...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Application of Characteristic Model-Based Principal Component Analysis in Optimization of Flowmeter Parameters
【24h】

Application of Characteristic Model-Based Principal Component Analysis in Optimization of Flowmeter Parameters

机译:Application of Characteristic Model-Based Principal Component Analysis in Optimization of Flowmeter Parameters

获取原文
获取原文并翻译 | 示例

摘要

In complex industrial processes, it is necessary to perform modeling analysis on some industrial systems and find and optimize the factors that have the greatest impact on the results, in order to achieve the optimization of the industrial systems. However, due to the high-level nature or complex working mechanism of complex industrial systems, traditional principal component analysis methods are difficult to apply. Therefore, this paper proposes a characteristic model-based principal component analysis (CMPCA) to perform principal component analysis on complex industrial systems. The differential pressure flowmeter is taken as an example to verify the effectiveness of the method. Flowmeter is an indispensable instrument in measurement, and its accuracy depends on its own structural parameters. However, the measurement accuracy of some flow meters is not high, and the measurement error is large, which affects the normal industrial production process. This method is used to analyze the influence of the structural parameters of the flowmeter on its measurement accuracy, and the four most important structural parameters are found and optimized. The measurement error of the Bitoba flowmeter is reduced from 1% to 0.2%, and the measurement repeatability is reduced from 0.3 to 0.06, which proves the effectiveness of the method.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号