...
首页> 外文期刊>journal of geophysical research e: planets >Multiple flooding events in Martian outflow channels
【24h】

Multiple flooding events in Martian outflow channels

机译:Multiple flooding events in Martian outflow channels

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The large outflow channels of Chryse Planitia, Mars, are thought to have been carved by floodwaters discharged from an aquifer beneath a confining cryosphere. However, conventional models of groundwater flow require optimistically high permeabilities to produce, in a single flooding event, the discharge rates and volumes inferred from channel morphology. Additionally, discharge likely ceased upon refreezing of chaotic terrain fractures carrying it to the surface, further limiting the volume of water produced in a single flood. It is thus probable that multiple surface discharge events were required, and we quantify this hypothesis with regional groundwater simulations. Each discharge event is triggered by cryosphere disruption due to superlithostatic hydraulic head at the channel source region and is terminated by cryosphere fracture refreezing. Before the next event, head is allowed to recover with the aid of distal aquifer recharge constrained by previous global groundwater models. Our baseline model, which emulates the source region of Kasei Valles, yields a minimum of 2900 flooding events even for hipp depth-averaged aquifer permeabilities corresponding to near-surface values of 10-9 m2. Although fewer events are required for other circum-Chryse channels, formation by a single flood remains improbable. We suggest that unrealistically high numbers of floods may be circumvented by an alternative model involving the local ponding of surface discharge to form standing bodies of water. Episodic failure of these bodies produces flood outbursts which erode the channels. Copyright 2008 by the American Geophysical Union.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号