首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Preparation of 6-oxo-1,6-dihydropyridine-2-carboxylic acid by microbial hydroxylation of pyridine-2-carboxylic acid
【24h】

Preparation of 6-oxo-1,6-dihydropyridine-2-carboxylic acid by microbial hydroxylation of pyridine-2-carboxylic acid

机译:吡啶-2-羧酸微生物羟基化制备6-氧代-1,6-二氢吡啶-2-羧酸

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1993 Preparation of 6-0x0-I ,6-dihydropyridine-Z-carboxyIic Acid by Microbial Hydroxylation of Pyrid i ne-2-carboxyl ic Acid Andreas Kiener," Rainer Glockler and Klaus Heinzmann L ONZA AG, Biotechnology Research Department, CH-3930 Visp, Switzerland Alcaligenes faecalis (DSM 6269)grown on pyridine-2-carboxylic acid induced regiospecific hydroxyl- ation of the latter to 6-0xo-l,6-dihydropyridine-2-carboxylic acid on a preparative scale. Substituted pyridine-2-carboxylic acids (picolinic acids) are important intermediates for the preparation of pharmaceuticals and agrochemicals. '+' However, the regiospecific functionaliz- ation of picolinic acid is difficult to achieve by chemical methods. For example, although 6-0x0- l,6-dihydropyridine-2- carboxylic acid (6-hydroxypicolinic acid) can be prepared in 51 yield by treatment of aqueous potassium picolinate with elemental flu~rine,~the industrial applicability of such a reaction is hampered by both its poor selectivity and the disposal costs of the chemical waste.Here we describe a simple and ecologically advantageous method for the large-scale preparation of 6-hydroxypicolinic acid by regiospecific micro- bial hydroxylation of picolinic acid.4 The microbial degradation of picolinic acid, nicotinic acid and isonicotinic acid proceeds via the initial formation of 6- hydroxypicolinic acid, 6-hydroxynicotinic acid and 2-hydroxy- isonicotinic acid, respectively. In the microbial degradation of nicotinic acid the presence of high nicotinic acid concentrations prevents the further conversion of 6-hydroxynicotinic acid into the subsequent metabolite pyridine-2,5-diol. Wild type strains of nicotinic acid-degrading bacteria are, therefore, able to produce 100 g dm-3 of 6-hydroxynicotinic acid in excellent yield from nicotinic acid.6 We have observed that the wild type microorganism Alcaligenes faecalis DSM 6269, growing at the expense of picolinic acid, showed an analogous regulation of the picolinic acid degradative pathway as mentioned above for the nicotinic acid-degrading organism.This bacterium accumulated in the presence of picolinic acid concentrations 2 g dm-3 of 6-hydroxypicolinic acid; further metabolism of 6-hydroxypicolinic acid occurred only when all picolinic acid was hydroxylated.Picolinic acid esters, isonicotinic acid and methylpyridines were no substrates for the hydroxyl- ation. Following the simple fermentation procedure outlined below we were able to produce 98 g dm-3 of 6-hydroxypicolinic acid within a fermentation time of 42 h: Alcaligenes faecalis DSM 6269 was maintained on Petri dishes with a mineral salts medium 'containing sodium picolinate (1.2 g dm-3) as sole carbon source and agar (16 g dm-3). The incubation temperature was 30 "C.Precultures were grown on mineral salts medium supplemented with 2.4 g dm-3 of sodium picolinate. A fermenter (23 dm3) containing mineral salts medium (1 5 dm3) supplemented with sodium picolinate (1.2 g dm-3), pH 7.0, was used for preparative biotransformations.The concentration of picolinic acid and 6-hydroxypicolinic acid during the biotransformation was followed spectrophotometrically. A solution containing picolinic acid (500 g dm-3) was used as acid for pH control. After 27 h of growth 2 dm3 of the picolinic acid solution had been consumed and the resulting biomass had accumulated 20 g dm- of 6-hydroxypicolinic acid. At this time the oxygen partial pressure of the cell suspension was 1 of the maximal saturation (agitation speed 750 rev. min-'; aeration rate 30 dm3 min '). To increase the product concentration 2.5 dm3 of a solution containing sodium picolinate (470 g dm-3) was pumped over a period of 15 h into the cell suspension. When the concentration of 6-hydroxypico- linic acid ceased to increase the cells were removed by centrifugation. 6-Hydroxypicolinic acid was precipitated by acidifying the cell-free fermentation solution with sulfuric acid to pH 1.5.A total of 2190 g of picolinic acid were used for this batch and 1850 g were isolated as 6-hydroxypicolinic acid. The overall yield was 75, including the picolinic acid required for the production of the biomass. The purity of the isolated material was 95 as judged by HPLC analysis. The solubility of 6-hydroxypicolinic acid in water at 25 "C was 3.1 g dm-3 compared to 500 g dmP3 for picolinic acid. The efficient biotransformation of picolinic acid into 6- hydroxypicolinic acid opens a new route for the preparation of 6-substituted or 3,5,6-trisubstituted picolinic acid derivatives as outlined in Scheme 1.QCN OH Alcaligenes faecalamp; bsol;/Ahligems faecalis DSM6269 DSM 633!5 HI I OH CI Scheme 1 A second microorganism Alcaligenes faeculis DSM 6335, growing at the expense of 2-cyanopyridine, also accumulated 6-hydroxypicolinic acid in biotransformations using 2-cyanopy- ridine as a substrate. The biocatalyst was grown using a similar protocol as described above for A. faecalis DSM 6269 in which the picolinic acid was substituted for 2-cyanopyridine. With A. faecalis DSM 6335 we were able to produce 5.5 g dm 6-hydroxypicolinic acid with a 40yield from 2-cyanopyridine. We are currently optimizing both the fermentation and biotransformation conditions for an industrial application of these bioconversions.Acknowledgements The authors thank J.-P. Roduit for the synthesis of 6-hydroxy-picolinic acid derivatives. References 1 C. J. Foster, T. Gilkerson and R. Stocker, European Patent # 447,004; (Chem. Abstr., 1992, 116, 128668e). 2 Y. Ito, H. Kato, E. Etsuchu, K. Mitani, N. Yagi, T. Yoshida and N. Iwasaki, Japanese Patent # 63,150,277 (Chem. Abstr., 1989, 110, 2 389 5z). J. CHEM. SOC. PERKIN TRANS. I 1993 3 M. Van Der Puy, D. Nalewajek and G. E. Wicks, Tetrahedron Lett., 1988,29,4389. 4 This work was previously published in European Patent # 498 3 16 and European Patent # 504 818. 5 Review article: 0.P. Shukla, J. Sci. Ind. Res., 1984,43, 98. 6 H. G. Kulla, Chimia, 1991,45, 81. 7 H. G. Kulla, F. Klausener, U. Meyer, B. Ludeke and T. Leisinger, Arch. Microbiol., 1983, 135, 1. Paper 3/02087H Received 13th April 1993 Accepted 13th April 1993
机译:J. CHEM. SOC. PERKIN 译.I 1993 通过吡啶 i ne-2-羧酸的微生物羟基化制备 6-0x0-I ,6-二氢吡啶-Z-羧基酸 Andreas Kiener,“Rainer Glockler 和 Klaus Heinzmann L ONZA AG,生物技术研究部,CH-3930 Visp,瑞士粪碱碱菌 (DSM 6269) 在吡啶-2-羧酸上生长诱导后者的区域特异性羟基化为制备规模的 6-0xo-l,6-二氢吡啶-2-羧酸。取代吡啶-2-羧酸(吡啶甲酸)是制备医药和农用化学品的重要中间体。'+' 然而,吡啶甲酸的区域特异性功能化很难通过化学方法实现。例如,虽然用元素flu~rine处理吡啶甲酸钾水溶液可以制备6-0x0-l,6-二氢吡啶-2-羧酸(6-羟基吡啶甲酸),收率为51%,~这种反应的工业适用性受到其选择性差和化学废物处理成本的阻碍。在这里,我们描述了一种简单且生态上有利的方法,用于通过吡啶甲酸的区域特异性微生物羟基化大规模制备6-羟基吡啶甲酸.4吡啶甲酸,烟酸和异烟酸的微生物降解分别通过6-羟基吡啶甲酸,6-羟基烟酸和2-羟基异烟酸的初始形成进行。在烟酸的微生物降解中,高烟酸浓度的存在阻止了6-羟基烟酸进一步转化为随后的代谢物吡啶-2,5-二醇。因此,烟酸降解细菌的野生型菌株能够产生> 100 g dm-3 的 6-羟基烟酸,烟酸产量极高.6 我们观察到野生型微生物粪碱菌 DSM 6269,以吡啶甲酸为代价生长,显示出与上述烟酸降解生物体类似的吡啶甲酸降解途径的调节。该细菌在吡啶甲酸浓度>2g dm-3的6-羟基吡啶甲酸存在下积累;只有当所有吡啶甲酸被羟基化时,才会发生6-羟基吡啶甲酸的进一步代谢。吡啶甲酸酯、异烟酸和甲基吡啶不是羟基化的底物。按照下面概述的简单发酵程序,我们能够在 42 小时的发酵时间内产生 98 g dm-3 的 6-羟基吡啶甲酸:粪碱碱菌 DSM 6269 保持在培养皿上,培养皿中含有吡啶甲酸钠 (1.2 g dm-3) 作为唯一碳源和琼脂 (16 g dm-3)。孵育温度为30“C.预培养物在补充有2.4g dm-3吡啶甲酸钠的矿物盐培养基上生长。使用含有补充有吡啶甲酸钠(1.2g dm-3)的矿物盐培养基(1 5 dm3)的发酵罐(23 dm3),pH 7.0进行制备生物转化。采用分光光度法跟踪生物转化过程中吡啶甲酸和6-羟基吡啶甲酸的浓度。使用含有吡啶甲酸(500g dm-3)的溶液作为pH控制的酸。生长27 h后,消耗2 dm3的吡啶甲酸溶液,所得生物量积累了20 g dm-的6-羟基吡啶甲酸。此时细胞悬液的氧分压为最大饱和度的1%(搅拌速度750转min-';通气速率30dm3min')。为了增加产物浓度,将含有吡啶甲酸钠(470g dm-3)的2.5dm 3溶液泵入细胞悬液中15小时。当6-羟基吡啶酸浓度停止增加时,通过离心除去细胞。将无细胞发酵液用硫酸酸化至pH 1.5,析得6-羟基吡啶甲酸,共使用吡啶甲酸2190 g,分离得到1850 g,为6-羟基吡啶甲酸。总收率为75%,包括生产生物质所需的吡啶甲酸。通过HPLC分析判断分离材料的纯度为>95%。在25“C下,6-羟基吡啶甲酸在水中的溶解度为3.1 g dm-3,而吡啶甲酸的溶解度为>500 g dmP3。吡啶甲酸转化为6-羟基吡啶甲酸的高效生物转化为制备6-取代或3,5,6-三取代吡啶甲酸衍生物开辟了一条新途径,如方案1 DSM6269所示。 在使用2-氰基吡啶作为底物的生物转化中也积累了6-羟基吡啶甲酸。使用与上述粪曲霉 DSM 6269 类似的方案生长生物催化剂,其中吡啶甲酸被取代 2-氰基吡啶。使用粪曲霉 DSM 6335,我们能够生产 5.5 g dm 6-羟基吡啶甲酸,2-氰基吡啶的收率为 40%。我们目前正在优化发酵和生物转化条件,以便这些生物转化的工业应用。致谢 作者感谢 J.-P.Roduit 用于合成 6-羟基吡啶甲酸衍生物。参考文献 1 C. J. Foster、T. Gilkerson 和 R. Stocker,欧洲专利 # 447,004;(Chem. Abstr., 1992, 116, 128668e)。2 Y. Ito、H. Kato、E. Etsuchu、K. Mitani、N. Yagi、T. Yoshida 和 N. Iwasaki,日本专利 # 63,150,277 (Chem. Abstr., 1989, 110, 2 389 5z)。J. CHEM. SOC. PERKIN 译.I 1993 3 M. Van Der Puy, D. Nalewajek 和 G. E. Wicks, Tetrahedron Lett., 1988,29,4389.4 本著作先前发表在欧洲专利#498 3 16和欧洲专利#504 818中。5 评论文章: 0.P. Shukla, J. Sci. Ind. Res., 1984,43, 98.6 H. G. Kulla, Chimia, 1991,45, 81.7 H. G. Kulla, F. Klausener, U. Meyer, B. Ludeke 和 T. Leisinger, Arch. Microbiol., 1983, 135, 1.论文 3/02087H 收稿日期 1993年4月13日 录用日期 1993年4月13日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号