首页> 外文期刊>scandinavian journal of statistics >Identification and estimation of threshold matrix-variate factor models
【24h】

Identification and estimation of threshold matrix-variate factor models

机译:阈值矩阵-变量因子模型的识别和估计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Motivated by the growing availability of complex time series observed in real applications, we propose a threshold matrix-variate factor model, which simultaneously addresses the sample-wise and time-wise complexities of a time series. The sample-wise complexity is characterized by modeling matrix-variate observations directly, while the time-wise complexity is modeled by a threshold variable to describe the nonlinearity in time series. The estimators for loading spaces and threshold values are introduced and their asymptotic properties are investigated. Our matrix-variate models compress data more efficiently than traditional vectorization-based models. Furthermore, we greatly extend the scope of current research on threshold factor models by removing several restrictive assumptions, including existence of only one threshold, fixed factor dimensions across different regimes, and stationarity within regime. Under the relaxed assumptions, the proposed estimators are consistent even when the numbers of factors are overestimated. Simulated and real examples are presented to illustrate the proposed methods.
机译:由于在实际应用中观察到的复杂时间序列的可用性越来越高,我们提出了一个阈值矩阵-变量因子模型,该模型同时解决了时间序列的样本和时间复杂性。样本复杂度通过直接对矩阵变量观测值进行建模来表征,而时间复杂度则通过阈值变量进行建模来描述时间序列中的非线性。介绍了加载空间和阈值的估计器,并研究了它们的渐近性质。我们的矩阵变量模型比传统的基于矢量化的模型更有效地压缩数据。此外,我们通过删除几个限制性假设,包括仅存在一个阈值、不同制度的固定因素维度以及制度内的平稳性,大大扩展了当前阈值因子模型的研究范围。在宽松的假设下,即使因子的数量被高估,所提出的估计量也是一致的。通过仿真算例和实际算例对所提方法进行了说明。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号