251(57).(b) Silver tetrafluoroborate (31 mg, 0.15 mmol) in dry tetrahydrofuran (THF) (10 cm3) was added, dropwise by syringe, to a solution of 2-cyano- 19-ethoxycarbonyl- 19- demethylaspidospermidine 9 (48 mg, 0.12 mmol) in dry THF (20 cm3) under a nitrogen atmosphere. The resulting black suspension was stirred at room temp. for 4 h, then the reaction mixture was diluted with dilute aqueous ammonium hydroxide (7 cm3) and extracted with dichloromethane (3 x 30 cm3). The combined organic fractions were washed with dilute aqueous ammonium hydroxide and water, filtered through a short column of Celite, dried (MgS04), and concentrated under reduced pressure. The crude product was purified by chromatography on Kieselgel G (15 g), using chloroform as eluent, which gave 19-ethoxycarbonyl-l9-demethyl-l,2-dehy-droaspidospermidine 8 (15 mg, 34) as a pale yellow oil (Found: C, 74.55; H, 7.55; N, 8.5.C21H26N202requires C, 74.0; H, 7.70; N, 8.30), identical (IR, UV, NMR and mass spectra) with that obtained by procedure (a). Attempted Reductive Rearrangement of 19- Ethoxycarbonyl- 1 9 -deme thyI-1,2 -deh ydroasp idosperm idine.-A suspension of silver tetrafluoroborate (0.75 g, 3.8 mmol) in dry THF (20 cm3) was added dropwise to a stirred solution of the mixture of cyano compound 9 (0.78 g, 2.1 mmol) and indolenine 8 (0.32 g, 0.94 mmol) prepared as in (a) in dry THF (40 cm3), kept in the dark and under nitrogen.After 15 min the solution became dark and stirring at room temp. was continued for 4 h, then the solvent was removed under reduced pressure. The residue was taken up in glacial acetic acid (125 an3).Zinc dust (12.5 g) and copper(i1) sulfate pentahydrate (61 mg) were added to the solution, which was then heated to 105deg;C and kept at this temperature for 6 h under nitrogen. After 3 h, more zinc (7.3 g) and copper sulfate (42 mg) were added. The mixture was then filtered while hot and the solid residue washed with hot acetic acid. The solution was concentrated under reduced pressure and the residue partitioned between diethyl ether (550 cm3) and 7 aqueous ammonium hydroxide (340 cm3). The combined organic extracts were washed with water (250 cm3) and brine (200 cm3), dried (MgSO,) and concentrated.The residue was purified by chromatography on neutral alumina (20 g), using benzenehloroform (100: 1) as eluent. Four fractions were obtained. The first fraction yielded l9-etho.xycarbonyl-Na-ethyl-19-demethylaspidospermidine12 (267 mg, 16) (Found: C, 75.0; 1585 H, 8.85; N, 7.85; Mf, 368.24633. C2,H3,N202 requires C, 75.0; H, 8.7; N, 7.6; M,368.246365); v,,,(CHC13)/cm-" 1720 and 1600, I,,,(MeOH)/nm 226,258 and 304, A,,,/nm 236 and 280; 6,(CDC13; 300 MHz) 7.5-6.4 (4 H, m, Ar-H), 4.0 (2 H, q, J 7.5, CO,CH,CH,), 3.6-1.2 (20 H, m) and 1.15 (6 H, 2t, J 7.5, C02CH2CH, and NCH,CH3); m/z () 368 (12.7), 340 (1.8), 339 (4.0), 323 (9.6), 295 (6.7), 294 (3.6), 281 (33.1), 280 (loo), 252 (14.2), 210 (4.4), 183 (14.6), 182 (99.7), 144 (10.9) and 130 (10.4).The second fraction was mainly impure N,-acetyl- 19- et hox ycarbonyl- 1 9-demethy laspidospermidine contaminated with an unidentified product. The third fraction yielded N,-acetyl- 19-ethoxycarbonyl- 19- demethylaspidospermidine13 (0.3 1 g, 1873, which was obtained as a colourless oil (Found: C, 72.15; H, 7.8; N, 7.2; M+, 382.2262. C23H30N203 requires C, 72.25; H, 7.85; N, 7.3; M, 382.22563); v,,,/cm-' 1720, 1640 and 1600; I,,,(MeOH)/nm 210, 251, 278 and 288; I,,,/nm 224; G,(CDCl,; 300 MHz) 8.15 (1 H, m, 12-H), 7.27-7.0 (3 H, m, Ar-H), 4.1 (2 H, q, J 7, CO2CH,CH3), 4.0 (1 H, dd, J 2 and 7, 2-H), 3.3-2.9 (2 H, m), 2.53 (1 H, s, 21-H), 2.26 (3 H, s, COCH,), 2.4-1.2 (14 H, m) and 1.2 (3 H, t, J7, CO,CH,CH,); 6,171.4 (C-l8), 168.38 (COCH,), 140.8 (C-13), 137.35 (C-8), 127.81 (C-11), 124.33 (C-9), 122.23 (C-lo), 118.36 (C-12), 69.15 (C-21), 67.56 (C-2), 60.05 (C02CH,CH3), 53.46 (C-7), 52.8 (C-3), 52.23 (C-5), 42.47 (C-19), 39.22 (C-6), 35.84 (C-20), 34.55 (C-15), 25.81 (C-16), 24.37 (C-17), 23.22 (COCH3), 21.47 (C-14) and 14.25 (CO,CH,CH,); m/z () 382 (M+, 15.9), 340 (3.9, 337 (5.6), 295 (32), 294(88.1), 293 (4.5), 251 (4.2), 210(4.8), 182(100), 144(6), 130(11S)and43 (8.2).The fourth fraction contained 19-ethoxycarbonyl- 19- demethylaspidospermidine14 (0.17 g, 11), which was obtained as a colourless oil (Found: C, 74.4; H, 8.25; N, 8.1; M+, 340.21571. C21H28N202 requires C, 74.1; H, 8.20; N, 8.20; M, 340.21506); v,,,(CHCl,)/cm-' 3380, 1720, 1630 and 1604; I,,,(MeOH)/nm 210, 244 and 295; I,,,/nm 226 and 275; 6,(CDC13; 300 MHz) 7.1-6.9 (2 H, m, Ar-H), 6.7-6.6 (2 H, m, Ar-H),4.0(2H,q,J7,CO,CH,CH3),3.5(1H,dd,Jlland10), 3.1 (2 H, m), 2.9-1.3 (16 H, m) and 1.2 (3 H, t, J 7, CO2CH2CH3); 6,171.7 (C-18), 149.6 (C-l3), 134.30 (C-8), 127.5 (C-1 l), 122.7 (C-9), 119.1 (C-lo), 110.58 (C-12), 69.83 (C-21), 64.80 (C-2), 59.8 (C02CH,CH3), 53.52 (C-7), 53.50 (C-3), 52.5 (C-5), 42.4 (C- 19), 38.0 (C-6), 36.13 (C-20), 34.9 (C- 15),28.1 (C- 16), 24.3 (C-17), 21.55 (C-14) and 14.2 (CO,CH,CH,); m/z (?) 340 (M+, 14.9), 312 (7.2), 295 (21.0), 252 (52.5), 210 (5.9), 182 (loo), 144 (16.9) and 130 (15.6).Acknowledgements We thank the Algerian Government for financial support (to A. B.). References 1 J. M. Brennan and J. E. Saxton, Tetrahedron, 1986,42,6719. 2 For a summary see J. E. Saxton, in The Monoterpenoidlndole Alkaloids, ed. J. E. Saxton, Wiley-Interscience, New York, 1983, ch. 8. 3 G. Hugel, G. Massiot, J. Ltvy and J. Le Men, Tetrahedron, 1981,37, 1369; G.Hugel, J. LCvy and J. Le Men, C. R. Hebd. Seances Acad. Sci., Ser. C, 1972,274,1350. 4 B. Danieli, G. Lesma, G. Palmisano and B. Gabetta, J. Chem. SOC., Chem. Commun., 1981,908. 5 G. Lewin and J. Poisson, Tetrahedron Lett., 1984,25, 3813. 6 G. Czira, J. Tamas and G. Kalaus, Org. Mass Spectrom., 1984,19,555. 7 J. HajiEek and J. Trojanek, Tetrahedron Lett., 1981,2927; Coll. Czech. Chem. Commun., 1986,51, 1731; Tetrahedron Lett., 1982, 365. Paper 2/0 1325H Received 12th March 1992 Accepted 25th March 1992
机译:J. CHEM. SOC. PERKIN TRANS. 1 1992 19-乙氧羰基-19-脱甲基长春草地甾嘧啶的反应:19-乙氧羰基-19-脱甲基彤烷胺的合成 阿卜杜勒哈米德·贝拉塔尔和J.埃德温·萨克斯顿 * 英国利兹大学化学学院 LS2 WT, 英国 ( f) -1 9-乙氧羰基-19-脱甲基噻吩胺 9-乙氧羰基-19-脱甲基长春烷基地甾胺是通过 ( f) -19-乙氧羰基-19-脱甲基长春地甾胺的氧化重排制备的。通过还原重排从相同起始材料获得的1 9-乙氧羰基-I 9-脱甲基-l,2-脱氢阿螺基-亚精胺来制备strem-peliopine的尝试没有成功。( f)-19-乙氧羰基-19-去甲基长春草地裂胺1, 我们之前在通往 (+)-12-脱甲氧基环啉-屈卡林 2 和相关生物碱的途中制备, 是一种多功能中间体, 我们希望通过利用母体生物碱长春地甄碱的几种重排反应将其转化为许多其他生物碱.2 在我们的第一个实验中,我们设想了通过氧化重排将 1 转化为 (+)-19-乙氧羰基-19-脱甲基长春胺 3 的可能性。然而,由1与rn-氯过苯甲酸反应制备的16-羟基吲哚衍生物4,然后通过氢和钯还原N,-氧化物官能团,在酸溶液中没有顺利地重新排列,得到相应的长春胺衍生物,正如长春地甚明的类似衍生物所报道的那样3;取而代之的是,获得了不可分割的混合物,其中可能含有一些所需的产物3或顽固性牙龈。同样,正如 Danieli 在 ~l,~ 时所描述的那样,1 在 60°C 下在甲醇和硫酸中的臭氧化作用导致形成一种极性很强的、无法识别的产物。相反,由1与N-氯琥珀酰亚胺反应制备的16-羟基吲哚衍生物5在三氟乙酸中加热时平滑重排,得到(+)-19-乙氧羰基-19-脱甲基阿波芬胺6,未优化收率为56%。根据其光谱性质,特别是其质量和13C NMR谱图鉴定了APOVINCAMINE衍生物6。其质谱图主要由分子离子中乙酸乙酯元素的麦克拉弗蒂损失为主,由于离子a,在m/z 306处产生基峰(方案1)。第二个重要的碎片是熟悉的C环的逆Diels-Alder裂变;然后,由于离子 C,所得离子 B 失去乙酸酯残基,在 RN/Z 307 处产生第二强峰,或者由于 D,它失去环 D 的残余物,在 RN/Z 324 处产生离子。这两种初级碎裂的设施是 C/D 和 D/E 环交处的顺式立体化学的直接结果。进一步的碎裂遵循用apovincamine(apovincaminate,7a)观察到的.6 19-乙氧基羰基1-demethy1-apovincamine的3C NMR谱也证实了该结构6。除了 C-18 和 C-19 产生的信号外,该光谱与 (+)-apovincaminate 7b 乙酯的光谱非常相似(参见实验部分),$。长春地甚碱的水解脱羧~~~~~~~~t 本文采用生物遗传编号系统。$ apovincaminate乙酯的I3CNMR谱图似乎没有记录在文献中。因此,我们要非常热烈地感谢 Cs. Szantay 博士慷慨赠送的 apovincaminate 乙酯样品,并在该样品上测定了引用的 ''C NMR 数据。5 3 IHH C02Me H 1 12-脱甲氧基圆柱卡林 2 C0,Me 3 4 SIT&Me02C &02Me \CO2Et 5 /9 6 衍生物 1 已被证明可以得到相当不稳定的吲哚嘚衍生物 8,其中添加了氰化氢元素,得到更稳定、更易分离的腈酯 9.通过四氟硼酸银再生吲哚嘌呤 8, 接着进行还原重排,应得到氨基酯10,其被方便地设置为环化为strempeliopine 11,Strempeliopsis strempelioides K. Schum的生物碱。' Trojanek 和 HajiEek 已经通过一种程序合成了这种生物碱,该程序涉及与 8 相关的吲哚嘌呤的还原重排,但用烯丙基代替乙酸酯残基,然后适当操纵重排物种中的烯丙基。这种还原重排涉及在乙酸中使用锌和硫酸铜,证明在 1584 J. CHEM. SOC. PERKIN TRANS.I 1992* (McLafferty) Me02C C02Et 6+'M+,394 \ a, m/z 306 -CH2C02Et1 'C02Et m/z 307 b, m/z 394 / CO2Et c, m/z 307 d,m/z 324 方案 1 7a R=Me 7b R=Et 是一个非常反复无常的反应,其中所用锌的质量和粒径至关重要。不幸的是,我们无法获得有关捷克工人使用的锌的确切来源的信息。在我们手中,使用我们实验室中可用的锌样品对吲哚嘌呤 8 进行类似的还原,产生了多种产品,其中确定了三种。然而,这些都不是对strempeliopine环系统进行预期重排的结果。鉴定出的三种产物是19-乙氧羰基-Na-乙基-19-脱甲基阿司匹亚精胺12,其可能是由第二种产物Na-乙酰基-19-乙氧羰基-19-脱甲基阿司匹亚精胺13和19-乙氧羰基-19-脱甲基羟亚精胺14.实验MPS在Kofler热台设备上测定,未经校正。在Perkin-Elmer 1420或13 10分光光度计上记录红外光谱。在Unicam PU 8800光谱仪上获得紫外吸收光谱。核磁共振波谱记录在JEOL FX90Q FT('H 90 MHz和',C)、GE QE 300('H 300 MHz和'3C)或布鲁克400 MHz波谱仪('H 400 MHz和',C)上。除非另有说明,否则使用以四甲基硅烷为内部标准的氘氯仿溶液。J 值以 Hz 为单位,质谱记录在 Kratos MS 25 CO2Et I I CN/i C02Me H 1 9 上,.*-*。i,N -CO2Et *.-* C02Et 10 8 1 H Strempeliopine 11 12 R=Et 13 R=Ac 14 R=H 仪器;在AEI/Kratos MS 902/50光谱仪上进行精确的质量测量。19-乙氧羰基-19-脱甲基阿波芬胺6.-19-乙氧羰基-19-脱甲基长春地琶明1(0.2g,0.5mmol)'和N-氯琥珀酰亚胺(66mg,0.5mmol)在干燥的三氟乙酸(20cm3)中的溶液在室温下在氮气气氛中搅拌4小时,然后在回流下加热3小时。将溶液减压浓缩,将残余物吸收在乙酸乙酯中,用2mol dm-3氢氧化钠洗涤并干燥(MgS04)。将粗产物在Kieselgel G(35 g)上色谱,以乙酸乙酯为洗脱剂,得到19-乙氧羰基-19-脱甲基apouinca-胺(105mg,55%)作为无色胶(Found: C, 69.75;H, 6.8;N, 6.85%;M+,394.1905。C,,H,,N,O,需要C,70.05;H, 6.60;N, 7.1%;米,394。1893);~,~,(CHCl,)/crn-' 1720 和 1638;I1,,,(EtOH)/nrn 202、226、272 和 313;Lmi,,/nm 215、244 和 294;G,(CDCl,; 400 MHz) 7.47-7.1 (4 H, m, Ar-H), 6.47 (1 H, s, 17-H), 4.28 (1 H, br s, 21-H), 4.18 (2 H, q, J7, CO,CH,CH,), 3.94 (3 H, s, OMe), 2.17 (2 H, s, 19-H), 3.3-1.2 (10 H, m) 和 1.28 (3 H, t, J7, CO2CH,CH3);hC 171.37 (CO,Et), 163.65 (C02Me), 134.. 13 (C-13)、130.34 (C-2)、128.96 (C-8)、127.61 (C-16)、126.86 (C-l7)、122.07 (C-1 l)、120.33 (C-lo)、118.26 (C-9)、112.52 (C-12)、108.98 (C-7)、60.45 (CH,CH3)、56.32 (C-21)、52.47 (OMe)、51.40 (C-5)、44.71 (C-3)、39.53 (C-19)、36.81 (C-20)、29.31 (C-15)、20.42 (C-14)、16.35 (C-6) 和 14.24 (C02CH2CH3);m/z (%) 394 (M+, 3.8)、324 (1.6)、321 (1.2)、307 (24.7)、306 (47.3) 和 248 (0.7)。阿普因卡明酸乙酯 7b.-hc 163.34 (CO,Et), 133.89 (C-l3), 130.93 (C-2)、128.93 (C-8)、128.32 (C-16)、127.84 (C-l7)、121.62 (C-1 l)、120.03 (C-lo)、118.05 (C-9)、112.42 (C-12)、108.51 (C-7)、61.64 (CO、CH、CH、)、55.58 (C-21)、51.37 (C-5)、44.81 (C-3)、37.57 (C-20)、28.60 (C-19)、27.20 (C-15)、20.28 (C-14)、16.28 (C-6)、14.12 (CO、CH、CH,) 和 8.68 (C-18)。19-乙氧羰基-19-脱甲基-1,2-脱氢-无子被子植物-idine 8.-(a) 将19-乙氧羰基-19-脱甲基长春地炔明1(1.8 g,4.5 mmol)和氰化钠(4.5 g,92 mmol)在干燥的六甲基磷酰胺J.CHEM. SOC. PERKIN TRANS. 1 1992 (HMPA) (225 cm3)中的搅拌混合物在氮气气氛中于75°C加热4.5 d。将混合物冷却,用水(400 cm 3)稀释并用乙醚(5 x 250 cm3)萃取。合并的提取物用水(5 x 400 cm3)洗涤,干燥(Na,SO,)并在减压下浓缩。残留物在硅胶(100g)上色谱纯化,以氯仿为洗脱液,得到2-氰基-19-乙氧羰基-19-脱甲基螺亚精胺9(0.78g,4779,由甲醇水溶液结晶而得无色棱柱,m.p.113-1 14“C(lit.,'m.p.115.5”C)(发现:M+,365.19768.C2,H,,N,O,需要M,365.2103 1);vmax(Nujol)/ cm-' 3340、2220、1720、1604 和 1590;A,,,(EtOH)/nm 204, 239 和 290 6,(CDCl,; 90 MHz) 7.0 (2 H, m, Ar-H), 6.8 (2 H, m, Ar-H), 4.0 (2 H, q, J 7, CO,CH,CH,), 3.4-1.3 (18 H, m) 和 1.2 (3 H, t, J 7, C0,CH2CH3);m/z (%) 365 (M', 4.9), 338 (20.6), 320 (3.1), 277 (13.9), 250 (18.2), 210 (4.3, 182 (loo), 154 (16.2) 和 109 (9.1).第二馏分,用含1%甲醇的氯仿洗脱,含有19-乙氧羰基-19-脱甲基-1,Zdehy-droaspidospermidine 8(0.32 g,21%),为橙黄色油状物(lit.,不稳定);vma,(CHC13)/cm-' 1720 和 1570;A,,,-(EtOH)/nm 220、225 和 259;6,(CDC13;90 MHz)7.67.0(4 H,m,Ar-H),3.95(2 H,q,J7,C02CH2CH3),3.29-1.2(17 H,m)和1.1(3 H,t,J 7,C02CH2CH,);m/z (%) 338 (M+, 100), 294 (7.9), 268 (40.2), 250 (84.7) 和 251(57).(b) 四氟硼酸银(31毫克,0.将15 mmol)的干燥四氢呋喃(THF)(10 cm 3)溶液中,通过注射器滴加到2-氰基-19-乙氧羰基-19-脱甲基螺亚精胺9(48mg,0.12 mmol)在氮气气氛下的干燥THF(20 cm3)溶液中。将所得黑色悬浮液在室温下搅拌4小时,然后用稀氢氧化铵水溶液(7 cm 3)稀释反应混合物,并用二氯甲烷(3 x 30 cm3)萃取。合并的有机馏分用稀氢氧化铵水溶液和水洗涤,通过短柱硅藻土过滤,干燥(MgS04),减压浓缩。粗产物在硅藻土凝胶G(15g)上色谱纯化,以氯仿为洗脱液,得到19-乙氧羰基-l9-脱甲基-l,2-脱氢-droaspidospermidine 8(15mg,34%),为淡黄色油状物(所得:C,74.55;H, 7.55;N, 8.5.C21H26N202需要 C, 74.0;H, 7.70;N,8.30%),与通过程序(a)获得的相同(IR、UV、NMR和质谱)。尝试将 19-乙氧羰基-1 9-deme thyI-1,2-deh ydroasp idosperm idine--四氟硼酸银(0.75 g,3.8 mmol)在干燥 THF (20 cm3) 中的悬浮液滴加到氰基化合物 9 (0.78 g, 2.1 mmol) 和吲哚嘌呤 8 (0.32 g, 0.94 mmol) [如 (a)] 的混合物在干燥 THF (40 cm3) 中的搅拌溶液中, 保存在黑暗和氮气下。15分钟后,溶液变暗并在室温下搅拌。继续4 h,然后减压除去溶剂。残余物在冰醋酸(125 an3)中被吸收。向溶液中加入锌粉(12.5 g)和五水硫酸铜(i1)(61 mg),然后加热至105°C,并在该温度下在氮气下保持6 h。3小时后,加入更多的锌(7.3g)和硫酸铜(42mg)。然后趁热过滤混合物,并用热醋酸洗涤固体残留物。将溶液减压浓缩,并将残留物分配在乙醚(550 cm 3)和7%氢氧化铵水溶液(340 cm3)之间。合并的有机提取物用水(250 cm3)和盐水(200 cm3)洗涤,干燥(MgSO)并浓缩。残留物通过色谱法在中性氧化铝(20g)上纯化,使用苯

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号