...
首页> 外文期刊>Bioelectromagnetics: Journal of the Bioelectromagnetics Society >Partial-body exposure of human volunteers to 2450 MHz pulsed or CW fields provokes similar thermoregulatory responses.
【24h】

Partial-body exposure of human volunteers to 2450 MHz pulsed or CW fields provokes similar thermoregulatory responses.

机译:Partial-body exposure of human volunteers to 2450 MHz pulsed or CW fields provokes similar thermoregulatory responses.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many reports describe data showing that continuous wave (CW) and pulsed (PW) radiofrequency (RF) fields, at the same frequency and average power density (PD), yield similar response changes in the exposed organism. During whole-body exposure of squirrel monkeys at 2450 MHz CW and PW fields, heat production and heat loss responses were nearly identical. To explore this question in humans, we exposed two different groups of volunteers to 2450 MHz CW (two females, five males) and PW (65 micros pulse width, 10(4) pps; three females, three males) RF fields. We measured thermophysiological responses of heat production and heat loss (esophageal and six skin temperatures, metabolic heat production, local skin blood flow, and local sweat rate) under a standardized protocol (30 min baseline, 45 min RF or sham exposure, 10 min baseline), conducted in three ambient temperatures (T(a) = 24, 28, and 31 degrees C). At each T(a), average PDs studied were 0, 27, and 35 mW/cm2 (Specific absorption rate (SAR) = 0, 5.94, and 7.7 W/kg). Mean data for each group showed minimal changes in core temperature and metabolic heat production for all test conditions and no reliable differences between CW and PW exposure. Local skin temperatures showed similar trends for CW and PW exposure that were PD-dependent; only the skin temperature of the upper back (facing the antenna) showed a reliably greater increase (P =.005) during PW exposure than during CW exposure. Local sweat rate and skin blood flow were both T(a)- and PD-dependent and showed greater variability than other measures between CW and PW exposures; this variability was attributable primarily to the characteristics of the two subject groups. With one noted exception, no clear evidence for a differential response to CW and PW fields was found. Copyright 2001 Wiley-Liss, Inc.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号