...
首页> 外文期刊>Journal of cold regions engineering >Expedient Sea Ice Infrastructure in a Cold Environment
【24h】

Expedient Sea Ice Infrastructure in a Cold Environment

机译:Expedient Sea Ice Infrastructure in a Cold Environment

获取原文
获取原文并翻译 | 示例

摘要

McMurdo Station, Antarctica, serves as a major scientific and support operations hub for the US Antarctic Program (USAP). Winter Quarters Bay (WQB) is adjacent to the Station, where vessels dock at the southernmost port to unload cargo and fuel. The ice pier at McMurdo is vital to ensure this once-annual vessel resupply. The use of the ice pier requires the deployment of a Bailey bridge, which creates an operating bottleneck for resupply. The occasional breakup of the ice pier, during or immediately after vessel operations, demonstrates a potential point for failure. The feasibility of artificial freezing of seawater using thermopiles (TP; a passive cooling technology) to grow the existing WQB bottomfast ice edge to a point where ships could dock directly will be investigated in this study. The timing to freeze an ice dock depends on the air temperature, TP fin size, the distance between TPs, and the number of TP rows that are engaged simultaneously. The results indicated that to complete a bottomfast ice edge 40 m seaward and 100 m long that was parallel to the shore and adequate for ship docking and offload, it would take from 255 to 820 days. This study shows that TPs could successfully be used to generate a direct docking bottomfast ice wharf at McMurdo and similar locations.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号