首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Biooxidations of someN-arylpiperidines and related compounds usingBeauveria sulfurescens
【24h】

Biooxidations of someN-arylpiperidines and related compounds usingBeauveria sulfurescens

机译:使用Beauveria sulfurescens对某些N-芳基哌啶和相关化合物进行生物氧化

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. soc. PERKIN TRANS. I 1993 88 I Biooxidations of some N-Arylpiperidines and Related Compounds using Beauveria sulfurescens Nicholas Floyd,a Francois Munyemana,b Stanley M. Robertsb and Andrew J. WiIlettsa a Department of Biological Sciences, University of Exeter, Exeter, Devon EX4 4Q D Department of Chemistry, University of Exeter, Exeter, Devon EX4 400 Beauveria sulfurescens ATCC 7159 oxidized the N-arylamines 3,4, 7, 13, 18, 20, 22 at the 4-position with good selectivity and in 3666 yield. The oxidation of organic compounds at ostensibly non-activated positions using selected microorganisms is a powerful technique that has proved to be particularly useful for the introduction of additional functionality into certain structural types. For example the regio- and stereo-selective hydroxylation of steroids and alkaloids has been studied in some depth.However when other, often simpler, structural types are sub- jected to such a biotransformation the position of oxidation is almost invariable difficult to predict and only crude models of the oxidation process are a~ailable.~Beauueria sulfurescens ATCC 7 I59 is a microorganism that has gained popularity as an easy-to-use microbiological oxidant,rsquo; and we have set out to determine the rules governing the site(s) attacked by this organism for a wide range of substrates. In view of current interest in the area we report herein some initial investigations using some N-arylpiperidines and related compounds. As expected N-phenylpiperidine 1is oxidized to the phenol 2 (27 yield?) using B.sulfurescens ATCC 7159. However, substitution at the para-position in the aromatic unit with an electron-withdrawing group leads to oxidation in the hetero- cyclic ring. For example, the N-arylpiperidines 3and 4 form the hydroxylated derivatives 5 and 6 in 42 yield ? and 34 yield,t respectively. The products 5 and 6 were identified by com- parison with authentic samples and no other oxidation prod- ucts were isolated from these fermentations. The ketone 7 is a particularly good substrate in this biotransformation yielding the hydroxylated material ti7 in 66 isolated yield? (see Experimental section) which was considerably higher than in an equivalent recently reported biotransformation.8 In contrast, the 4lsquo;-ethyl compound 9 furnished only the primary alcohol 10 in 30 yield.It is noteworthy that compound 7is a vinylogous amide and it has been observed previously that amides are often good substrates in these types of biotran~formation.~In this connec- tion, it was of interest to find that the ketones 11 and 12 were recovered unchanged from the biotransformation. Altering the position of the substituent in the aromatic ring led to less efficient conversions. Thus, the ketone 13 produced the keto alcohol 14 (20) together with recovered starting material 56). The rneta-substituted compound 15 formed two alcohols 16 (25)? and 17(31).? The thiophene deriv- ative 18 produced the alcohol 19 (37)? as the sole oxidation product. Gratifyingly, when the aromatic moiety was kept constant and the heterocyclic portion of the molecule varied, the results obtained were largely in accord with expectations.For example, oxidation of the 4-methyl-N-arylpiperidine20 gave the tertiary alcohol 21 (55)t while the perhydroazepine 22 furnished the t Starting material (1amp;20) was recovered: the yields of product(s) are calculated on the amount of starting material consumed. 6 CH2CH20H Ac i Rrsquo;=R~=H 10 11 n=l 2 Rrsquo;=oH,$=H 12 n =2 3 Rrsquo; = N02, $= H 4 Rrsquo;=CN,R~=H 5 Rrsquo; = NO2, $= OH 6 Rlsquo; = CN, R2= OH 7 Rrsquo; =AC,FLH 8 Rrsquo; =Ac, $=OH 9 Rlsquo; = Et, R2= H 13 Rrsquo; = R3 = H, R2=Ac 14 Rrsquo; = H, R~= AC, R~= OH 15 R1=Ac,R2=R3=H 16 Rrsquo; = AC, R~= H. R~= OH 17 Rrsquo; = CH(OH)Me, f? = R3 = H li d$ 0 0 AC Ac Ac 18 R=H 20 R=H 22 R=H 24 19 R=OH 21 R=OH 23 R=OH alcohol 23(58).? The latter alcohol was optically active (cch7 -1 1.4 (CHCl,, c 0.37)) and, through formation of the Mosherrsquo;s ester and NMR spectroscopy, the compound was judged to be a 82: 18 mixture of enantiomers. The absolute configuration of the major enantiomer was not determined.The pyrrolidine derivative 24 was not transformed under our standard conditions. In summary, 4rsquo;-substituted N-arylpiperidines and related compounds are oxidized with excellent selectivity using B. sulfurescens ATCC 7159. In comparison, parallel experiments using Curvularia lunata NRRL 2380 gave less satisfactory results; for instance, the ketone 7afforded the alcohol 8 in just 20 yield on incubation with the latter organism.Experimental Conversion of the Ketone 7 into the Alcohol 8 with Beauveria sulfurescens.---The bioconversion medium comprised corn steep liquor (20 g dm ,) and glucose (10 g dm ,) in water adjusted to pH 4.85 with aqueous sodium hydroxide (1 mol dm-3). In a typical fermentation, the sterilized medium was inoculated with a 72 h-old vegetative culture and incubated with reciprocal shaking (28 OC, 200 rpm) in a 2 dm-3 conical flask filled with 1 dm-3 of medium. After 72 h of growth, an ethanolic solution of 4'-piperidinoacetophenone(100 mg cm 3, (10 w/v) was added to the culture (100 mg dm-3). After an additional 72 h period of incubation, the mycelium was filtered off and washed with water and the filtrate was continuously extracted (48 h) with methylene dichloride. The organic phase was dried (MgSO,) and concentrated under reduced pressure. The crude residue was analysed by TLC using ethyl acetate as eluent. Flash chromatography over silica gel (eluent ethyl acetate) gave the alcohol 8 (65 mg) as well as starting material (10 mg).Data for compound 8 were as follows: R, 0.37 (ethyl acetate); m.p. 124-126 "C (lit.,7 123-124 "C); v,,,/cm-'(CHC13) 3625 (OH), 3030, 3010, 2980, 1665 (GO), 1600, 1515, 1425, 1195, 1045, 780 and 665; 6,(250 MHz, CDCI,) 7.87 (2 H, d, J 9.8),6.89(2H,d,J9.8),3.94(1 H,tt,J9,4.5),3.8amp;3.68(2H,m), 3.20-3.06(2H,m),2.51 (3H,s),2.0amp;1.92(2H,m), 1.76(1 H,s, OH) and 1.72-1.56 (2 H, m); 6,(62.9 MHz, CDCI,) 196.58 (M),153.89, 130.52, 127.11, 113.47, 67.40, 45.19, 33.61 and 25.99. J.CHEM. SOC. PERKIN TRANS. i 1993 Acknowledgements We thank the SERC (Biotechnology Directorate) for post- doctoral Fellowships (N. F., F. M.) and the SERC Mass Spectroscopy service for accurate mass determinations. References 1 H. Iizuka and A. Naito Microbial Conversions of Steroids and Alkaloids, University of Tokyo Press and Springer-Verlag, Berlin, 1981, pp. 1-396. 2 H. L. Holland, The Alkaloids (ed. R. G. A. Rodrigo), Academic Press, London, vol. 18, 1981. 3 K. Kieslich, Microbial Transjormations of Non-Steroid Cyclic Compounds, Thieme, Stuttgart, 1976. 4 K. Faber, Biotransformation in Organic Chemistry, Springer-Verlag, Heidelberg, 1992, pp. 18amp;1 and references therein. 5 A. Archelas, J. D. Fourneron and R. Furstoss, Tetrahedron Lett., 1988, 29,6611;R. A. Johnson, M. E. Herr, H. C. Murray and L. M. Reineke, J. Am. Chem. SOC., 1971,93,4880. 6 B. Vigne, A. Archelas, J. D. Fourneron and R. Furstoss, Tetrahedron, 1986,42,2452. 7 E. C. Taylor and J. S. Skotnicki, Synthesis, 1981,606. 8 R. A. Johnson, M. E. Herr, H. C. Murray, C. G. Chichester and F. Han, J. Org. Chem., 1992,57,7209. 9 G. S. Fonken and R. A. Johnson, Chemical Oxidations with Microorganisms, Marcel Dekker, 1972; A. Archelas, J. D. Fourneron and R. Furstoss, J. Org. Chem., 1988,53, 1797; W. Carruthers, J. D. Prail, S. M. Roberts and A. J. Willetts, J. Chem. SOC.,Perkin Trans. I, 1990,2854. Paper 3/0 1038D Received 22nd February 1993 Accepted 3rd March 1993
机译:J. CHEM. soc. PERKIN 译.I 1993 88 I 使用 Beauveria sulfurescens 对一些 N-芳基哌啶和相关化合物进行生物氧化 Nicholas Floyd,a Francois Munyemana,b Stanley M. Robertsb 和 Andrew J. WiIlettsa a 埃克塞特大学生物科学系,埃克塞特,德文郡 EX4 4Q D 埃克塞特大学化学系,埃克塞特,德文郡 EX4 400 Beauveria sulfurescens ATCC 7159 氧化了 N-芳胺 3,4, 7、13、18、20、22 在 4 位具有良好的选择性,收率为 3666%。使用选定的微生物在表面上未激活的位置氧化有机化合物是一种强大的技术,已被证明对于在某些结构类型中引入附加功能特别有用。例如,类固醇和生物碱的区域和立体选择性羟基化已经进行了深入研究。然而,当其他通常更简单的结构类型被置于这种生物转化中时,氧化的位置几乎是不变的,难以预测,只有氧化过程的粗略模型是~ailable.~Beauueria sulfurescens ATCC 7 I59是一种微生物,作为一种易于使用的微生物氧化剂而广受欢迎,“我们已经着手确定控制该生物体攻击的位点的规则,用于各种底物。鉴于目前对该领域的兴趣,我们在此报告一些使用一些N-芳基哌啶和相关化合物的初步研究。正如预期的那样,N-苯基哌啶1使用硫酸芽孢杆菌ATCC 7159氧化为苯酚2(27%产率?然而,在芳香族单元的对位处被吸电子基团取代会导致杂环中的氧化。例如,N-芳基哌啶 3 和 4 以 42% 的收率形成羟基化衍生物 5 和 6?和34%的收率,t。通过与真实样品的比较,鉴定了产物5和6,没有从这些发酵中分离出其他氧化产物。酮 7 是这种生物转化中特别好的底物,以 66% 的分离收率产生羟基化材料 ti7?(见实验部分)这比最近报道的等效生物转化要高得多.8相比之下,4'-乙基化合物9在30%的产率中仅提供伯醇10。值得注意的是,化合物 7 是一种乙烯基酰胺,并且之前已经观察到酰胺通常是这些类型的生物转化~形成中的良好底物.~在这种连接中,有趣的是发现酮 11 和 12 从生物转化中恢复原样。改变取代基在芳香环中的位置会导致转化效率降低。因此,酮13与回收的起始原料一起产生酮醇14(20%)和56%)。rneta取代的化合物15形成两种醇16(25%)?和 17 (31%)。?噻吩衍生物 18 产生醇 19 (37%)?作为唯一的氧化产物。令人欣慰的是,当芳香族部分保持恒定且分子的杂环部分发生变化时,获得的结果基本符合预期。例如,4-甲基-N-芳基哌啶20的氧化得到叔醇21(55%)t,而全氢氮杂卓22提供t的起始材料(1&20%)被回收:产品的收率是根据消耗的起始材料量计算的。6 CH2CH20H ac i R'=R~=H 10 11 n=l 2 R'=oH,$=H 12 n =2 3 R' = N02, $= H 4 R'=CN,R~=H 5 R' = NO2, $= OH 6 R' = CN, R2= OH 7 R' =AC,FLH 8 R' =Ac, $=OH 9 R' = Et, R2= H 13 R' = R3 = H, R2=交流 14 R' = H, R~= AC, R~= OH 15 R1=Ac,R2=R3=H 16 R' = AC, R~= H. R~= OH 17 R' = CH(OH)Me, f?= R3 = H li d$ 0 0 AC 交流 AC 18 R=H 20 R=H 22 R=H 24 19 R=OH 21 R=OH 23 R=OH 醇 23(58%).?后一种醇具有光学活性([cc]h7 -1 1.4 (CHCl,, c 0.37)),通过Mosher酯和NMR波谱的形成,该化合物被判断为对映异构体的82:18混合物。主要对映异构体的绝对构型尚未确定。吡咯烷衍生物24在我们的标准条件下没有转化。总之,使用硫酸芽孢杆菌ATCC 7159氧化4'-取代的N-芳基哌啶和相关化合物,具有出色的选择性。相比之下,使用弯孢菌NRRL 2380的平行实验给出的结果不太令人满意;例如,酮 7 在与后者生物体孵育时仅以 20% 的产率提供醇 8。实验:用Beauveria sulfurescens将酮7转化为醇8.---生物转化培养基包括玉米浸泡液(20 g dm)和葡萄糖(10 g dm,),在用氢氧化钠水溶液(1 mol dm-3)调节至pH 4.85的水中。在典型的发酵中,将灭菌培养基接种72小时龄的营养培养物,并在装有1dm-3培养基的2dm-3锥形瓶中通过相互振荡(28OC,200rpm)孵育。生长72小时后,向培养物(100mg dm-3)中加入4'-哌啶基苯乙酮(100mg cm 3,(10%w/v)的乙醇溶液。再孵育72小时后,滤除菌丝体并用水洗涤,滤液用二氯甲烷连续提取(48小时)。将有机相干燥(MgSO)并在减压下浓缩。TLC使用乙酸乙酯作为洗脱液分析粗残渣。硅胶(洗脱液乙酸乙酯)上的快速色谱法得到醇8(65mg)和起始原料(10mg)。化合物8的数据如下:R,0.37(乙酸乙酯);m.p. 124-126 “C (lit.,7 123-124 ”C);v,,,/cm-'(CHC13) 3625 (OH)、3030、3010、2980、1665 (GO)、1600、1515、1425、1195、1045、780 和 665;6,(250 MHz,CDCI,) 7.87 (2 H, d, J 9.8),6.89(2H,d,J9.8),3.94(1 H,tt,J9,4.5),3.8&3.68(2H,m),3.20-3.06(2H,m),2.51(3H,s),2.0&1.92(2H,m),1.76(1 H,s,OH)和1.72-1.56(2 H,m);6、(62.9 MHz,CDCI,)196.58(M)、153.89、130.52、127.11、113.47、67.40、45.19、33.61和25.99。J.CHEM. SOC. PERKIN TRANS. i 1993 致谢 我们感谢 SERC(生物技术理事会)的博士后奖学金(N.F.、F.M.)和 SERC 质谱服务,以提供准确的质量测定。参考文献 1 H. Iizuka 和 A. Naito 类固醇和生物碱的微生物转化,东京大学出版社和 Springer-Verlag,柏林,1981 年,第 1-396 页。2 H. L. Holland, The Alkaloids (ed. R. G. A. Rodrigo), Academic Press, London, vol. 18, 1981.3 K. Kieslich,《非甾体环状化合物的微生物转译》,Thieme,斯图加特,1976年。4 K. Faber,《有机化学中的生物转化》,Springer-Verlag,海德堡,1992年,第18&1页及其参考文献。5 A. Archelas, J. D. Fourneron 和 R. Furstoss, Tetrahedron Lett., 1988, 29,6611;R. A. Johnson, M. E. Herr, H. C. Murray 和 L. M. Reineke, J. Am. Chem. SOC., 1971,93,4880.6 B. Vigne、A. Archelas、J. D. Fourneron 和 R. Furstoss,四面体,1986,42,2452。7 E.C.Taylor和J.S.Skotnicki,《综合》,1981年,606。8 R. A. Johnson, M. E. Herr, H. C. Murray, C. G. Chichester 和 F. Han, J. Org. Chem., 1992,57,7209.9 G. S. Fonken 和 R. A. Johnson,《微生物的化学氧化》,Marcel Dekker,1972 年;A. Archelas、JD Fourneron 和 R. Furstoss,J. Org. Chem。, 1988,53, 1797;W. Carruthers, J. D. Prail, S. M. Roberts 和 A. J. Willetts, J. Chem. SOC.,Perkin Trans. I, 1990,2854.论文 3/0 1038D 收稿日期 1993年2月22日 录用日期:1993年3月3日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号