首页> 外文期刊>mendeleev communications >Removal of heavy metals from water by electron-beam treatment in the presence of an hydroxyl radical scavenger
【24h】

Removal of heavy metals from water by electron-beam treatment in the presence of an hydroxyl radical scavenger

机译:在羟基自由基清除剂存在下通过电子束处理去除水中的重金属

获取原文
获取外文期刊封面目录资料

摘要

Mendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47ndash;86) Removal of heavy metals from water by electron-beam treatment in the presence of an hydroxyl radical scavenger Alexei K. Pikaev,*a Lidiya I. Kartasheva,a Tatrsquo;yana P. Zhestkova,a Tamara K. Yurik,a Vladimir N. Chulkov,a Oleg A. Didenko,a Duk Kyung Kim,b Yuri Kimb and Bumsoo Hanb a Institute of Physical Chemistry, Russian Academy of Sciences, 117915 Moscow, Russian Federation.Fax: +7 095 335 1778 b Samsung Heavy Industries Co., Daeduk Ramp;D Center, Daejeon, 305-600, Republic of Korea. Fax: +82 042 865 4314 Electron-beam treatment in combination with the use of formate as an hydroxyl radical scavenger and subsequent filtration has been developed for the removal of heavy metals (cadmium, lead, chromium) from water.One of the most important environmental problems is the removal of heavy metals from waste water. We used an electron-beam technique, which is applicable for the purification of various waste waters, (see e.g. refs. 1ndash;4) to remove these metals from the water. The method is based on radiation-chemical reduction of the metal ions to their respective metals or to lower oxidation state ions which can then be removed by filtration.Two requirements are necessary: the absence of oxygen in the water (in the case of CdII and PbII) and scavenging of OH radicals which can oxidize the reduced metal ions. The reduction, upon electron-beam treatment, can be a result of reactions of the ions with hydrated electrons eaq ndash; and H atoms formed from water radiolysis.5 For example, in the case of CdII ions, it is possible to write: If the water is saturated with air, oxygen reacts with eaq ndash; and H equations (4)ndash;(6), partially or completely suppressing reactions (1) and (2).Since the reactions of HO2 and O2 ndash; with CdII and PbII are comparatively slow, upon electron-beam treatment they can combine forming hydrogen peroxide: and/or react with reduced metal ions: Hydrogen peroxide can also oxidize such ions: The reduction takes part after the consumption of oxygen, and so to decrease the required dose air should be removed from water (for example, by bubbling inert gas) before and/or during electron-beam treatment.Hydroxyl radicals formed from water radiolysis and in reaction (9) react with reduced ions: In the case of PbII ions, hydroxyl radicals can react with them forming PbIII (see e.g.ref. 5): Then reaction (12) can proceed: Hydrogen peroxide is also a water radiolysis product; together with the H2O2 produced from reactions (7) and (8) it can oxidize reduced ions. The overall effect will be that the metal ions will not be reduced to the free metal. To exclude the negative influence of hydroxyl radicals it is possible to use a scavenger which converts the hydroxyl radicals into reducing species. Such a scavenger is formate ion.In reaction with hydroxyl radicals it gives COOndash; radical ion which can then reduce metal ions: The carbon dioxide produced in reactions (14)ndash;(16) is not toxic, yet the use of other hydroxyl radical scavengers can give rise to the formation of toxic compounds.For instance, ethyl and isopropyl alcohols which are also utilized as scavengers can form acetaldehyde and acetone, respectively. In addition, R HOH radicals formed can oxidize CdI. We studied the removal of cadmium, lead and chromium from model aqueous solutions. The first two metals were initially in the form of bivalent ions, and chromium was in the form of a chromate ion.CdII and PbII were reduced to Cd0 and Pb0, and CrVI was reduced to CrIII. The source of the ionizing radiation was a linear U-12 electron accelerator (electron energy 5 MeV, pulse duration 2.3 ms). Doses were measured with an ordinary or modified Fricke dosimeter (in a dependence on dose rate).6 The total dose was varied by changing the amount of electron pulses or by changing the irradiation duration when a series of pulses (400Hz) were used.The concentrations of cadmium and lead were determined using a Perkin-Elmer lsquo;Plasma-40rsquo; atom absorption spectrometer. Analysis of CrVI was performed spectrophotometrically from the optical density of the solution at 373nm (pH 10ndash;11, molar extinction coefficient 461 m2 molndash;1,7,8 the solution was filtered if CrIII hydroxide precipitate was formed) using a lsquo;Specord M-40rsquo; spectrophotometer.All reagents were analytical grade. The solutions were aerated and deaerated. The removal of air from the solutions was conducted by bubbling purified argon for 30ndash;40min. The precipitates formed upon irradiation were CdII + eaq ndash; CdI CdII + H CdI + H+ CdI + CdI CdII + Cd0 (1) (2) (3) eaq ndash; + O2 O2 ndash; H + O2 HO2 HO2 H+ + O2 ndash; (4) (5) (6) HO2 + O2 ndash; + H+ H2O2 + O2 (7) CdI + HO2 + H+ CdII + H2O2 (8) CdI + H2O2 CdII + OH + OHndash; (9) CdI + OH CdII + OHndash; (10) PbII + OH PbIII + OHndash; (11) PbIII + PbI 2PbII (12) HCOOndash; + OH COOndash; + H2O CdII + COOndash; CdI + CO2 CdI + COOndash; Cd0 + CO2 COOndash; + O2 CO2 + O2 ndash; (13) (14) (15) (16) C middot; Figure 1 Dependence of CdII concentration in deaerated aqueous solution containing 5times;10ndash;3 mol dmndash;3 formate on the dose of electron radiation. 2.5 2.0 1.5 1.0 0.5 0 1 2 3 4 CdII /mg dmndash;3 Dose/kGyMendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47ndash;86) filtrated using glass filters or were centrifuged. Figure 1 shows the dependence of the change in CdII concentration in the deaerated solution containing ca. 2 mg dmndash;3 CdII and 5times;10ndash;3 mol dmndash;3 formate on the dose of electron radiation.A dose of ca. 3.5 kGy leads to a decrease in CdII concentration below the permitted level of 0.1 mg dmndash;3.9 Note that irradiation of aerated solution at such a concentration of CdII did not give a positive result. At sufficiently high concentrations of CdII (for instance, at 50mgdmndash;3) the required removal level is reached even in aerated solutions.Under this condition reactions (1) and (2) can compete with the interaction of oxygen with eaq ndash; and H. Similar results were obtained with solutions of PbII. The dependence of the decrease in PbII concentration in aerated solution containing ca. 5 mg dmndash;3 PbII in the absence of formate (curve 1) and in the presence of 10ndash;2 mol dmndash;3 formate (curve 2) on the dose of electron irradiation is shown in Figure 2.In the absence of formate the removal of lead does not take place. The induction period is characteristic of the dependence expressed by curve 2. Apparently, it is caused by the presence of oxygen in the solution, and is finished after oxygen consumption. The dose required to remove ca. 5 mg dmndash;3 PbII to the concentration less than 1 mg dmndash;3 (a permitted level of lead content9 in disposed waste waters) is ca. 0.7 kGy. Slightly higher doses (1.0ndash;1.2 kGy) are required for the removal of 10ndash;20 mg dmndash;3 PbII. Chromate in aqueous solution is reduced to CrIII upon electron-beam irradiation. The process occurs in deaerated and aerated solutions, in the absence and the presence of formate (see Figure 3). However, in aerated solutions in the absence of formate only 10ndash;30 reduction occurs.Such a low degree of reduction seems to be caused by reactions (4)ndash;(6); HO2 and O2 ndash; radicals do not reduce CrVI ions in a neutral medium, but oxidize transient reduced species. In the presence of formate the process is very effective even in aerated solutions. Apparently, the COOmiddot;ndash; radical ion formed in reaction (13) is a stronger reducing agent towards CrVI than HO2 and O2 ndash; radicals.Note that the residual CrVI after a radiation dose of ca. 3.5 kGy is ca. 0.05 mg dmndash;3. Chromium(III) is precipitated as the hydroxide. The medium for precipitation of CrIII in this form is slightly-alkaline (pH 8.5ndash;9.5, see e.g. ref. 10). Hence, electron-beam treatment in combination with the use of formate as an hydroxyl scavenger and subsequent filtration or centrifugation can be used for the removal of cadmium, lead and chromium from water.References 1 A. K. Pikaev, Khim. Vys. Energ., 1994, 28, 5 High Energy Chem. (Engl. Transl.), 1994, 28, 5. 2 R. J. Woods and A. K. Pikaev, Applied Radiation Chemistry: Radiation Processing, Wiley, New York, 1994. 3 A. K. Pikaev, Usp. Khim., 1995, 64, 609 (Russ.Chem. Rev., 1995, 64, 569). 4 C. N. Kurucz, T. D. Waite and W. J. Cooper, Radiat. Phys. Chem., 1995, 45, 299. 5 A. K. Pikaev, Sovremennaya radiatsionnaya khimiya. Radioliz zhidkostei i gazov (Modern Radiation Chemistry. Radiolysis of Liquids and Gases), Nauka, Moscow, 1986 (in Russian). 6 A. K. Pikaev, Dosimetriya v radiatsionnoi khimii (Dosimetry in Radiation Chemistry), Nauka, Moscow, 1975 (in Russian). 7 A.K. Lavrukhina and L. V. Yukina, Analiticheskaya khimiya khroma (Analytical Chemistry of Chromium), Nauka, Moscow, 1979 (in Russian). 8 Yu. Yu. Lurrsquo;e, Rukovodstvo po analiticheskoi khimii (Handbook of Analytical Chemistry), Khimiya, Moscow, 1979 (in Russian). 9 Ya. M. Grushko, Vrednye neorganicheskie soedineniya v promyshlennykh stochnykh vodakh (Toxic Inorganic Compounds in Industrial Waste Waters), Khimiya, Leningrad, 1979 (in Russian). 10 V. E. Ternovtsev and V. M. Pukhachev, Ochistka promyshlennykh stochnykh vod (Purification of Industrial Waste Waters), Budivelrsquo;nik, Kiev, 1986 (in Russian). Figure 2 Dependence of PbII concentration in aerated aqueous solution in the absence of formate (1) and in the presence of 10ndash;2 moldmndash;3 formate (2) on the dose of electron radiation. 5 4 3 2 1 0 0.5 1.0 1.5 PbII/mg dmndash;3 Dose/kGy 1 2 Figure 3 Dependence of CrVI concentration in aerated neutral aqueous solutions in the absence of formate (1) and in the presence of 9.6times;10ndash;3 mol dmndash;3 formate (2) and in deaerated neutral aqueous solution (3) in the absence of formate on the dose of electron radiation. 6 4 2 0 1 2 3 4 CrVI /mg dmndash;3 Dose/kGy 1 2 3 Received: Moscow, 15th November 1996 Cambridge, 7th January 1997; Com. 6/08036G
机译:门捷列夫通讯电子版,第 2 期。1997 年(第 47-86 页) 在羟基自由基清除剂 Alexei K. Pikaev、*a Lidiya I. Kartasheva、a Tat'yana P. Zhestkova、a Tamara K. Yurik、a Vladimir N. Chulkov、a Oleg A. Didenko、a Duk Kyung Kim、b Yuri Kimb 和 Bumsoo Hanb 存在下从水中去除重金属 a 物理化学研究所, Russian Academy of Sciences, 117915 Moscow, Russian Federation.传真: +7 095 335 1778 b Samsung Heavy Industries Co., Daeduk R&D Center, Daejeon, 305-600, Republic of Korea.传真: +82 042 865 4314 电子束处理与甲酸盐作为羟基自由基清除剂和随后的过滤相结合,已经开发用于去除水中的重金属(镉、铅、铬)。最重要的环境问题之一是去除废水中的重金属。我们使用适用于净化各种废水的电子束技术(参见参考文献 1-4)从水中去除这些金属。该方法基于将金属离子辐射化学还原为各自的金属或降低氧化态离子,然后可以通过过滤去除这些离子。需要满足两个要求:水中不含氧气(在CdII和PbII的情况下)和清除可以氧化还原金属离子的OH自由基。在电子束处理下,还原可能是离子与水合电子eaq反应的结果 - 以及由水辐射分解形成的H原子.5例如,在CdII离子的情况下,可以写成: 如果水中的空气饱和,氧气会与eaq – 和H [等式(4)–(6)]反应,部分或完全抑制反应(1)和(2)。由于 HO2 和 O2 – 与 CdII 和 PbII 的反应相对较慢,因此在电子束处理后,它们可以结合形成过氧化氢: 和/或与还原金属离子反应: 过氧化氢也可以氧化这些离子: 还原是在消耗氧气后进行的,因此要减少所需剂量,应从水中除去空气(例如, 通过鼓泡惰性气体)在电子束处理之前和/或期间。由水辐射分解形成的羟基自由基在反应(9)中与还原离子反应:在PbII离子的情况下,羟基自由基可以与它们反应形成PbIII(参见例如参考文献5): 然后反应(12)可以进行: 过氧化氢也是一种水辐射分解产物;与反应 (7) 和 (8) 产生的 H2O2 一起,它可以氧化还原离子。总体效果是金属离子不会还原为游离金属。为了排除羟基自由基的负面影响,可以使用清除剂将羟基自由基转化为还原性物质。这种清除剂是甲酸根离子。在与羟基自由基反应时,它产生COO-自由基离子,然后可以减少金属离子:反应(14)–(16)中产生的二氧化碳是无毒的,但使用其他羟基自由基清除剂会导致有毒化合物的形成。例如,也用作清除剂的乙醇和异丙醇可以分别形成乙醛和丙酮。此外,形成的R HOH自由基可以氧化CdI。我们研究了从模型水溶液中去除镉、铅和铬的方法。前两种金属最初以二价离子的形式存在,铬以铬酸盐离子的形式存在。CdII和PbII还原为Cd0和Pb0,CrVI还原为CrIII。电离辐射的来源是线性U-12电子加速器(电子能量5 MeV,脉冲持续时间2.3 ms)。使用普通或改进的弗里克剂量计测量剂量(取决于剂量率).6 当使用一系列脉冲 (400Hz) 时,通过改变电子脉冲的数量或改变照射持续时间来改变总剂量。镉和铅的浓度是使用Perkin-Elmer'Plasma-40'原子吸收光谱仪测定的。使用“Specord M-40”分光光度计,根据溶液在 373nm 处的光密度(pH 值 10-11,摩尔消光系数 461 m2 mol-1,7,8,如果形成 CrIII 氢氧化物沉淀,则过滤溶液)对 CrVI 进行分光光度法分析。所有试剂均为分析级试剂。对溶液进行曝气和脱气。通过鼓泡纯化氩气 30-40 分钟来去除溶液中的空气。辐照时形成的沉淀物为 CdII + eaq – CdI CdII + H CdI + H+ CdI + CdI CdII + Cd0 (1) (2) (3) eaq – + O2 O2 O2 – H + O2 HO2 HO2 H+ + O2 – (4) (5) (6) HO2 + O2 – + H+ H2O2 + O2 (7) CdI + HO2 + H+ CdII + H2O2 (8) CdI + H2O2 CdII + OH + OH + OH– (9) CdI + OH CdII + OH– (10) PbII + OH PbIII + OH– (11) PbIII + PbI 2PbII (12) HCOO– + OH COO– + H2O CdII + COO – CO2 CdI + COO– Cd0 +CO2 COO– + O2 CO2 + O2 – (13) (14) (15) (16) C ·图 1 含有 5×10–3 mol dm–3 甲酸盐的脱气水溶液中 CdII 浓度对电子辐射剂量的依赖性。2.5 2.0 1.5 1.0 0.5 0 1 2 3 4 [CdII] /mg dm–3 剂量/kGy门捷列夫通信电子版,第 2 期。1997 年(第 47-86 页)使用玻璃过滤器过滤或离心。图 1 显示了含有约 2 mg dm–3 CdII 和 5×10–3 mol dm–3 甲酸盐的脱气溶液中 CdII 浓度变化对电子辐射剂量的依赖性。约3.5 kGy的剂量导致CdII浓度降低到0.1 mg dm–3.9的允许水平以下,请注意,在如此浓度的CdII下照射曝气溶液没有产生阳性结果。在足够高浓度的CdII下(例如,在50mgdm–3时),即使在充气溶液中也能达到所需的去除水平。在这种条件下,反应(1)和(2)可以与氧与eq和H的相互作用竞争,用PbII溶液也获得了类似的结果。在无甲酸盐(曲线1)和存在10-2 mol dm-3甲酸盐(曲线2)的情况下,含有约5 mg dm-3 PbII的充气溶液中PbII浓度降低对电子照射剂量的依赖性如图 2.In 所示:没有甲酸盐,不会发生铅的去除。诱导期是曲线 2 表示的依赖性的特征。显然,它是由溶液中存在氧气引起的,并且在耗氧后完成。去除约5 mg dm–3 PbII至浓度低于1 mg dm–3(处理废水中铅含量的允许水平9)所需的剂量约为0.7 kGy。去除 10-20 mg dm-3 PbII 需要稍高的剂量 (1.0-1.2 kGy)。水溶液中的铬酸盐在电子束照射下还原为CrIII。该过程在脱气和曝气溶液中进行,无论是否存在甲酸盐(见图3)。然而,在没有甲酸盐的曝气溶液中,仅发生 10-30% 的减少。如此低的还原程度似乎是由反应(4)–(6)引起的;HO2 和 O2 – 自由基不会在中性介质中还原 CrVI 离子,而是氧化瞬时还原物质。在甲酸盐存在的情况下,即使在曝气溶液中,该过程也非常有效。显然,在反应 (13) 中形成的 COO·– 自由基离子比 HO2 和 O2 – 自由基对 CrVI 的还原剂更强。请注意,辐射剂量约为 3.5 kGy 后残留的 CrVI 约为 0.05 mg dm–3。铬(III)作为氢氧化物沉淀。这种形式的CrIII沉淀介质是微碱性的(pH 8.5–9.5,参见例如参考文献10)。因此,电子束处理与甲酸盐作为羟基清除剂以及随后的过滤或离心相结合,可用于去除水中的镉、铅和铬。参考文献 1 A. K. Pikaev, Khim.维斯。Energ., 1994, 28, 5 [高能化学(英文译), 1994, 28, 5].2 R. J. Woods 和 A. K. Pikaev,《应用辐射化学:辐射处理》,Wiley,纽约,1994 年。3 A. K. 皮卡耶夫,Usp。Khim., 1995, 64, 609 (Russ.Chem. Rev., 1995, 64, 569).4 C. N. Kurucz、T. D. Waite 和 W. J. Cooper, Radiat.物理化学, 1995, 45, 299.5 A. K. Pikaev, Sovremennaya radiatsionnaya khimiya.Radioliz zhidkostei i gazov (现代辐射化学.Radiolysis of Liquids and Gases),Nauka,莫斯科,1986年(俄文)。6 A. K. Pikaev, Dosimetriya v radiatsionnoi khimii (辐射化学剂量学),Nauka,莫斯科,1975年(俄文)。7 A.K. Lavrukhina 和 L. V. Yukina, Analiticheskaya khimiya khroma (铬的分析化学), Nauka, 莫斯科, 1979 (俄文).8 于.禹。《分析化学手册》,Khimiya,莫斯科,1979年(俄文)。9 耶。M. Grushko, Vrednye neorganicheskie soedineniya v promyshlennykh stochnykh vodakh (工业废水中的有毒无机化合物),列宁格勒希米亚,1979年(俄文)。10 V.E.捷尔诺夫采夫和V.M.普哈切夫,《工业废水的净化》,基辅布迪维尔尼克,1986年(俄文)。图 2 在没有甲酸盐 (1) 和存在 10-2 moldm-3 甲酸盐 (2) 的情况下,曝气水溶液中 PbII 浓度对电子辐射剂量的依赖性。5 4 3 2 1 0 0.5 1.0 1.5 [PbII]/mg dm–3 剂量/kGy 1 2 图 3 无甲酸盐 (1) 和 9.6×10–3 mol dm–3 甲酸盐 (2) 和无甲酸盐的脱气中性水溶液 (3) 中 CrVI 浓度对电子辐射剂量的依赖性。6 4 2 0 1 2 3 4 [CrVI] /mg dm–3 剂量/kGy 1 2 3 收稿日期: 莫斯科,1996 年 11 月 15 日 剑桥,1997 年 1 月 7 日;通讯 6/08036G

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号