...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Stability Analysis for Milling Process with Variable Pitch and Variable Helix Tools by High-Order Full-Discretization Methods
【24h】

Stability Analysis for Milling Process with Variable Pitch and Variable Helix Tools by High-Order Full-Discretization Methods

机译:Stability Analysis for Milling Process with Variable Pitch and Variable Helix Tools by High-Order Full-Discretization Methods

获取原文
获取原文并翻译 | 示例

摘要

Chatter is one of the significant limitations in the milling process, which may cause poor surface quality, reduced productivity, and accelerated tool wear. Variable pitch and variable helix tools can be used to suppress regenerative chatter. This study extends the high-order full-discretization methods (FDMs) to predict the stability of milling with variable pitch and variable helix tools. The time-periodic delay-differential equation (DDE) with multiple delays is used to model the milling process using variable pitch and variable helix tools. Then, the DDE with multiple delays is reexpressed by the state-space equation. Meanwhile, the spindle rotational period is divided into many small-time intervals, and the state space equation is integrated on the small-time interval. Then, the high-order interpolation polynomials are used to approximate the state term, and the weights related to the time delay are employed to approximate the time-delay term. The second-order, third-order, and fourth-order extended FDMs (2nd EFDM, 3rd EFDM, and 4th EFDM) are compared with the benchmark in terms of the rate of convergence. It is found that the 2nd EFDM, 3rd EFDM, and 4th EFDM converge faster than the benchmark method. The difference between the curves obtained by different EFDMs and the reference curve is very small. There is no need to extend hypersecond FDMs to analyze the stability of milling with variable pitch and variable helix tools.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号