【24h】

Novel mechanical behaviors of wurtzite CdSe nanowires

机译:Novel mechanical behaviors of wurtzite CdSe nanowires

获取原文
获取原文并翻译 | 示例
       

摘要

As an important semiconducting nanomaterial, CdSe nanowires have attracted much attention. Although many studies have been conducted in the electronic and optical properties of CdSe NWs, the mechanical properties of Wurtzite (WZ) CdSe nanowires remain unclear. Using molecular dynamics simulations, we have studied the tensile mechanical properties and behaviors of [0001]-oriented Wurtzite CdSe nanowires. By monitoring the stretching processes of CdSe nanowires, three distinct structures are found: the WZ wire, a body-centered tetragonal structure with four-atom rings (denoted as BCT-4), and a structure that consists of ten-atom rings with two four-atom rings (denoted as TAR-4) which is observed for the first time. Not only the elastic tensile characteristics are highly reversible under unloading, but a reverse transition between TAR-4 and BCT-4 is also observed. The stretching processes also have a strong dependence on temperature. A tubular structure similar to carbon nanotubes is observed at 150 K, a single-atom chain is formed at 300, 350 and 450 K, and a double-atom chain is found at 600 K. Our findings on tensile mechanical properties of WZ CdSe nanowires does not only provide inspiration to future study on other properties of CdSe nanomaterials but also help design and build efficient nanoscale devices.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号