首页> 外文期刊>Metabolomics : >LC-MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions
【24h】

LC-MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions

机译:LC-MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions

获取原文
获取原文并翻译 | 示例
       

摘要

Introduction Vitis labrusca L. grapes are largely cultivated in Brazil, but the tropical climate negatively affects the phenols content, especially anthocyanin. According to the projections of the incoming climatic changes, the climate of several viticulture zone might change to tropical. Therefore, researches are focusing on increasing grape phenols content; with methyl jasmonate application (MeJa) is considered a good alternative. Objectives The aim was to investigate with an untargeted approach the metabolic changes caused by the MeJa pre-harvest application on two Vitis labrusca L. cultivars grapes, both of them grown in two Brazilian regions. Methods Isabel Precoce and Concord grapes cultivated under subtropical climate, in the south and southeast of Brazil, received MeJa pre-harvest treatment. Grape metabolome was extracted and analyzed with a MS based metabolomics protocol by UPLC-HRMS-QTOF. Results Unsupervised data analysis revealed a clear separation between the two regions and the two cultivars, while supervised data analysis revealed biomarkers between the MeJa treatment group and the control group. Among the metabolites positively affected by MeJa were (a) flavonoids with a high degree of methylation at the B-ring (malvidin and peonidin derivatives and isorhamentin) for Isabel Precoce grapes; (b) glucosides of hydroxycinnamates, gallocatechin, epigallocatechin and cis-piceid for Concord grapes; and (c) hydroxycinnamates esters with tartaric acid, and procyanidins for the Southeast region grapes. Conclusion These results suggest that MeJa can be used as elicitor to secondary metabolism in grapes grown even under subtropical climate, affecting phenolic biosynthesis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号