...
首页> 外文期刊>Acta materialia >Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission
【24h】

Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission

机译:Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission

获取原文
获取原文并翻译 | 示例

摘要

Neutron diffraction and acoustic emission were used in a single in situ experiment in order to study the deformation twinning of two ZM20 Mg alloys with significantly different grain sizes at room temperature. The combination of these two techniques facilitates the distinction between twin nucleation and twin growth. It is shown that yielding and immediate post-yielding plasticity in compression along the extrusion direction is governed primarily by twin nucleation, whereas plasticity at higher strains is presumably governed by twin growth and dislocation slip. It is further shown that, in the fine-grained alloy, collaborative twin nucleation in many grains dominates yielding, whereas twin nucleation in the coarse-grained alloy is progressive and occurs over a larger strain range. In addition, it is shown that, despite twin nucleation stresses increasing with decreasing grain size, roughly the same overall volume fraction of twins is formed in both fine and coarse parent grains. This confirms the difficulty of the alternative deformation modes and suggests a negligible suppressive effect of grain size on twinning in the case of the strongly textured fine-grained alloy. The current results also show that twins in the coarse-grained alloy are born less relaxed with respect to surrounding polycrystalline aggregate than those in the fine-grained alloy. This is believed to lead to lower reversal stresses acting on twin grains in the coarse-grained alloy upon unloading and thus to less unt-winning and thus to a smaller pseudoelastic-like hysteresis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号