首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >An efficient general route to furo-, pyrido- and thieno-d2benzazepinesviaPd0catalysed cross coupling reactions and nitrile ylide cyclisations
【24h】

An efficient general route to furo-, pyrido- and thieno-d2benzazepinesviaPd0catalysed cross coupling reactions and nitrile ylide cyclisations

机译:呋喃-吡啶--和噻吩并-d2苯并氮杂卓viaPd0催化的交叉偶联反应和腈酰环化的有效途径

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1994 An Efficient General Route to Furo-, Pyrido- and Thieno-a 2benzazepines via PdO Catalysed Cross Coupling Reactions and Nitrile Ylide Cyclisations Harry Finch,a Donald H. Reece and John T. Sharp* Department of Chemistry, University of Edinburgh, West Mains Road, EdinburghEH9 UJ,UK a Glaxo Group Research Limited, Park Road, Ware, Hertfordshire SG12 ODP, UK The cyclisation of diene-conjugated nitrile ylides of the general type 1, in which the conjugated system consists of a benzene ring and a five- or a six-membered heterocyclic ring, provides an effective route to fully unsaturated heterocyclod 2 benzazepines. The combination of this cyclisation with a direct route to the nitrile ylide precursors via PdO catalysed cross-coupling gives an efficient general synthetic route to these systems from readily available starting materials.This work is concerned with an investigation into the cyclisation of biaryl-conjugated nitrile ylides of type 1 in which C-kC-Ph H/ 1 one of the aromatic rings (A or B) is a benzene ring and the other is a five- or six-membered heterocycle. It follows recent work on the analogous system 2, containing two benzene rings, whose cyclisation provides a good general route to dibenzc,e-azepines 4.' This electrocyclic mode of aromatic substitu- tion has the advantage over electrophilic or nucleophilic substitution in that it is effective for terminal rings carrying substituents (R in 2) which are either electron donating or R @Rbsol; /E--iECPh electroc1.7 ycl.electrocycl. ~ H 2 3 electron withdrawing. The objectives of the present work g2 were to find out whether the nitrile ylide cyclisation step was also effective in biaryl systems containing electron rich or electron poor heterocyclic rings and, if so, thus to develop a general route to tricyclic azepines with one fused benzene ring and one fused heterocyclic ring. Compounds of this type and their functionalised derivatives are of interest for their possible interaction with benzodiazepine, cholecystokinin (CCK) and gastrin receptors. Results and Discussion The general route to nitrile ylides 7 used in the earlier work involved the base-induced 1,3-dehydrochlorination of imidoyl chlorides 6, which were themselves simply derived by the chlorination of amides 5.The intention here was to use the same method and this therefore required the development of efficient routes to amides of the general types 8 and 9. CI 5 6 flCH2NHCOPh H E CH2NHCOPhTP 8 9 (a) Routes to the Amides 8 and 9 as Precursors to Nitrile Y1ides.-In recent years, several direct routes to biaryls have been developed via the palladium(0) catalysed cross-coupling of aryl halides with various organometallic derivatives. Of these, the route developed by Suzuki using arylboronic acids3, is, perhaps, the most general in respect of its tolerance of a wide range of other functional groups and the ease of preparation of p~the reactants. Scheme 1 shows the application of this chemistry to the synthesis of biaryls 12 (Ar = aryl) and heterobiaryls 12 (Ar = hetaryl) containing the o-benzamidomethyl group required as nitrile ylide precursor.In principle, this substituent could be present in either the halide component 10 or in the boronic acid 13; both alternatives have some potential advantages and both have been utilised as described below. The first approach was via the coupling of N-(2-bromobenzyl)- benzamide 10 with a range of heterocyclic boronic acids 11, Scheme 1 (Route 1). This was attractive in that the amide 10 is CH2N HCOPh CH2NHCOPh ii BUCI Scheme 1 Table 1 Yields and physical data on the amides 12a-i, 16 and 17 Yield () time (h) Cryst. M.p. Molecular C () H () N () mlz (M+ 1 Compound Ar Route 1 Route 2 solvent' ("C) formula Found Calc.Found Calc. Found Calc. Found Calc. 12a Ph 865 91 4 E 95-96 12b 2-Thien yl 78 c31 E 119-120 cl gH 1SNoS 293.0878 293.0874 12c 3-Thienyl 80 c51 E 125-126 cl gH 1SNoS 293.0865 293.0874 12d 3-Fuvl 772 852 Eth/H 80-8 1 c1 BH 1SN02 279.1259' 279.1259 12e CPyridyl 73 c11 E 130-131 c1 gH 16NZ0 288.1260 288.1263 121 3-Pyridyl 74 c51 E 116-118 c1 9H16N20 288.1263 288.1263 12g 2-Pyridyl 81 c31 EA/H 104-106 cl gH1 6N20 288.1255 288.1263 12h 2-Pyrimid yl 83 c21 E/H 124.5-1 26.5 C18H15N30 74.2 74.7 5.0 5.2 14.7 14.5 289.1214 289.1215 12i 5-Pyrimid yl 81 121 EA/H 150-151 1EH 1SN30 289.1212 289.1215 16 see text 73.4 73.7 5.2 5.2 4.5 4.8 293.0877 293,0874 17 see text 73.4 73.7 5.2 5.2 4.7 4.8 293.0865 293.0874 (I H = hexane, E = ethanol, Eth = diethyl ether.Lit.,' 94.5-95.5 OC.'FAB, glycerol. J. CHEM. SOC. PERKIN TRANS. 1 1994 easily prepared from commercially available 2-bromobenzyl- amine. The boronic acids were generally prepared by adapt- ations of known routes via the reaction of the heterocyclic Grignard reagent or lithium derivative with trimethyl or triisopropyl borate. Using the improved experimental condi- tions developed by Gron~witz,~ it was found that the coupling reaction worked well for phenylboronic acid to give compound 12a (Ar = Ph) which had been prepared previously by other routes and with a range of thienyl- and furyl-boronic acids to give the amides 12b,c,d; the substituents are identified and the yields are given in Table 1.This route is, therefore, satisfactory for coupling heterocycles such as thiophene or furan whose boronic acid derivatives are readily available but is not applicable to those such as pyridine where this is not the case. This problem can be avoided in some cases by using other organometallic derivatives of the heterocycle, e.g. the commer- cially available diethyl(3-pyridy1)borane which was used under identical conditions to prepare compound 12f in good yield. However, such substitutes are not always available and a more general solution was found by adopting the alternative approach via the use of compound 13 which has the boronic acid function incorporated in the amide. The development of this route, therefore, required the synthesis of 2-(benzamido- methy1)phenylboronic acid 13 which, it was hoped, would be capable of coupling directly with a range of heterocyclic bromides 14,which are readily available for most heterocyclic systems.The preparation of the boronic acid 13 involved the formation of the dilithiated derivative 15 and its reaction with a borate ester. The dianion 15 was generated by sequential treatment of 10 with methyllithium to deprotonate selectively the amide and then with butyllithium to effect metal-halogen exchange, a technique used earlier in the preparation of analogous 2-lithiated tosyl hydrazones. A problem encoun- tered in this work was that butyllithium proved unsatisfactory in the second step as its use resulted in the formation of some N-(2-butylbenzyl)benzamide via the reaction of the dianion 15 with the l-bromobutane formed in the metal-halogen exchange.This was avoided by the use of tert-butyllithium and it was thus possible to prepare compound 13 routinely in isolated yields of ca. 85. It proved to be highly effective in coupling with a range of hetaryl bromides 14, Scheme 1 (Route 2) (see Table 1 for identification of Ar) and its use, therefore, provides an easy general route to the required amides of the general type 8. It has also proved to be of much general value in this area of chemistry not only for coupling bromoheterocycles but also for coupling with a range of aryl and alkenyl bromides to give the reactants used in related work.Only two examples of amides of the general type 9 have been investigated, the two thiophene derivatives 16 and 17prepared oia Schemes 2 and 3,respectively. i NH2OH/ /ii Z~-NH~OA~NH~ 16 Scheme 2 The physical and spectroscopic properties of the amides are given in Tables 1 and 2, respectively. All showed the expected IR CHzPhth. CHpPhth. PhB(0H)ZaBr0Pdo Ph ,CHzNHCOPh Ph 17 Scheme 3 absorptions for the amide group and all except the 2-thienyl derivative 12b,had the expected 'H NMR signals for the NH (br) and CH, group (doublet) which were similar to those for the phenyl analogue 12a. The spectrum of the 2-thienyl compound 12b showed an interesting difference in that both of these signals were doubled, e.g.the methylene group gave a pair of doublets at 6 4.68 and 4.71 in the ratio 1 :3.8 at 25 "C. It is thought that this effect is due to a non-bonded electrostatic interaction of the sulfur atom of the thiophene with the amide group, as indicated in 18,which restricts the amide rotation. This explanation is consistent with the fact that the dipole moment of thiophene itself has the negative charge on sulfur and is supported by the observations (i) that the two doublets merge when the temperature of the sample is raised to 59 "C and (ii) that the integral ratio of the doublets is diminished when the dielectric constant of the solvent is increased by the addition of the more polar solvents perdeuterio-acetone or -dimethylformamide. 18 19 (b) Cyclisation of the Nitrile Ylides to give Heterocyclo- d2benzazepines.-In all the cyclisations, except those of 12d and 12g,the procedures followed for the cyclisation, work-up and isolation of the products were as described earlier for the analogous biphenyl systems.' The generation of the nitrile ylides, shown in Scheme 4 for the general case, involved the conversion of the amide into an imidoyl chloride by reaction with either thionyl chloride in ether at reflux temperature or, in cases of difficulty, by reaction with the more powerful reagent chlorodimethylformiminiumchloride at room temp.The latter was generated in situ by the reaction of thionyl chloride with DMF. The former method was preferred where possible as any excess of reagent was more easily removed by evapor- ation under high vacuum. The crude imidoyl chlorides, after evaporation of the reagent and solvent, were not further purified but were dissolved in THF, cooled to 0 "C and treated with an excess of potassium tert-butoxide, Scheme 4, to generate the nitrile ylides.In much of this work the potassium tert-butoxide used was the fresh commercial reagent (Aldrich) but more recently it has been found that better conversions are obtained when the base is purified by sublimation under high vacuum (at ca. 200deg;C) before use. The products were isolated by dry- column flash chromatography. In all cases the cyclisations were successful and gave tricyclic azepine systems, Table 3. The cyclisations are discussed in more detail in (i) and (ii) below.The products were identified by the presence in their 'H NMR spectra (Table 4) of the characteristic 'pair of doublets (Jca. 1 1) 1196 J. CHEM. soc. PERKIN TRANS. 1 1994 due to methylene group. These signals showed the expected 2 variation with temperature due to the inversion of the azepine ring; this is discussed in more detail in (c) below.aHe*aHet~12 iorii iii -CHZ-N =$Ph ,c amp;CPh Hrsquo; 20 21 +Scheme 4 Reagents and conditions: i, SOC1,ether-reflux; ii, Me,N= CHCl C1-(SOC1,-DMF), room temp.; iii, K0Bulsquo;-THF (i) Systems containing thiophene orfuran rings. Four systems containing thiophene rings and one containing a furan ring were examined. The first two were the nitrile ylides 21b and 21c and in these cases azepine formation requires electrocyclic substitution of the electron-rich thiophene ring.In both cases the amide precursors were easily converted into the imidoyl chlorides using thionyl chloride in ether under reflux. Both of these nitrile ylides cyclised as expected to give the azepines 22 and 23, respectively. As expected from earlier work on diazo cycli~ations,~the latter cyclised only at the 2-position of the thiophene ring rather than the 4-position. The other two thiophene systems 25 and 2.8 both had the thiophene ring in the a,p position, i.e. carrying the nitrile ylide group and consequently ring closure required electrocyclisation onto the benzene ring. The conversion of their amide precursors 16 and 17, respectively, into imidoyl chlorides caused some initial difficulty as the latter, 24 and 27, seemed to be unusually unstable.Reaction with thionyl chloride in ether at reflux, as used for the two previous thiophene-containing systems, gave little of the expected products and much black tar. The problem was solved by the use of the more reactive reagent chloro- dimethylformiminium chloride at a lower temperature. The relatively high instability of compounds 24 and 27 probably has its origins in the electron-rich nature of the thiophene ring. All benzimidoyl chlorides tend to decompose at high temperatures via the extrusion of benzonitrile and in these cases this process would be favoured by the effect of the electron-rich thiophene ring in stabilising the incipient thienylmethyl carbocation which, once formed, could then undergo further reactions such as alkylation.Generation of the nitrile ylides was carried out in the usual way and they cyclised to give compounds 26 and 29 in satisfactory yields. All of these thiophene-containing azepines showed a reluctance to crystallise even more marked than some of their dibenzo analogues and it was generally found to be most efficient to purify them by Kugelrohr distillation. The furan-containing imidoyl chloride 20d could not be isolated. Both methods were used to generate it from its amide precursor 12d and in both cases it cyclised spontaneously to give the furobenzazepine 31 in high yield. It seems likely that this takes place by a Bischler-Napieralski type of electrophilic substitution via 30 as shown.That this takes place for this compound and not for the thiophene analogue reflects the much higher reactivity of furan than thiophene to electrophilic substitution (e.g. 140 x for trifluoroacetylation and 107 x for formylation). (ii) Systems containing pyridine rings. The three isomeric pyridine-containing systems 21e, 21f and 21g have been studied. These contrast with the above in that azepine formation now requires the electrocyclic substitution of electron-deficient heterocyclic rings. In all cases the formation of the imidoyl chlorides required the use of chlorodimethylformiminium chloride. The 4-substituted derivative 21e cyclised to give 5-* Experiment designed and carried out by Dr.D. Reed, Chemistry Dept., University of Edinburgh. 06lsquo;rdquo;rdquo;-3 ,C -CPh H-Bulsquo;o-36 Scheme 5 phenyl-7H-pyrido3,4-d2benzazepine 32 in good yield. The 3-substituted analogue 21f cyclised at both of the lsquo;orthorsquo; positions to give a mixture of the two isomers 5-phenyl-7H- pyrido2,3-d 2 benzazepine 33 and 5-phenyl-7H-pyrido4,3- d2 benzazepine 34.These compounds were formed in a ratio of 1 :1.4 but could not be separated and it is not known which of the two is the major product. On the basis of other work which has shown that the reaction rate is increased by the proximity of electron-withdrawing groups to the cyclisation site it seems likely that the major product is compound 33.One of the main points of interest in looking at this pyridine series was to find out what would happen in the case of the 2-pyridyl compound 21g (Scheme 5) which has one of the two potential cyclisation sites occupied by the pyridine nitrogen atom. Some initial lack of reproducibility in this series of reactions indicated the need to look closely at the reaction of the amide 12g with the chlorinating reagent. lsquo;H NMR studies were therefore carried out in which the reaction of compound 12g with perdeuterio- dimethylformamidinium chloride was carried out in perdeuterio- DMF in an NMR tube and monitored until completion. The results from this reaction were compared with similar reactions of two comparators, the phenyl analogue 12a and the 4-pyridyl analogue 12e.In the reaction of lsquo;phenylrsquo; amide 12a the methylene doublet at 6 4.42 had virtually disappeared after 15 min to be replaced by a more deshielded singlet at 6 4.74 due to the CH, of the imidoyl chloride. The 4-pyridyl analogue 12e showed a similar but slower transformation in which the amide doublet at 6 4.42 was replaced by the imidoyl chloride singlet at 6 4.89; the reaction was essentially complete in 1 h. This slower reaction accords with our general observations on the effects of electron withdrawing groups on imidoyl chloride formation.rsquo; The reaction of the lsquo;2-pyridylrsquo; amide 12g gave a product spectrum, Fig. 1, which was quite different from those of the two comparators. The disappearance of the amide CH, J.CHEM. SOC. PERKIN TRANS. I 1994 --212b C-NECPh -+-amp;Ph N d HH 21b 22 21c 23 H-24 25 26 H,-+ H,C-N ZCPh H, I 27 28 29 12d -Ph I CI HH 2od 30 31 21e 32 I---H4H 21f 33 34 doublet was slower than for the 4-pyridyl analogue and it was imidoyl chloride (Scheme 5). This formulation is supported by replaced largely by a pair of doublets at 6 4.91 and 4.72 (J its 'H NMR spectrum; the methylene group gives the expected 11.1) together with a singlet at S 5.14. The aromatic region pair of doublets (which resonate at positions quite different also showed major changes, unlike the previous cases. The from those in the final product 36 or its hydrochloride). The conversion was virtually complete after 12 h and the spectrum major changes in the aromatic region of the spectrum are remained unchanged after a further 10 h at room temp.The consistent with the quaternisation of the pyridine nitrogen major product is thought to be the 2,4-benzodiazepinium atom. As a basis for comparison the chemical shifts of the salt 35 formed by nucleophilic ring closure in the first-formed pyridine protons for the amide 12g, its hydrochloride salt 37 J. CHEM. soc. PERKIN TRANS. 1 1994 Table 2 Spectroscopic data for the amides 12a-i, 16 and 17 Compound Ar Spectroscopic data 12a Ph 12b 2-Thien yl 1242 3-Thienyl 12d 3-Fuvl 12e 4-Pyridyl 12f 3-Pyridyl 1 2-Pyridyl 12h 2-Pyrimidyl 12i 5-Pyrimidyl 16 17 4.62 (d, J 5.6, CH,), 6.23 (br s, NH) and 7.25-7.50 (12 H, m) 1625 (GO)and 3320 (NH) 4.71 (d, J 5.6), 4.68 (d, J 5.9; combined integral 2 H, CH,), 5.36 (br s), 5.79 (br s); combined integral 1 H, NH) and 7.04-7.75 (12 H, m, Ar-H) 1630 (M)and 3320 (NH) 275 (67), 274 (1 00) and 17 1 (25) 4.65 (d, J5.6, CH,), 6.28 (br s, NH) and 7.41-7.82 (12 H, m, Ar-H) 1625 (GO)and 3275 (NH) 293 (55), 188 (25), 172 (loo), 171 (60) and 122 (55) 4.63 (d, J5.5, CH,), 6.53 (dd, J 1.8 and 0.9,4'-H), 6.95 (br s, NH), 7.23-7.49 (9 H, m, Ar-H) and 7.61-7.75 (2 H, m, Ar-H) 1635 (C =0)and 3250 (NH) 279 (M + 1,48), 278 (loo), 157 (92), 129 (50) and 105 (98) 4.54(d, J5.6,CH2),6.80(brs,NH),7.18-7.50(9H,m,Ar-H),7.6217.71(2H,m,Ar-H)and8.56(2H,brs, Ar-H) 1630 (GO) and 3375 (N-H) 287 (16), 183 (20), 167 (loo), 105 (31), 77 (38) and 69 (48) 4.54(d, J5.6,CH2),6.74(brs,NH),7.16-7.71(11 H,m,Ar-H)and8.48-8.53(2H,m,Ar-H) 1630 (C==O)and 3375 (NH) 183 (18), 168 (48), 166 (51), 105 (57), 77 (100) and 69 (24) 4.55 (d, J 6.1, CH,), 7.25-7.89 (1 2 H, m, Ar-H and N-H) and 8.64-8.7 1 (2 H, m, Ar-H) 41.0(quat.) 121.8, 123.8, 126.6, 126.7, 127.9, 128.0, 128.2, 129.4, 130.7, 134S(quat.), 136.6, 137.2(quat.), 139.4 (quat.), 148.5, 158.8, 161.3, 161.6, 161.8, 161.9 and 165.7 (quat.) 289 (69), 183 (20), 167 (100) and 105 (19) 1645 (C==O)and 3320 (NH) 4.71 (d, J 6.3, CH,), 7.24-7.49 (6H,m, Ar-H), 7.62-7.69 (1 H, m, Ar-H), 7.77-7.83 (2 H, m, Ar-H), 8.01-8.09 (1 H, m, Ar-H), 8.26 (br s, NH) and 8.86 (2 H, d, J4.9, Ar-H) 289 (4573, 184 (18), 168 (loo), 131 (17), 119 (23) and 69 (67) 1625 (W)and 3230 (N-H) 4.48 (d, J 5.7, CH,), 6.89 (br s, NH), 7.14-7.5 1 (7 H, m, Ar-H), 7.63-7.70 (2 H, m, Ar-H), 8.66 (2 H, s, 4'-H and 6'-H) and 9.1 1 (s, 2'-H) 288 (573, 168 (loo), 157 (17), 131 (21), 119 (20), 105 (36), 77 (44)and 69 (59) 1635 (W)and 3350 (NH) 4.82(d,J5.4,CH2),6.67(brs,NH),7.06(d,J5.2,4-H),7.25(d,J5.2,5-H),7.28-7.51(8H,m,Ar-H)and 7.68-7.74 (2 H, m, Ar-H) 294 (2179,293 (loo), 172 (20) and 69 (97) 1635 (W)and 3290 (NH) 4.65 (d, J 5.4, CH,), 6.59 (br s, NH), 7.10 (d, J 5.2,4-H), 7.24 (d, J 5.2, 5-H), 7.28-7.49 (8 H, m, Ar-H) and 7.667.72 (2 H, m, Ar-H) 293 (69), 105 (100) and 77 (31) 1645 (W)and 3355 (NH) a J-Values are given in Hz.The 'H NMR spectrum was also run in mixtures of deuteriochloroform and either perdeuterio-acetone or -DMF, the results are discussed in the text.FAB (glycerol). In 'H,DMF. CI' H CH2NHCOPh 37 and the product formulated as 35 have been determined by 2D 'H NMR COSY experiments.* The results are given in Table 5. The first key point is that all the four pyridine protons are still present in the spectrum of 35 and that they are all strongly deshielded in comparison to those in the amide 12g. A similar but weaker effect is seen in the spectrum of the hydrochloride salt 37of the amide 12g,thus supporting the contention that the new compound contains a quaternised nitrogen atom. Nuclear Overhauser experiments (NOE) on compound 35 also support the proposed structure, irradiation at position 1 produced an effect at positions 2 (1-5) and 11 (4) only, and at position 4 produced an effect at positions 3 (2) and 2' (1).The singlet at 6 5.14 in Fig. 1 is attributed to the presence of some of the imidoyl chloride 20g, Scheme 5, present in equilibrium with 35 in the ratio ca. 1: 3. This interpretation is supported by the fact that hydrolysis of the reaction mixture produced only the amide 12g. A preparative-scale reaction of the amide with chloro- dimethylformiminium chloride was carried out under identical conditions and after 12 h the reaction mixture was diluted with THF and treated with potassium tert-butoxide. Work-up gave 5-phenyl-7H-pyrido3,2-d2benzazepine 36 in ca. 70 yield. It seems like that it is formed in the usual way via the nitrile ylide 21g which itself may be formed either directly from the imidoyl chloride 20g or via the deprotonation and ring opening of compound 35, Scheme 5.The cyclisation of 21g thus apparently takes place normally at the free 'ortho' position and the only observable effect of the presence of the pyridine nitrogen atom is in the ring closure/opening equilibration of the imidoyl chloride 20g with compound 35. The reactions of the pyrimidin-2- and 5-yl amides 12h and 12i with thionyl chloride-dimethylformamide appear to be more complicated and will be reported in a later publication. (c) Ring Inversion of the Fused Azepines.-The results of the VT NMR studies on the tricyclic azepines are given in Table 6.The ease of ring inversion is clearly much affected by the size and nature of the fused heterocyclic ring. The replacement of one of the fused benzene rings in the dibenzazepine 4 (R = H) by pyridine, thiophene or furan makes the system progressively more flexible. The trend is consistent with earlier work on fused diazepines in which it was found that replacement of a fused I3 c bsol;o bsol;oP Table 3 Yields and physical data on the heterocyclic-fused benzazepines Cryst. M.p. B.p. Molecular c () euro;3 (I N () mlz (M+)Compound Method" Yield () ("C) ("C) formula Found Calc. Found Calc. Found Calc. Found Calc. 22 (i) 68 185-190 C18H 13NS 275.0775 275.0769 0.3 mmHgPicrate 88 237-238 Cz4Hl6N4oS 57.1 57.1 3.2 3.2 11.2 11.1 23 (2) 65 190-195 c1 8H 1 3NS 275.0771 275.0769 0.4 mmHg Picrate 92 235-236 CZ4Hl6N4OS 56.9 57.1 3.15 3.2 11.1 11.1 26 (ii) 69 H 10amp;108 Cl *H1,NS 78.6 78.5 4.7 4.8 4.9 5.1 275.0773 275.0769 28 (ii) 74 175-1 80 c,8H13NS 276.0847' 276.0847 0.3 mmHg 31 (i)/(ii)d 78 170-1 75 cl BH1 260.1075' 260.1075 0.3 mmHg 32 (ii) 81 not distilled CI9Hl4N2 270.1 155 270.1 157 33-34 (ii) 61 205-2 10 C19H14N2 270.1154 270.1 157 1:1.4 (ii) 0.1 mmHg (ii) 68 EA/H 186.5-187.5 ClP 14N2 270.1 143 270.1 157 a Method of imidoyl chloride formation Scheme 7.H = hexane, EA = ethyl acetate. 'For (M + I), FAB, glycerol. For details see text. 1200 J. CHEM. soc. PERKIN TRANS. 1 1994 Table 4 Spectroscopic data for the fused azepines Compound Spectroscopic data 4 (R=H)' 6, (298 K)' 3.77 (1 H, d, J 10.2), 4.87 (1 H, d, J 10.2) and 7.24-7.87 (13 H, m, Ar-H) 22 8, (298 K) 4.52 (br s, CH,) and 7.03-7.70 (1 1 H, m, Ar-H) (280 K) CH, -3.95 (d J 10.75) and 5.10 (d, J 10.75) mlz 275 (57), 274 (loo), 171 (28), 28 (98) 23 6H (298 K) 4.55 (br s, CH,) and 7.24-7.71 (1 1 H, m, Ar-H) (280 K) CH, -3.97 (d, J 11.2) and 5.13 (d, J 11.2) mlz 275 (51), 274 (100) and 171 (47) 26 6, (298 K) 4.50 (br s, CH,) and 7.1k7.77 (1 1 H, m, ArH) (275 K) CH, -3.93 (d, J 12.1) and 5.07 (d, J 12.1) mlz 276 (2023,275 (90), 274 (loo), 171 (37) and 59 (21) 28 6, (307 K) 4.41 (br s, CH,) and 7.06-7.76 (1 1 H, m, Ar-H) (250 K) CH, -3.70 (d, J 11.3) and 5.12 (d, J 11.3) mlz 276 (loo), 171 (20), 49 (26), 43 (31), 36 (21), 28 (98) 31 6, (298 K) 4.57 (br s, CH,), 6.94 (d, J 1.8,4-H fur) and 7.33-7.65 (10 H, m, Ar-H) (228 K) CH, -3.91 (d, J 11.2) and 5.23 (d, J 11.2) mlz 259 (loo), 128 (15), 105 (12), 77 (13), 44(lo), 36 (26) and 32 (25) 32 6, (307 K)' 3.83 (d, J 10.6, CH,), 4.95 (d, J 10.6, CH,), 7.41-7.63 (8 H, m, Ar-H), 7.80-7.91 (2 H, m, Ar-H), 8.53 (1 H, s, 2-H pyr) and 8.79 (1 H, d, J5.2, 6-H, pyr) (390 K) 4.89 (br s, CH,) mlz 270 (loo), 269 (61), 167 (24), 139 (14) and 120 (9) 33-34 6, (307 K)' 3.80(1 H,d, J11),3.91 (1 H,d, J11),4.93(1 H,d,J11),4.98(1 H,d,J11),7.2amp;8.00(21 H,m,Ar-H),8.18-8.36 (1 H, m, Ar-H) and 8.62-8.76 (2 H, m, Ar-H) (288 K) 4.46 (br s, 2 x CH,) mlz 270 (loo), 269 (64),167 (35) and 32 (21) 36 6, (298 K)' 3.99 (1 H, d, J 11.7), 4.98 (1 H, d, J 11.7), 7.43-7.60 (9 H, m, Ar-H), 7.79 (dd, J 7.9 and 144-H pyrido) and 8.06-8.16 (1 H, m, Ar-H), 8.95 (dd, J 4.5 and 1.8,6-H, pyridyl) (344 K) 4.49 (2 H, br s)6, (360 MHz) (298K)e 3.81 (1 H, d, J 10.6), 4.87 (1 H, d, J 10.6), 7.23-7.46 (7 H, m, Ar-H), 7.71 (1 H, dd, J7.9 and 1.8,4-H, pyr), 7.88 (2 H, br s, Ar-H), 8.02 (1 H, m, Ar-H) and 8.82 (dd, J4.7 and 1.8, 6-H pyr) mlz 270 (82), 269 (loo), 205 (23), 167 (42), 143 (27) and 31 (25) All NMR spectra in CDCl, at 80 MHz unless otherwise indicated.'For preparation and other spectra see ref. 1. 'C2H,DMS0. FAB (glycerol). C2H,DMF. Table 5 Chemical shifts of the pyridyl protons in 12g, 37 and 35 Position (6)35 Compound 1 2 3 4 1 7.56 7.83 7.29 8.64 37 8.02 8.44 7.88 8.85 (+0.46) (+0.61) (+0.59) (+0.21)35 8.67 8.95 8.23 9.18 (+l.ll) (+1.12) (+0.94) (+0.54)9.2 8.8 8.4 8.0 7.6 7.2 6.8 6.4 6.0 '5.6 5.2 4.8 I ppm Table 6 Coalescence temperatures and free energies for ring inversion AG Azepine Solvent TJ' C kJ mol-' 31 CDC1, -22 49.6 29 CDCl 2 54.5 23, picrate CDCl, 2 55.1 22,picrate CDCl, 17 58.3 9.2 8.8 8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 26 CDCl, 23 59.3 PPm 23 CDCl, 24 59.5 Fig.1 22 CDCl, 28 60.3 36 (CD3)2So 71 69.7 334 (CD3)2S0 112 78.2 32 (CD3)2S0 115 78.6benzene ring with thiophene decreased the activation energy for 4,R = H (CD3)2S0 149 86.1ring inver~ion.~ This was rationalised in terms of the different effects of five- and six-membered rings on angle strain in the puckered and planar states.Other differences are not so easily explained. For example, it was suggested' that the high (d) ConcZusions.-This work has shown that electrocyclic activation energy for inversion of the dibenzazepine system 4 aromatic substitution using nitrile ylides is effective in forming was due largely to the increased steric interaction of the two azepines fused to a variety of heteroaromatic rings. In hydrogen atoms at positions 1 and 11 in the planar transition combination with the use of Pd" cross-coupling reactions as a state. The lower activation energy for 29 than 26 is consistent route to the nitrile ylide precursors, it provides an efficient with this but the situation is reversed for 22 and 23. general synthetic route from easily available starting materials J.CHEM. soc. PERKIN TRANS. 1 1994 to a range of tricyclic azepines with fused benzene and heterocyclic rings. In the case of the furan derivative 12d it has been shown that azepine formation occurs spontaneously uia uncatalysed electrophilic cyclisation of the imidoyl chloride 30. Similar reactions are not observed for the thiophene analogues. These results, in general, illustrate the distinctive features of the electrocyclic substitution process which make ring closure possible on to both electron rich and electron deficient aromatic rings, the latter being particularly important since alternative modes of cyclisation are not easily available. Experimental NMR spectra were run as solutions in deuteriochloroform unless otherwise stated.Chemical shifts are recorded as 6 values and J values are given in Hz. In the I3C spectra, carbon multiplicity was established by single-frequency, off-resonance decoupling or by DEPT. Mass spectra were obtained using electron ionisation at 70 eV unless otherwise stated. Preparative chromatography was carried out by the 'dry-column flash' technique using silica gel (1 5 pm, Fluka Fieselgel GF254) and eluting solvents based on light petroleum (b.p. 4040deg;C) admixed with ether or ethyl acetate. Ether refers to diethyl ether. Evaporation of solvents indicates evaporation under reduced pressure using a rotary evaporator. All drying of solutions was done with anhydrous magnesium sulfate. Solvents, Reagents and Starting Materials.-Tetrahydro furan (THF) was distilled under nitrogen from sodium diphenylketyl immediately before use.1 ,ZDimethoxyethane (DME) and N,N-dimethylformamide (DMF) were distilled from calcium hydride and stored over molecular sieves (4 A), the former was passed through a column of alumina immediately before use in the coupling reactions. 2-Bromobenzylamine hydrochloride and tetrakis(triphenylphosphine)palladium(o) were obtained from Aldrich Chemical Company and used without further purification. The following were prepared by literature routes and had the reported physical and spectroscopic properties: 2-thienyl- boronic acid, lo 3-thienylboronic acid,' ' phenylboronic acid (also obtained from Aldrich Chemical Company),' 3-furyl-boronic acid.' N-(2-Bromobenzyl)benzamide 10.-A mixture of 2-bromo- benzylamine hydrochloride (3.92 g, 17.6 mmol), anhydrous sodium carbonate (4.01 g, 37.8 mmol) and benzoyl chloride (2.64 g, 18.8 mmol) in dichloromethane (60 cm3)was stirred at room temperature for 1 h and then boiled under reflux for 30 min. After it had cooled, the reaction mixture was diluted with water (30 cm3) and dichloromethane (40cm3). The organic phase was then separated, dried and evaporated and the residue recrystallised from ethanol to give the product (4.78 g, 93) as white crystals, m.p. 133-134 "C (Found: C, 58.0; H, 4.3; N, 4.9. C,,H,,BrNO requires C, 58.0; H, 4.2; N, 4.8); 6,(80 MHz) 4.68 (d, J 6.0, CH,), 6.81 (br s, NH) and 6.98-7.82 (9 H, m, Ar-H); m/z (FAB), glycerol) 290 (M + 1, 98), 274 (54) and 257 (100); v,,,(Nujol)/cm-' 3300 (N-H) and 1640 (GO).2-(Benzylamidomethyl)phenylboronicAcid 13.-To a solution of the benzamide 10 (2 g, 7 mmol) in THF (50 cm3) under nitrogen at -78 "C were added dropwise firstly methyllithium (1.5 mol dm-3 solution in diethyl ether; 7.0 cm3) and then, after stirring for 1 h, tert-butyllithium (1.7 mol dm-3 solution in pentane; 12.2 cm'). After 1 h at -78 "C triisopropyl borate (9.2 cm3, 0.04 mol) was added to the mixture which was then allowed to warm to room temperature. The solution was acidified with hydrochloric acid (2 mol dmP3) and then stirred for 10 min. Separation, drying and evaporation of the organic layer and crystallisation of the resulting residue from dimethyl sulfoxide (DMSOFwater gave the title compound (1 SO g, 84), m.p.170-173 "C (Found: C, 66.0; H, 5.6; N, 5.4. C14H14BN03 requires C, 65.9; H, 5.5; N, 5.5); dH(360 MHz; C2H6DMS0) 4.63 (d, J6.1, CH,), 7.20-7.66 (7 H, m, Ar-H), 7.92 (d, J7.4, 2'-H), 8.32 (2 H, s, OH) and 9.00 (br s, NH); NOE: irradiation of B(OH), affected only 6-H (5) and CH, (3), and of CH, affected only 3-H (4), B(OH), (4) and NH (10); dB(36O MHz; C2H,DMSO) 31.44 (s, B-OH); m/z 238 (1 l), 212 (lo), 167(20), 149(100), 117(19), 105(97),91(63),85(20),74(72),58 (83), 48 (38), 42 (67) and 30 (36); v,,(Nujol)/cm-' 3350 (OH), 3260 (N-H) and 1610 (M). Preparation of the Amides 12 (Scheme 1: Routes 1 and 2).- The general method is exemplified below for the preparation of N-(2-phenylbenzyl)benzamide 12a.Compounds 12a-d were prepared via Route 1 and 12a, d, e, g-i uia Route 2. Compound 12f was prepared by a reaction similar to that in Route 1 but using diethylpyridylborane ' under the same reaction condi- tions as below. In all cases the reactions were monitored by HPLC, using conditions similar to those given for 12a below. The yields, reaction times and physical properties are given in Table 1 and the spectroscopic characteristics in Table 2. N-(2-Phenylbenzyl)benzamide12a.-The benzamide 10 (3 g, 10.3 mmol) and tetrakis(triphenylphosphine)palladium(o) (0.36 g, 0.3 mmol) were added to DME (50 cm3) with stirring under dry nitrogen. After 20 min a solution of sodium carbonate (anhydrous, 1.09 g, 10.3 mmol) in water (15 cm3) and phenyl- boronic acid (1.51 g, 12.4 mmol) were added to the mixture which was then boiled under reflux.Monitoring by HPLC (5 pm silica ODs, 20 water in methanol) indicated complete consumption of starting material after 5 h. The DME was evaporated and the mixture was extracted with ethyl acetate. Drying and evaporation of the extract gave a brown solid. (In cases where the crude product was very dark, the most effective way to remove the colour was to pre-adsorb the mixture6 onto alumina before dry -column flash chromatography on silica.) Dry-column flash chromatography (silica, ethyl acetate-hexane, 1 :9) gave the title compound 12a as a white crystalline solid (2.54 g, 86). 2-(Benzamidomethyl)-3-phenylthiophene16 via Scheme 2.- 3-Phenylthiophene-2-carbaldehydeoxime. 3-Phenylthiophene, m.p.88-89 "C (lit.," 89.5-90.5 "C), was prepared (91) by the method of Suzuki and converted into 3-phenylthiophene-2- carbaldehyde (76), m.p. 35-36 "C (lit.,4 36-36.5 "C) by the Gronowitz method. The latter (4.5 g, 24 mmol), on reaction at room temp. with a solution of hydroxylamine hydrochloride (1.81 g, 26 mmol) and sodium acetate (2.21 g, 26 mmol) in water (20 cm3) gave the corresponding oxime (2.98 g, 61), m.p. 115-116 "C (from ethanol) (Found: C, 64.9; H, 4.3; N, 6.9; M+, 203.0408. C,,H,NOS requires C, 65.0; H, 4.5; N, 6.9; M, 203.0405); 6,(80 MHz) 7.11 (d, J 5.2, 4-H), 7.33 (dd, J 5.2 and 0.7, 5-H), 7.40 (5 H, m, phenyl), 8.30 (d, J 0.7, CH) and 8.45 (br s, OH); m/z 203 (65), 202 (96), 186 (100) and 115 (37); vmax(Nujol)3180 cm-' (OH).2-(Aminomethyl)-3-phenylthiophene.The above oxime (3.30 g, 16.2 mmol), zinc dust (8.49 g, 0.13 mol), ammonium acetate (1.00 g, 13 mmol), aqueous ammonia (d 0.88; 97 cm3) and ethanol (50 cm3) were boiled under reflux for 18 h. The mixture was then evaporated and the residue stirred with aqueous potassium hydroxide (33 w/v; 100 cm3). Ether (30 cm) was added to the mixture which was then filtered through a pad of Celite. The organic layer was then separated, dried and evaporated to leave 2-(aminomethyl)-3-phenylthiopheneas a brown oil (2.89 g, 94). This product was used without further purification (Found: M+, 189.0609. C1 ,H,,NS requires M, 189.0612);6,(200 MHz) 1.62 (br s, NH,), 4.10 (s, CH,), 7.06 (d, J 5.2,4-H), 7.23 (d, J 5.2, 5-H) and 7.24-7.47 (5 H, m, Ar-H); m/z 189 (loo), 188 (78), 173 (27), 171 (32) and 112 (24); v,,,(film)/cm-' 3375 (NH).The thiophene 16.The crude amine obtained above (2.8 g, 14.8 mmol) was benzoylated by the method described above for compound 10.Dry-column flash chromatography (silica, ethyl acetate-petroleum, 1:3) gave the product as white crystals (3.63 g, 88), m.p. 117-1 18 "C (from ethanokyclohexane). Its physical and spectroscopic properties are given in Tables 1 and 2. 3-(Benzamidomethyl)-2-phenylthiophene17 (Scheme 3).-2-Bromo-3-(bromomethyl)thiophene.A mixture of N-bromosuc- cinimide (19.58 g, 0.11 mol) and benzoyl peroxide (0.4 g, 1.65 mmol) was added portionwise to a refluxing solution of 2- bromo-3-methylthiophene (20 g, 0.1 1 mol) ' and benzoyl peroxide (0.4 g, 1.65 mmol) in dry carbon tetrachloride.The solution was boiled under reflux for a further 3 h, cooled and the succinimide filtered off. The filtrate was evaporated and the residue fractionated to yield 2-bromo-3-(bromomethyl)thio-phene (22.74 g, SIX), b.p. 78-82 "C/1 mmHg (lit., 88-90 "C/4 mmHg); SH(60 MHz) 4.47 (s, CH,), 7.00 (d, J 6, 4-H) and 7.25 (d, J 6, 5-H). 2-Bromo-3-(phthalimidomethyl)thiophene.A solution of 2- bromo-3-(bromomethyl)thiophene(8 g, 0.03 mol) and potas- sium phthalimide (12.97 g, 0.07 mol) in DMF (50 cm') was stirred at room temperature for 90 rnin and then warmed to 45 "C for 90 min.The mixture was evaporated under high vacuum and dichloromethane (30 cm3) was added to the residue. The mixture was washed with aqueous sodium hydroxide (2 mol drn-'; 2 x 20 cm') and water (2 x 10 cm'), dried, and evaporated and the residue recrystallised from ethanol to give 2-bromo-3-(phthalimidomethyl)thiophene (7.58 g, 7979, m.p. 97-99deg;C (Found: C, 48.4; H, 2.4; N, 4.2; M+ + H (FAB, glycerol), 321.9537. C,,H,BrNO,S requires C, 48.6; H, 2.5; N, 4.4; M + H, 321.9537); 6H(200 MHz) 4.80 (~,CH,),6.96(d,J5.7,4-H),7.17(d,J5.7,5-H),7.66-7.74(2H, m, Ar-H) and 7.78-7.88 (2 H, m, Ar-H); m/z(FAB, glycerol) 322 (M + 1, 96), 321 (loo), 274 (47), 257 (50) and 160 (26); vmax(Nujol)/cm-l 17 10 (M). 3-Aminomethyl-2-bromothiophene.A solution of 2-bromo-3- (phthalimidomethy1)thiophene (3.5 g, 1 1 mmol) and hydrazine hydrate (100 solution; 3.4 cm') in methanol (40 cm') was stirred for 1 h at room temp.and then at reflux for 10 min. The insoluble phthaloylhydrazide was filtered off and the filtrate evaporated. Ether (20 cm') and water (20 cm3) were added to the residue after which the organic layer was separated and extracted with aqueous hydrochloric acid (2 mol dm-3; 2 x 10 cm3). The acidic extract was basified with aqueous sodium hydroxide (2 mol dm-'; 2 x 25 cm3) and extracted with dichloromethane (2 x 20 cm'). Separation, drying and evapor- ation of the organic layer gave a brown oil which was distilled (Kugelrohr) to give 3-aminomethyl-2-bromothiopheneas a brown oil (1.15 g, 55); b.p.94-97 "C/0.03 mmHg (Found: M+, 190.9388. CSH,BrNS requires M, 190.9404; dH(200 MHz) 1.74 (br s, NH), 3.72 (s, CH,) and 6.94 (2 H, m, Ar-H); m/z 191 (78), 190 (77), 112 (49), 84 (52) and 69 (100); vmax(Nujol)/cm-' 3 140 (NH). The thiophene 17.3-Aminomethyl-2-phenylthiophene(0.84 g, 4.4 mmol) was benzoylated by the method described above for compound 10.Dry-column flash chromatography (silica, ether- petroleum, 1 :4) gave the product as white crystals (0.79 g, 61), m.p. 11 1-1 12 "C (from ethanol-hexane). Its physical and spectroscopic properties are given in Tables 1 and 2. Preparation of the Imidoyl Chlorides from Amides 12b,e, f, 16 and 17and their Base-promoted Cyclisation to give Heterocyclic- J.CHEM. SOC. PERKIN TRANS. 1 1994 fused Benzazepinex-The amides were converted into imidoyl chlorides by either of the two general methods shown in Scheme 4 and illustrated below for compounds 12band 16.The method used in each case is indicated in Table 3. The imidoyl chlorides were then cyclised by the general method given below to give the fused azepines 22, 23, 26, 29, 32, 33 and 34.The yields and physical characteristics of the products are given in Table 3. Conversion of N-2-(2-thienyl)benzyl)benzamide 12b into N-2-(2-thienyl)benzylbenzimidoylchloride 20band cyclisation to give 4-phenyl-6H-thieno3,2-d2)benzazepine22.N-2-(2-Thi-eny1)benzyl)benzamide (0.50g, 1.7 mmol), dry ether (30 cm') and thionyl chloride (10 cm3, 0.14 mol) were heated overnight at reflux, under a dry nitrogen atmosphere.The solvent was evaporated and the residue kept under high vacuum for 3 h. Dry THF (25 cm') was added to the residue and the mixture cooled to 0 "C. Solid potassium tert-butoxide (0.38 g, 3.4 mmol) was then added to it in one portion with rapid stirring under dry nitrogen. The mixture was stirred for 30 rnin at 0 "C, allowed to warm to room temp. and stirred for a further 30 min. The solution was treated with aqueous ammonium chloride (25 w/v) and stirred for 10 rnin and then diluted with di-chloromethane (20 an3).The organic layer was separated and the aqueous layer extracted with dichloromethane (2 x 10 cm'). The combined organic layer and extracts were dried and evaporated to provide an oil.Dry-column-flash chromato- graphy of this (silica, ethyl acetate-petroleum, 1:9) followed by Kugelrohr distillation gave compound 22 as an oil (0.32 g, 6879, b.p. 185-190 "C/0.3 mmHg. Picrate salt of compound 22.Picric acid (1.17 g, 5.1 mmol) was washed with ethanol (3 x 3 cm'), dried on filter paper and dissolved in acetone (4 cm'). To this was added compound 22 (0.25 g, 0.9 mmol) in acetone (2 cm').After 30 rnin stirring at room temp., the product was filtered off to give yellow needles (0.40 g, 88), m.p. 237-238 "C. Conversion of compound 16 into N-(3-phenyl-2-thienylmeth-y1)benzimidoyl chloride 24 and cyclisation to give 6-phenyl- 4H-thieno2,3-d2benzazepine26. Thionyl chloride (0.46 CM', 6.3 mmol) was added dropwise to a solution of 2-benz- amidomethyl-3-phenylthiophene(1-50 g, 5.1 mmol) in dry DMF (6.14 g, 0.08 mol) at room temp. and the mixture was then stirred for 30 min.The solvent was removed under high vacuum at 30-35 "C for 3 h. THF (60 cm') was added to the residue and the mixture cooled to 0 "C under nitrogen. Solid potassium tert-butoxide (3.24 g, 0.03 mol) was added in one portion to the mixture which was stirred for 30 rnin at 0 "C, and then 30 rnin at room temp. The solution was treated with aqueous ammonium chloride (25 w/v), stirred for 10 rnin and then diluted with dichloromethane (30 cm'). The organic layer was separated and the aqueous layer extracted with dichloromethane (2 x 10 cm'). The combined organic layer and extracts were dried and evaporated.Dry flash chromatography of the residual oil (silica, ether-petroleum, 1:9) followed by crystallisation gave fawn crystals of compound 26 (0.97 g, 69), m.p. 106-108 "C (from hexane). Cyclisation of N-2-(3-Furyl)benzylbenzamide12d to give 4-Phenyl-6H-fur02,3 -d) 2)benzazepine 31.-Using thion yl chloride-DMF. A mixture of compound 12d (100 mg, 0.36 mmol), dry DMF (2 cm') and thionyl chloride (60 mg, 0.54 mmol) was stirred overnight at room temp., after which the solvent was removed under high vacuum at 30-35 "C for 3 h. Dichloromethane (10 cm') and water (10 cm3) were added to the mixture and the organic layer was separated; the aqueous layer was then extracted with dichloromethane (2 x 5 cm'). The combined organic layer and extracts were dried and evaporated and the residue was distilled (Kugelrohr) to give compound 31 as an oil (73 mg, 78), b.p.170-175 "C/0.3 mmHg. J. CHEM. soc. PERKIN TRANS. 1 1994 Using thionyl chloride-ether. This conversion was also carried out in 83 yield by heating under reflux overnight a mixture of compound 12d (50 mg, 0.18 mmol) dry ether (5 cm3) and thionyl chloride (1.71 g, 14.4 mmol). Reaction of N-2-(2-Pyridyl)benzylbenzamide 12g with Chlorodimethylformiminium Chloride and Cyclisation to give 5-Phenyl-7H-pyrido3,2-d2benzazepine.-The first part of this reaction was carried out under similar conditions and with the same relative concentrations of reagents as in the NMR study below. A solution of chlorodimethylformiminium chloride in DMF was prepared in a flask equipped with a Suba-seal by adding thionyl chloride (0.908 g, 7.63 mmol) to dry DMF (9.719 g, ca.10 cm3). After this solution had been kept at room temp. for 20 min a portion (3.70 an3,2.69 mmol) was added by syringe to compound 12g (0.516 g, 1.79 mmol) in a flask equipped with a Suba-seal. The amide dissolved rapidly to give a clear yellow solution. After 12 h at room temp. the solution was diluted with dry THF (20 cm3), cooled to 0deg;C and potassium tert-butoxide (freshly sublimed) (0.91 g, 8.07 mmol) was added in one batch with vigorous magnetic stirring. A dark and persistent colour developed immediately. The solution was kept at 0 "C for 15 min and then at room temp.overnight. Work-up (see above) gave, after dry-column flash chromatography (silica, ethyl acetate-hexane, 1 :4), compound 36 (0.33 g, 68), m.p. 186.5-187.5 "C (from hexane-ethyl acetate). NMR Studies of the Reactions of the Amides 12a, 12e and 12g with Chlorodimethylformiminium Chloride.-The spectra obtained in these experiments are discussed in the Results and Discussion section and, for 12g, shown in Fig. 1. N-(2-PhenyZbenzyl)benzamide12a. Thionyl chloride (36 mg, 0.3 mmol) was added by syringe to C2H7DMF (0.25 cm3) contained in a glass vial fitted with a Suba-seal closure. After 5 min, the solution syringed into a solution of compound 12a (50 mg, 0.2 mmol) in 'H,DMF (0.40 cm3)contained in an NMR tube equipped with a septum cap. The resultant mixture was examined by 'H NMR over 12 h.The first spectrum was obtained after 15 min, the last after 12 h. N-2-(4-Pyridyl)benzylbenzamide1. A similar experiment was carried out using compound 12e (50 mg, 0.2 mmol) in 'H,DMF (0.40 cm3) and thionyl chloride (36 mg, 0.3 mmol) in 'H,DMF (0.25 cm3). The resultant mixture was examined by 'H NMR over 16 h. N-2-(2-Pyridyl)benzylbenzamide12g. (a) A similar experi- ment was carried out using compound 12g (50 mg, 0.2 mmol) in 'H,DMF (0.40 cm3) and thionyl chloride (36 mg, 0.3 mmol) in 'H,DMF (0.25 cm3). The resultant mixture was examined by 'H NMR over 22 h. (b) A COSYPHDQ.AU experiment was also run on the sample after 22 h using the following parameters: (360 MHz) S12 = 1024, SI1 = 512; SW2 = 1098.901, SWl = SW2/2 = 549.451; recycle delay (DI) = 3 s, DO = 3 ms, D3 = 3 ms; incremented delay (IN) = 455 ms; PI = 90" pulse, 8 ms; no.of FIDs (NE) = 256; no. of scans (NS) = 48. An NOE experiment was carried out. Irradiation of the doublet at 6 4.73 was carried out in an attempt to observe a saturation transfer effect on the doublet at 6 4.91, however, this experiment resulted only in an NOE of 14. This sample was alsowarmed but no coalescence of the doublets was observed up to 80 "Cwhen the compound degraded. (c) After a similar experiment monitored by NMR, the reaction mixture was treated with aqueous sodium carbonate and gave a product which by 'H NMR contained only the amide 12g. For comparison purposes 2D 'H NMR spectra were also run on the amide 12g and its hydrochloride salt 37.The chemical shifts of the pyridyl protons are shown in Table 5.Acknowledgements We thank the SERC and Glaxo Group Research for a CASE Studentship (D. H. R.). References 1 K. E. Cullenand J. T. Sharp, J. Chem. SOC., Perkin Trans. 1,1993,2961. 2 K. E.Cul1enandJ.T. Sharp, J.Chem. SOC., Chem. Commun., 1991,658. 3 N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun.,198 1,11,5 13. 4 S. Gronowitz, V. Bobosik and K. Lawitz, Chem. Scr., 1984,23,120. 5 J. T. Sharp and C. E. D. Skinner, Tetrahedron Lett., 1986,27,869. 6 J. T. Sharp, I. Gosney and A. G. Rowley, in Practical Organic Chemistry, a Student Handbook of Techniques,Chapman and Hall, London, 1989. 7 T. K. Miller and J. T. Sharp, J. Chem. SOC., Perkin Trans. 1,1984,223. 8 Various authors in Comprehensive Heterocyclic Chemistry, eds. A. R. Katrisky and C. W. Rees, Pergamon Press, 1978, London. 9 D. P. Munro and J. T. Sharp, J. Chem. SOC., Perkin Trans. 1, 1980, 1718. 10 J. R. Johnson, M. G. Van Campen and 0.Gummitt, J. Am. Chem. SOC.,1938,60, 1 1 1. 11 S. Gronowitz and N. Gjm, Acta Chem. Scand, 1967,21,2823. 12 F. R. Bean and J. R. Johnson, J.Am. Chem. SOC., 1932,54,4415. 13 B. P. Roques, D. Fluorentin and M. Callanquin, J. Heterocycl. Chem., 1975,12,195. 14 M. Terashima, H. Kakimi, M. Isikikura and K. Kamata, Chem. Pharm. Bull., 1983,31,4573. 15 J. A. Blanchette and E. V. Brown, J.Am. Chem. SOC., 1951,79,2779. Paper 3/07 1491 Received 3rd December 1993 Accepted 10th January 1994
机译:J. CHEM. SOC. PERKIN TRANS. 1 1994 An Efficient General Route to Furo-, Pyrido- and Thieno-[a [2]benzazepines via PdO Catalysed Cross 偶联反应和腈腈酰化环化 Harry Finch,a Donald H. Reece 和 John T. Sharp* 爱丁堡大学化学系,爱丁堡西梅因斯路EH9 UJ,UK 葛兰素史克集团研究有限公司, Park Road, Ware, 赫特福德郡 SG12 ODP, 英国 一般 1 型二烯共轭腈酰亚化物的环化,其中共轭体系由苯环和五元或六元杂环组成,为完全不饱和杂环[d] [2] 苯并氮卓类药物提供了一条有效的途径。这种环化与通过PdO催化的交叉偶联直接获得腈酰化物前体的路线相结合,为这些系统提供了一条有效的通用合成路线,从现成的起始材料开始。这项工作涉及对 1 型二芳基共轭腈基的环化的研究,其中 C-kC-Ph H/ 1 芳香环(A 或 B)之一为苯环,另一个是五元或六元杂环。它遵循了最近对类似系统 2 的研究,该系统包含两个苯环,其环化为二苯并[c,e]-氮杂环 4 提供了良好的一般途径。' 这种芳香族取代的电环模式比亲电或亲核取代具有优势,因为它对携带取代基(R in 2)的末端环有效,这些取代基要么是电子供体,要么是 R @R\ /E--iECPh electroc1.7 ycl.electrocycl。[ ~ H 2 3 电子抽出。本工作g2的目的是找出腈酰化物环化步骤在含有富电子或贫电子杂环的联芳基体系中是否也有效,如果是,则开发一条通向具有一个熔融苯环和一个熔融杂环的三环氮杂环的一般路线。这种类型的化合物及其功能化衍生物因其可能与苯二氮卓类药物、胆囊收缩素 (CCK) 和胃泌素受体的相互作用而受到关注。结果与讨论 早期工作中使用的腈基酰化物 7 的一般途径涉及碱诱导的酰亚胺酰氯 6 的 1,3-脱氯化氢,其本身只是通过酰胺 5 的氯化而得的。CI 5 6 flCH2NHCOPh H E CH2NHCOPhTP 8 9 (a) 作为腈类 Y1ides 前体的酰胺 8 和 9 的途径-近年来,通过钯 (0) 催化的芳基卤化物与各种有机金属衍生物的交叉偶联,已经开发出几种直接通往联芳基的途径。其中,铃木使用芳基硼酸3开发的路线,在对多种其他官能团的耐受性和p~反应物的制备性方面可能是最通用的。方案 1 显示了该化学在合成含有作为腈酰基前体所需的邻苯甲酰胺甲基基团的二芳基 12 (Ar = 芳基) 和杂二芳基 12 (Ar = hetaryl) 中的应用。原则上,该取代基可以存在于卤化物组分10或硼酸13中;这两种替代方案都具有一些潜在的优势,并且都已按如下所述使用。第一种方法是通过将N-(2-溴苄基)-苯甲酰胺10与一系列杂环硼酸偶联11,方案1(路线1)。这很有吸引力,因为酰胺 10 是 CH2N HCOPh CH2NHCOPh ii BUCI 方案 1 表 1 酰胺 12a-i、16 和 17 的产率和物理数据 产率 (%) [时间 (h)] 晶体管 分子 C (%) H (%) N (%) mlz (M+ 1 化合物 Ar Route 1 Route 2 溶剂' (“C) 分子式 已找到 Calc.Found Calc. 已找到 Calc. 找到 Calc. 找到 Calc. 第 12a Ph 86[5] 91 [4] E 95-96 12b 2-噻吩 yl 78 c31 E 119-120 cl gH1SNoS 293.0878 293.0874 12c 3-噻吩基 80 c51 E 125-126 cl gH 1SNoS 293.0865 293.0874 12d 3-fuvl 77[2] 85[2] 乙醚/小时 80-8 1 c1 BH 1SN02 279.1259' 279.1259 12e 环氧乙烷基 73 c11 E 130-131 c1 gH 16NZ0 288.1260 288.1263 121 3-吡啶基 74 c51 E 116-118 c1 9H16N20 288.1263 288.1263 12g 2-吡啶基 81 c31 EA/H 104-106 cl gH1 6N20 288.1255 288.1263 12h 2-吡啶基 83 c21 E/H 124.5-1 26.5 C18H15N30 74.2 74.7 5.0 5.2 14.7 14.5 289.1214 289.1215 12i 5-吡啶基 81 121 EA/H 150-151 1EH 1SN30 289.1212 289.1215 16 见正文 73.4 73.7 5.2 5.2 4.5 4.8 293.0877 293,0874 17 见正文 73.4 73.7 5.2 5.2 4.7 4.8 293.0865 293.0874 (I H = 己烷, E = 乙醇,Eth = 乙醚.Lit.,' 94.5-95.5 OC.'FAB,甘油。J. CHEM. SOC. PERKIN TRANS. 1 1994 容易从市售的 2-溴苄基胺制备。硼酸通常是通过杂环格氏试剂或锂衍生物与三甲基或三异丙基硼酸酯反应来制备已知路线的。利用Gron~witz开发的改进实验条件,~发现苯硼酸的偶联反应效果很好,得到化合物12a(Ar=Ph),该化合物以前已经通过其他途径制备过,并与一系列噻吩基硼酸和呋喃基硼酸一起得到酰胺12b,c,d;因此,该路线对于偶联杂环(如噻吩或呋喃)是令人满意的,其硼酸衍生物很容易获得,但不适用于吡啶等杂环,但情况并非如此。在某些情况下,通过使用杂环的其他有机金属衍生物可以避免这个问题,例如,在相同条件下使用市售的二乙基(3-吡啶1)硼烷来制备高收率的化合物12f。然而,这种替代品并不总是可用的,通过使用化合物 13 采用替代方法找到了更通用的解决方案,该化合物具有硼酸官能团掺入酰胺中。因此,这条路线的发展需要合成2-(苯甲酰胺甲基1)苯硼酸13,希望它能够直接与一系列杂环溴14偶联,这些杂环溴很容易用于大多数杂环系统。硼酸13的制备涉及稀硫化衍生物15的形成及其与硼酸酯的反应。二阴离子15是通过用甲基锂对10进行顺序处理以选择性地使酰胺去质子化,然后用丁基锂进行金属卤素交换而产生的,该技术早期用于制备类似的2-锂化甲苯磺酰腙。这项工作中出现的一个问题是,丁基锂在第二步中被证明不令人满意,因为它的使用导致通过二阴离子 15 与金属卤素交换中形成的 l-溴丁烷反应形成一些 N-(2-丁基苄基)苯甲酰胺。通过使用叔丁基锂可以避免这种情况,因此可以常规制备化合物13,分离产率约为85%。它被证明在与一系列乙酰溴14、方案1(途径2)(Ar的鉴定见表1)偶联方面非常有效,因此,它的使用为获得一般类型8所需的酰胺提供了一条简单的通用途径。它还被证明在化学领域具有很大的普遍价值,不仅用于偶联溴杂环,而且用于与一系列芳基和烯基溴化物偶联,从而产生相关工作中使用的反应物。只研究了两个一般类型9的酰胺的例子,分别是两种噻吩衍生物16和17,分别是方案2和3。i NH2OH/ /ii Z~-NH~OA~NH~NH~ 16 方案 2 酰胺的物理和光谱性质分别见表1和表2。所有产品均显示预期的红外线 CHzPhth. CHpPhth. PhB(0H)ZaBr0Pdo Ph ,CHzNHCOPh Ph 17 方案 3 对酰胺基团和除 2-噻吩基衍生物 12b 外的所有吸收,对 NH (br) 和 CH 基团 (doublet) 具有预期的 'H NMR 信号,与苯基类似物 12a 的信号相似。2-噻吩基化合物12b的光谱显示出一个有趣的差异,即这两个信号都加倍,例如,亚甲基基团在25“C时以1:3.8的比例在6 4.68和4.71处给出一对双峰。据认为,这种效应是由于噻吩的硫原子与酰胺基团的非键合静电相互作用所致,如图18所示,限制了酰胺的旋转。这种解释与噻吩本身的偶极矩对硫具有负电荷这一事实是一致的,并且得到了以下观察结果的支持:(i)当样品温度升高到59“C时,两个双峰合并,以及(ii)当通过添加更具极性的溶剂Perdeutrio-丙酮或-二甲基甲酰胺来增加溶剂的介电常数时,双峰的积分比减小。18 19 (b) 腈基环化得到杂环-[d][2]苯并氮卓类化合物-在所有环化中,除12d和12g环化外,产物的环化、处理和分离所遵循的程序与前面所述的类似联苯系统相同。如方案4所示的一般情况所示,亚腈酰化物的生成涉及在回流温度下与乙醚中的氯化亚砜反应,或者在困难的情况下,通过在室温下与更强大的试剂氯二甲基甲酰亚胺氯化物反应,将酰胺转化为酰胺酰氯。后者是由氯化亚砜与DMF反应原位生成的。在可能的情况下,前一种方法是首选,因为在高真空下蒸发更容易去除任何过量的试剂。粗亚胺酰氯经试剂和溶剂蒸发后,不进一步纯化,而是溶于THF中,冷却至0“C,用过量的叔丁醇钾(方案4)处理,生成腈基。在这项工作中,使用的大部分叔丁醇钾是新鲜的商业试剂(Aldrich),但最近发现,在使用前通过高真空(约200°C)升华纯化碱可以获得更好的转化率。产物采用干柱快速色谱法分离。在所有情况下,环化都是成功的,并产生了三环氮杂卓系统,表3。下文(i)和(ii)将更详细地讨论环化。通过其'H NMR波谱(表4)中存在特征性'对双峰(Jca.1,1)1196 J.CHEM.soc.PERKIN TRANS.1,1994由于亚甲基而鉴定产物。这些信号显示,由于氮杂卓环的反转,预期的 2 随温度的变化;aHe*aHet~12 iorii iii -CHZ-N =$Ph ,c &CPh H' 20 21 +方案 4 试剂和条件:i、SOC1、醚回流;ii, Me,N= CHCl C1-(SOC1,-DMF),室温;iii, K0Bu'-THF (i) 含有噻吩奥呋喃环的体系。检查了四个含有噻吩环的系统和一个含有呋喃环的系统。前两个是腈基21b和21c,在这些情况下,氮杂卓的形成需要富电子噻吩环的电环取代。在这两种情况下,酰胺前体在回流下使用乙醚中的氯化亚砜很容易转化为酰胺酰氯。这两种腈类亚化物都按预期循环,分别产生氮杂麻类药物 22 和 23。正如早期关于重氮环~化的工作所预期的那样,~后者仅在噻吩环的 2 位而不是 4 位环化。另外两个噻吩系统25和2.8的噻吩环都位于a,p位置,即携带腈基团,因此环闭合需要电环化到苯环上。它们的酰胺前体16和17分别转化为酰亚胺酰氯,这在最初造成了一些困难,因为后者(24和27)似乎异常不稳定。在回流时与乙醚中的氯化亚砜反应,如前两个含噻吩的系统所用,得到的预期产物很少,黑焦油很多。通过在较低温度下使用反应性更强的试剂氯-二甲基甲酰亚胺氯化物解决了这个问题。化合物 24 和 27 相对较高的不稳定性可能源于噻吩环的富电子性质。所有苯并亚胺酰氯都倾向于通过苯甲腈的挤出在高温下分解,在这些情况下,富电子噻吩环在稳定早期噻吩甲基碳正离子方面的作用将有利于这一过程,一旦形成,就可以进行进一步的反应,例如烷基化。腈基的生成以通常的方式进行,它们循环得到化合物26和29,收率令人满意。所有这些含噻吩的氮卓类药物都表现出不愿结晶的性,甚至比它们的一些二苯并类似物更明显,并且通常发现通过Kugelrohr蒸馏纯化它们是最有效的。不能分离出含呋喃的咪唑酰氯20d。两种方法都用于从其酰胺前体 12d 生成它,并且在这两种情况下,它自发地循环以高产率获得呋喃苯并氮卓 31。如图所示,这似乎很可能是通过 Bischler-Napieralski 类型的亲电取代 30 发生的。这种情况发生在该化合物上,而不是噻吩类似物上,这反映了呋喃对亲电取代的反应性比噻吩高得多(例如,三氟乙酰化为140倍,甲酰化为107倍)。(二) 含有吡啶环的系统。已经研究了三种含异构体吡啶的系统21e、21f和21g。这些与上述形成鲜明对比的是,氮杂平的形成现在需要电子缺陷杂环的电环取代。在所有情况下,酰亚胺酰氯的形成都需要使用氯二甲基甲酰亚胺氯化物。将 4-取代的衍生物 21e 环化得到 5-* 由爱丁堡大学化学系 Dr.D. Reed 设计和进行的实验。06'“”-3,C-CPh H-Bu'o-36方案5苯基-7H-吡啶并[3,4-d][2]苯并氮杂卓32收率良好。3-取代的类似物21f在两个“邻位”位置环化,得到两种异构体5-苯基-7H-吡啶并[2,3-d][2]苯并氮杂卓33和5-苯基-7H-吡啶并[4,3-d][2]苯并氮杂卓34.这些化合物以1:1.4的比例形成,但无法分离,也不知道两者中哪一个是主要产物。根据其他工作表明,反应速率因吸电子基团接近环化位点而增加,似乎主要产物可能是化合物33.研究该吡啶系列的主要兴趣点之一是找出在2-吡啶基化合物21g(方案5)的情况下会发生什么,该化合物具有两个潜在的环化位点之一被吡啶氮原子占据。在这一系列反应中,最初缺乏重现性表明需要仔细观察酰胺12g与氯化试剂的反应。因此,进行了H NMR研究,其中化合物12g与perdeuterio-dimethylformamidinium chloride在核磁共振管中的perdeuterio-DMF中进行,并监测直到完成。将该反应的结果与两个比较器(苯基类似物12a和4-吡啶基类似物12e)的类似反应进行了比较。在“苯基”酰胺 12a 的反应中,由于酰亚胺酰氯的 CH,6 4.42 处的亚甲基双峰在 15 分钟后几乎消失,取而代之的是 6 4.74 处更脱屏蔽的单峰。4-吡啶基类似物12e显示出类似但较慢的转变,其中6 4.42处的酰胺双峰被6 4.89处的酰胺酰氯单线态取代;反应在1 h内基本完成。这种较慢的反应符合我们对吸电子基团对亚胺酰氯形成影响的一般观察。“2-吡啶基”酰胺12g的反应得到了一个产物谱图,如图1所示,与两个比较物的谱图完全不同。酰胺的消失 CH, J.CHEM. SOC. PERKIN TRANS.I 1994 --212b C-NECPh -+-&Ph N d HH 21b 22 21c 23 H-24 25 26 H,-+ H,C-N ZCPh H, I 27 28 29 12d -Ph I CI HH 2od 30 31 21e 32 I---H4H 21f 33 34 doublet 比 4-吡啶基类似物慢,它是酰亚胺酰氯(方案 5)。该公式主要由一对双峰代替,分别为6 4.91和4.72(J其'H NMR谱;亚甲基给出预期的11。1) 与 S 5.14 处的单线透镜一起。与之前的情况不同,芳香区对双峰(在完全不同的位置产生共振)也显示出重大变化。来自最终产品36或其盐酸盐中的那些)。转换在12小时后几乎完成,在室温下再过10小时后,光谱芳香区的主要变化保持不变。与吡啶氮主要产物的四铵化一致的被认为是 2,4-苯并二氮杂卓原子。作为比较盐35的化学位移的基础,盐在第一个形成的吡啶质子中形成的亲核环闭合,其盐酸盐37 J. CHEM. soc. PERKIN TRANS. 1 1994 表2 酰胺12a-i、16和17化合物氩光谱数据 光谱数据12a Ph 12b 2-噻吩基 1242 3-噻吩基 12d 3-FUVL 12e 4-吡啶基 12f 3-吡啶基 1% 2-吡啶基 12h 2-嘧啶基12i 5-嘧啶基16 17 4.62 (d, J 5.6, CH,), 6.23 (br s, NH) 和 7.25-7.50 (12 H, m) 1625 (GO) 和 3320 (NH) 4.71 (d, J 5.6), 4.68 (d, J 5.9; 组合积分 2 H, CH,), 5.36 (br s), 5.79 (br s);组合积分 1 H, NH) 和 7.04-7.75 (12 H, m, Ar-H) 1630 (M) 和 3320 (NH) 275 (67%), 274 (1 00) 和 17 1 (25) 4.65 (d, J5.6, CH,), 6.28 (br s, NH) 和 7.41-7.82 (12 H, m, Ar-H) 1625 (GO) 和 3275 (NH) 293 (55%), 188 (25), 172 (loo), 171 (60) 和 122 (55) 4.63 (d, J5.5, CH,), 6.53 (dd, J 1.8 和 0.9,4'-H), 6.95 (br s, NH), 7.23-7.49 (9 H, m, Ar-H) 和 7.61-7.75 (2 H, m, Ar-H) 1635 (C =0) 和 3250 (NH) 279 (M + 1,48%), 278 (loo), 157 (92), 129 (50) 和 105 (98) 4.54(d, J5.6,CH2),6.80(brs,NH),7.18-7.50(9H,m,Ar-H),7.6217.71(2H,m,Ar-H)和 8.56(2H,brs, Ar-H) 1630 (GO) 和 3375 (N-H) 287 (16%), 183 (20), 167 (loo)、105 (31)、77 (38) 和 69 (48) 4.54(d, J5.6,CH2)、6.74(brs,NH)、7.16-7.71(11 H,m,Ar-H) 和 8.48-8.53(2H,m,Ar-H) 1630 (C==O) 和 3375 (NH) 183 (18%)、168 (48)、166 (51)、105 (57)、77 (100) 和 69 (24) 4.55 (d, J 6.1, CH,)、7.25-7.89 (1 2 H, m, Ar-H 和 N-H) 和 8.64-8.7 1 (2 H, m, Ar-H) 41.0(quat.) 121.8, 123.8, 126.6, 126.7, 127.9, 128.0, 128.2, 129.4, 130.7, 134S(quat.), 136.6, 137.2(quat.), 139.4 (quat.), 148.5, 158.8, 161.3, 161.6, 161.8, 161.9 and 165.7 (quat.) 289 (69%), 183 (20), 167 (100) and 105 (19) 1645 (C==O)和 3320 (NH) 4.71 (d, J 6.3, CH,), 7.24-7.49 (6H,m, Ar-H), 7.62-7.69 (1 H, m, Ar-H), 7.77-7.83 (2 H, m, Ar-H), 8.01-8.09 (1 H, m, Ar-H), 8.26 (br s, NH) 和 8.86 (2 H, d, J4.9, Ar-H) 289 (4573, 184 (18), 168 (loo), 131 (17), 119 (23) 和 69 (67) 1625 (W) 和 3230 (N-H) 4.48 (d, J 5.7, CH,), 6.89 (br s, NH), 7.14-7.5 1 (7 H, m, Ar-H), 7.63-7.70 (2 H, m, Ar-H), 8.66 (2 H, s, 4'-H 和 6'-H) 和 9.1 1 (s, 2'-H) 288 (573, 168 (loo), 157 (17), 131 (21), 119 (20), 105 (36), 77 (44)和 69 (59) 1635 (W) 和 3350 (NH) 4.82(d,J5.4,CH2),6.67(brs,NH),7.06(d,J5.2,4-H),7.25(d,J5.2,5-H),7.28-7.51(8H,m,Ar-H)和 7.68-7.74 (2 H, m, Ar-H) 294 (2179,293 (loo), 172 (20) 和 69 (97) 1635 (W) 和 3290 (NH) 4.65 (d, J 5.4, CH,), 6.59 (br s, NH), 7.10 (d, J 5.2,4-H), 7.24 (d, J 5.2, 5-H), 7.28-7.49 (8 H, m, Ar-H) 和 7.667.72 (2 H, m, Ar-H) 293 (69%), 105 (100) 和 77 (31) 1645 (W) 和 3355 (NH) a J 值以 Hz 为单位给出。 结果将在文中讨论。FAB(甘油)。在 ['H,]DMF 中。CI' H CH2NHCOPh 37 和配制为 35 的产物已通过 2D 'H NMR COSY 实验确定。第一个关键点是,所有四个吡啶质子仍然存在于 35 的光谱中,并且与酰胺 12g 中的质子相比,它们都具有强烈的去屏蔽性。在酰胺12g的盐酸盐37的光谱中观察到类似但较弱的效应,从而支持了新化合物含有季铵化氮原子的论点。化合物 35 的核 Overhauser 实验 (NOE) 也支持所提出的结构,在位置 1 处的辐照仅在位置 2 (1-5%) 和 11 (4%) 产生效应,在位置 4 产生效应 3 (2%) 和 2' (1%)。图1中6 5.14处的单线态归因于一些酰亚胺酰氯20g的存在,方案5,与35的比例平衡,比例约为1:3。反应混合物的水解仅产生酰胺12g这一事实支持了这一解释。在相同条件下进行酰胺与氯-二甲基甲酰亚胺氯化物的制备级反应,12小时后,将反应混合物用THF稀释并用叔丁醇钾处理。检查结果显示 5-苯基-7H-吡啶并[3,2-d][2]苯并氮杂卓 36,收率约为 70%。它似乎是通过腈酰基21g以通常的方式形成的,其本身可以直接由酰亚胺酰氯20g形成,也可以通过化合物35的去质子化和开环形成,方案5.因此,21g的环化显然通常发生在自由的“邻位”位置,吡啶氮原子存在的唯一可观察到的影响是在将酰亚胺酰氯20g与化合物35.嘧啶-2-和5-基酰胺12h和12i与氯化亚砜-二甲基甲酰胺的反应似乎更复杂,将在以后的出版物中报道。(c)熔融氮杂环环的环反转-对三环氮杂环苯的VT NMR研究结果如表6所示。用吡啶、噻吩或呋喃取代二苯并氮卓 4 (R = H) 中的一个熔融苯环,使系统逐渐变得更加灵活。这一趋势与早期关于稠合二氮卓类药物的研究结果一致,其中发现,替代稠合的I3 c \o \oP 表3 杂环稠合苯并氮卓类药物的产量和物理数据 Cryst. M.p. B.p. 分子 c (%) €3 (%I N (%) mlz (M+)复合法“ 产率 (%) (”C) (“C) 公式 找到 计算结果 找到 计算结果 找到计算结果 计算结果 22 (i) 68 185-190 C18H 13NS 275.0775 275.0769 0.3 mmHg苦味物 88 237-238 Cz4Hl6N4oS 57.1 57.13.2 3.2 11.2 11.1 23 (2) 65 190-195 c1 8H 1 3NS 275.0771 275.0769 0.4 mmHg 苦味酸盐 92 235-236 CZ4Hl6N4OS 56.9 57.1 3.15 3.2 11.1 11.1 26 (ii) 69 H 10&108 Cl *H1,NS 78.6 78.5 4.7 4.8 4.9 5.1 275.0773 275.0769 28 (ii) 74 175-1 80 c,8H13NS 276.0847' 276.0847 0.3 mmHg 31 (i)/(ii)d 78 170-1 75 cl BH1 260.1075' 260.1075 0.3 mmHg 32 (ii) 81 未蒸馏 CI9Hl4N2 270.1 155270.1 157 33-34 (ii) 61 205-2 10 C19H14N2 270.1154 270.1 157 1:1.4 (ii) 0.1 mmHg (ii) 68 EA/H 186.5-187.5 ClP 14N2 270.1 143 270.1 157 a 亚胺酰氯的形成方法 方案 7.H = 己烷,EA = 乙酸乙酯。'对于(M + I),FAB,甘油。有关详细信息,请参阅正文。1200 J. CHEM. soc. PERKIN TRANS. 1 1994 表 4 熔融氮泽类药物的光谱数据 化合物 光谱数据 4 (R=H)' 6, (298 K)' 3.77 (1 H, d, J 10.2), 4.87 (1 H, d, J 10.2) 和 7.24-7.87 (13 H, m, Ar-H) 22 8, (298 K) 4.52 (br s, CH,) 和 7.03-7.70 (1 1 H, m, Ar-H) (280 K) CH, -3.95 (d J 10.75) 和 5.10 (d, J 10.75) mlz 275 (57%), 274 (loo), 171 (28), 28 (98) 23 6H (298 K) 4.55 (br s, CH,) 和 7.24-7.71 (1 1 H, m, Ar-H) (280 K) CH, -3.97 (d, J 11.2) 和 5.13 (d, J 11.2) mlz 275 (51%), 274 (100) 和 171 (47) 26 6, (298 K) 4.50 (br s, CH,) 和 7.1k7.77 (1 1 H, m, ArH) (275 K) CH, -3.93 (d, J 12.1) 和 5.07 (d, J 12.1) mlz 276 (2023,275 (90), 274 (loo)、171 (37) 和 59 (21) 28 6、(307 K) 4.41 (br s、CH、) 和 7.06-7.76 (1 1 H, m, Ar-H) (250 K) CH、-3.70 (d, J 11.3) 和 5.12 (d, J 11.3) mlz 276 (loo%)、171 (20)、49 (26)、43 (31)、36 (21)、28 (98) 31 6、(298 K) 4.57 (br s, CH、)、6.94 (d, J 1.8,4-H fur) 和 7.33-7.65 (10 H, m, Ar-H) (228 K) CH, -3.91 (d, J 11.2) 和 5.23 (d, J 11.2) mlz 259 (loo%), 128 (15), 105 (12), 77 (13), 44(lo), 36 (26) 和 32 (25) 32 6, (307 K)' 3.83 (d, J 10.6, CH,), 4.95 (d, J 10.6, CH,), 7.41-7.63 (8 H, m, Ar-H)、7.80-7.91 (2 H, m, Ar-H)、8.53 (1 H, s, 2-H pyr) 和 8.79 (1 H, d, J5.2, 6-H, pyr) (390 K) 4.89 (br s, CH,) mlz 270 (loo%)、269 (61)、167 (24)、139 (14) 和 120 (9) 33-34 6、(307 K)' 3.80(1 H,d, J11)、3.91 (1 H,d, J11)、4.93(1 H、d,J11),4.98(1 H,d,J11),7.2&8.00(21 H,m,Ar-H),8.18-8.36 (1 H, m, Ar-H) 和 8.62-8.76 (2 H, m, Ar-H) (288 K) 4.46 (br s, 2 x CH,) mlz 270 (loo%), 269 (64),167 (35) 和 32 (21) 36 6, (298 K)' 3.99 (1 H, d, J 11.7), 4.98 (1 H, d, J 11.7)、7.43-7.60 (9 H, m, Ar-H)、7.79 (dd, J 7.9 和 144-H 吡啶多)和 8.06-8.16 (1 H, m, Ar-H)、8.95 (dd, J 4.5 和 1.8,6-H, 吡啶) (344 K) 4.49 (2 H, br s)6, (360 MHz) (298K)e 3.81 (1 H, d, J 10.6), 4.87 (1 H, d, J 10.6), 7.23-7.46 (7 H, m, Ar-H), 7.71 (1 H, dd, J7.9 和 1.8,4-H, pyr), 7.88 (2 H, br s, Ar-H), 8.02 (1 H, m, Ar-H) 和 8.82 (dd, J4.7 和 1.8, 6-H pyr) mlz 270 (82%), 269 (loo), 205 (23), 167 (42), 143 (27) 和 31 (25) 除非另有说明,否则 CDCl 中的所有 NMR 波谱,频率为 80 MHz。'C2H,]DMS0.FAB(甘油)。C2H,]DMF.表5 吡啶基质子在12g、37和35中的化学位移 位置 (6)35 化合物 1 2 3 4 1% 7.56 7.83 7.29 8.64 37 8.02 8.44 7.88 8.85 (+0.46) (+0.61) (+0.59) (+0.21)35 8.67 8.95 8.23 9.18 (+l.ll) (+1.12) (+0.94) (+0.54)9.2 8.8 8.4 8.0 7.6 7.2 6.8 6.4 6.0 '5.6 5.2 4.8 I ppm 表6 反转的聚结温度和自由能 AG 氮杂卓 溶剂 TJ' C kJ mol-'31 CDC1, -22 49.6 29 CDCl 2 54.5 23, 苦味酸酯 CDCl, 2 55.1 22,苦味酸酯 CDCl, 17 58.3 9.2 8.8 8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 26 CDCl, 23 59.3 PPm 23 CDCl, 24 59.5 图1 22 CDCl, 28 60.3 36 (CD3)2So 71 69.7 3%34 (CD3)2S0 112 78.2 32 (CD3)2S0 115 78.6苯环与噻吩降低活化能为4,R = H (CD3)2S0 149 86.1环 inver~ion.~ 这是根据褶皱和平面状态下五元环和六元环对角应变的不同影响来合理化理解的。其他差异就不那么容易解释了。例如,有人建议'高 (d) ConcZusions。-这项工作表明,使用腈酰亚化物反转二苯并氮杂卓系统4芳烃取代的电环活化能在形成中是有效的,这主要是由于两种氮卓类化合物与各种杂芳环融合的空间相互作用增加。在氢原子的平面跃迁组合中,在1和11位的平面跃迁结合中,使用Pd“交叉偶联反应为态。29的活化能低于26的腈酰化物前驱体的一致途径,它提供了有效的方法,但22和23的情况正好相反。从容易获得的起始材料 J.CHEM. soc. PERKIN TRANS. 1 1994 到一系列具有熔融苯和杂环的三环氮杂环类氮杂环类药物的一般合成路线。在呋喃衍生物12d的情况下,已经表明氮杂卓的形成是自发发生的,uia亚胺酰氯30的未催化的亲电环化。对于噻吩类似物,没有观察到类似的反应。总的来说,这些结果说明了电环取代过程的显着特征,这使得富电子和缺电子芳香环的环闭合成为可能,后者尤为重要,因为不容易获得替代的环化模式。除非另有说明,否则实验核磁共振谱图以氘代氯仿溶液的形式运行。化学位移记录为 6 个值,J 值以 Hz 为单位给出。在I3C光谱中,碳的多重性是通过单频、非共振解耦或DEPT建立的。 除非另有说明,否则使用70 eV的电子电离获得质谱。使用硅胶(下午1 5点,Fluka Fieselgel GF254)和基于轻质石油(b.p. 4040°C)与乙醚或乙酸乙酯混合的洗脱溶剂,通过“干柱闪蒸”技术进行制备色谱。乙醚是指乙醚。溶剂的蒸发表示使用旋转蒸发器在减压下蒸发。所有溶液的干燥均用无水硫酸镁完成。溶剂、试剂和原料.-四氢呋喃(THF)在使用前立即从二苯基酮基钠中蒸馏出四氢呋喃(THF).1,从氢化钙中蒸馏出ZD二乙氧基乙烷(DME)和N,N-二甲基甲酰胺(DMF)并储存在分子筛(4 A)上,前者在使用前立即通过氧化铝柱进行偶联反应.2-溴苄胺盐酸盐和四(三苯基膦)钯(o)从奥德里奇化学公司获得,无需进一步纯化即可使用。以下是通过文献路线制备的,并具有报道的物理和光谱性质:2-噻吩基硼酸,lo 3-噻吩硼酸,'苯硼酸(也从Aldrich化学公司获得),'3-呋喃基硼酸。N-(2-溴苄基)苯甲酰胺10.-2-溴苄胺盐酸盐(3.92 g,17.6 mmol)、无水碳酸钠(4.01 g,37.8 mmol)和苯甲酰氯(2.64 g,18.8 mmol)在二氯甲烷(60 cm3)中在室温下搅拌1 h,然后在回流下煮沸30 min。冷却后,用水(30cm3)和二氯甲烷(40cm3)稀释反应混合物。然后分离有机相,干燥和蒸发,残留物从乙醇中重结晶,得到产物(4.78克,93%)为白色晶体,熔点133-134“C(发现:C,58.0;H,4.3;N,4.9。C,,H,,BrNO 需要 C, 58.0;H,4.2;N,4.8%);6,(80 MHz) 4.68 (d, J 6.0, CH,), 6.81 (br s, NH) 和 6.98-7.82 (9 H, m, Ar-H);m/z (FAB),甘油)290(M + 1,98%),274(54)和257(100);v,,,(Nujol)/cm-' 3300(N-H)和1640(GO).2-(苄基酰胺甲基)苯硼酸13.-在THF(50 cm3)中的苯甲酰胺10(2g,7mmol)溶液中,在-78“C的氮气下滴加甲基锂(1.5 mol dm-3乙醚溶液;7.0 cm3),然后,搅拌1小时后,叔丁基锂(1.7 mol DM-3戊烷溶液;12.2 cm')。在-78“C下1小时后,将C三异丙基硼酸酯(9.2cm3,0.04mol)加入到混合物中,然后使其升温至室温。将溶液用盐酸(2mol dmP3)酸化,然后搅拌10分钟。有机层的分离、干燥和蒸发以及二甲基亚砜残留物的结晶(DMSOFwater给出标题化合物(1 SO g,84%),m.p.170-173“C(发现:C,66.0;H,5.6;N,5.4。C14H14BN03 要求 C,65.9;H,5.5;N,5.5%);dH(360兆赫;C2H6]DMS0) 4.63 (d, J6.1, CH,), 7.20-7.66 (7 H, m, Ar-H), 7.92 (d, J7.4, 2'-H), 8.32 (2 H, s, OH) 和 9.00 (br s, NH);NOE:辐照B(OH)仅影响6-H(5%)和CH(3%),CH仅影响3-H(4%)、B(OH)、(4%)和NH(10%);dB(36O 兆赫;C2H,]DMSO)31.44(s,B-OH);M/Z 238 (1 l%)、212 (Lo)、167(20)、149(100)、117(19)、105(97)、91(63)、85(20)、74(72)、58 (83)、48 (38)、42 (67) 和 30 (36);v,,(Nujol)/cm-' 3350 (OH)、3260 (NH) 和 1610 (M)。酰胺12的制备(方案1:途径1和2).-下面举例说明制备N-(2-苯基苄基)苯甲酰胺12a的一般方法。化合物 12a-d 通过 Route 1 和 12a, d, e, g-i uia Route 2 制备。化合物12f通过与路线1中类似的反应制备,但使用二乙基吡啶硼烷',反应条件如下。在所有情况下,反应均通过HPLC监测,使用与下文12a相似的条件。产率、反应时间和物理性质见表1,光谱特性见表2。将N-(2-苯基苄基)苯甲酰胺12a.-苯甲酰胺10(3 g,10.3 mmol)和四(三苯基膦)钯(o)(0.36 g,0.3 mmol)加入到DME中,在干燥氮气下搅拌。20分钟后,碳酸钠(无水,1.09g,10.3mmol)在水(15cm3)和苯硼酸(1.51g,12.将4mmol)加入到混合物中,然后在回流下煮沸。通过HPLC监测(5pm二氧化硅OD,20%甲醇水溶液)表明5小时后起始材料完全消耗。蒸发二甲醚,并用乙酸乙酯萃取混合物。提取物的干燥和蒸发得到棕色固体。(在粗产品颜色很深的情况下,去除颜色的最有效方法是在对二氧化硅进行干柱快速色谱之前,将混合物6预先吸附到氧化铝上。干柱快速色谱法(二氧化硅,乙酸乙酯-己烷,1 :9)得到标题化合物12a为白色结晶固体(2.54 g,86%)。2-(苯甲酰胺甲基)-3-苯基噻吩16 通过方案 2.- 3-苯基噻吩-2-甲醛。3-苯基噻吩,m.p.88-89“C(lit.,89.5-90.5”C),用Suzuki的方法制备(91%),并通过Gronowitz方法转化为3-苯基噻吩-2-甲醛(76%),m.p.35-36“C(lit.,4 36-36.5”C)。后者(4.5g,24mmol),在室温下与盐酸羟胺(1.81g,26mmol)和乙酸钠(2.21g,26mmol)在水(20cm3)中的溶液反应,得到相应的肟(2.98g,61%),熔点115-116“C(来自乙醇)(发现:C,64.9;H,4.3;N,6.9%;M+,203.0408。C,,H,NOS 需要 C, 65.0;H,4.5;N,6.9%;米,203.0405);6,(80 MHz) 7.11 (d, J 5.2, 4-H), 7.33 (dd, J 5.2 和 0.7, 5-H), 7.40 (5 H, m, 苯基), 8.30 (d, J 0.7, CH) 和 8.45 (br s, 俄亥俄州);M/Z 203 (65%)、202 (96)、186 (100) 和 115 (37);vmax(Nujol)3180 cm-' (OH).2-(氨甲基)-3-苯基噻吩。将上述肟(3.30 g,16.2 mmol)、锌粉(8.49 g,0.13 mol)、醋酸铵(1.00 g,13 mmol)、氨水(d 0.88;97 cm3)和乙醇(50 cm3)在回流下煮沸18 h。然后蒸发混合物,残留物与氢氧化钾水溶液(33%w/v;100 cm3)搅拌。将乙醚(30厘米)加入混合物中,然后通过青石垫过滤。然后分离有机层,干燥并蒸发,使2-(氨甲基)-3-苯基噻吩为棕色油(2.89克,94%)。使用本品时未作进一步纯化(Found: M+, 189.0609.C1 ,H,,NS 需要 M, 189.0612);6,(200 MHz) 1.62 (br s, NH,), 4.10 (s, CH,), 7.06 (d, J 5.2,4-H), 7.23 (d, J 5.2, 5-H) 和 7.24-7.47 (5 H, m, Ar-H);M/Z 189 (loo%)、188 (78)、173 (27)、171 (32) 和 112 (24);v,,,(胶片)/cm-' 3375 (NH)。将噻吩16.上述得到的粗胺(2.8g,14.8mmol)按上述方法对化合物10进行苯甲酰化,干柱快速色谱(二氧化硅,乙酸乙酯-石油,1:3)得到产物为白色结晶(3.63g,88%),熔点117-1 18“C(来自乙烷基氯己烷)。其物理和光谱特性见表1和表2。3-(苯甲酰胺甲基)-2-苯基噻吩17(方案3).-2-溴-3-(溴甲基)噻吩.N-溴苄酰亚胺(19.58g,0.11mol)和过氧化苯甲酰(0.4g,1.将65mmol)分份加入到2-溴-3-甲基噻吩(20g,0.1 1mol)'和过氧化苯甲酰(0.4g,1.65mmol)的干燥四氯化碳回流溶液中。将溶液在回流下再煮沸3小时,冷却并过滤掉琥珀酰亚胺。蒸发滤液,分离残留物,得到2-溴-3-(溴甲基)噻吩(22.74g,SIX),b.p.78-82“C/1mmHg(lit.,88-90”C/4mmHg);SH(60 MHz) 4.47 (s, CH,), 7.00 (d, J 6, 4-H) 和 7.25 (d, J 6, 5-H).2-溴-3-(邻苯二甲酰亚胺甲基)噻吩。将2-溴-3-(溴甲基)噻吩(8g,0.03mol)和邻苯二甲酰亚胺钾(12.97g,0.07mol)在DMF(50cm')中的溶液在室温下搅拌90rnin,然后升温至45“C90分钟。将混合物在高真空下蒸发,并向残渣中加入二氯甲烷(30 cm3)。将混合物用氢氧化钠水溶液(2mol drn-';2 x 20 cm')和水(2 x 10 cm')洗涤,干燥,蒸发残留物从乙醇中重结晶,得到2-溴-3-(邻苯二甲酰亚胺甲基)噻吩(7.58g,7979,熔点97-99°C(发现:C,48.4;H,2.4;N,4.2;M+ + H(FAB,甘油),321.9537。C,,H,BrNO,S需要C,48.6;H,2.5;N,4.4%;M + H,321.9537);6H(200 MHz) 4.80 (~,CH,)、6.96(d,J5.7,4-H)、7.17(d,J5.7,5-H)、7.66-7.74(2H, m, Ar-H) 和 7.78-7.88 (2 H, m, Ar-H);m/z(FAB,甘油)322(M+1,96%),321(loo),274(47),257(50)和160(26);vmax(Nujol)/cm-l 17 10 (M).3-氨甲基-2-溴噻吩。将2-溴-3-(邻苯二甲酰亚胺甲醚1)噻吩(3.5g,1 1 mmol)和水合肼(100%溶液;3.4cm')在甲醇(40cm')中的溶液在室温下搅拌1小时,然后在回流下搅拌10分钟。滤去不溶性邻苯二甲酰肼,滤液蒸发。将乙醚(20cm')和水(20cm3)加入残留物中,然后分离有机层并用盐酸水溶液(2mol dm-3;2×10cm3)萃取。酸性提取物用氢氧化钠水溶液(2 mol dm-';2 x 25 cm3)碱化,并用二氯甲烷(2 x 20 cm')萃取。有机层的分离、干燥和蒸发得到棕色油,蒸馏(Kugelrohr)得到3-氨甲基-2-溴噻吩棕色油(1.15克,55%);b.p.94-97 “C/0.03 mmHg(发现:M+,190.9388。CSH,BrNS 需要 M,190.9404;dH(200 MHz) 1.74 (br s, NH), 3.72 (s, CH,) 和 6.94 (2 H, m, Ar-H);M/Z 191 (78%)、190 (77)、112 (49)、84 (52) 和 69 (100);vmax(Nujol)/cm-' 3 140 (NH).噻吩17.3-氨甲基-2-苯基噻吩(0.84g,4.4mmol)通过上述方法对化合物10进行苯甲酰化,干柱快速色谱法(二氧化硅,醚-石油,1:4)得到产物为白色晶体(0.79g,61%),熔点11 1-1 12“C(来自乙醇己烷)。其物理和光谱特性见表1和表2。酰胺12b,e,f,16和17的酰胺酰氯的制备及其碱促进的环化反应,得到杂环-J.CHEM. SOC.PERKIN TRANS. 1 1994 将苯并吡啶-酰胺通过方案 4 中所示的两种一般方法中的任何一种转化为酰亚胺酰氯,如下图所示化合物 12 带 16.每种情况下使用的方法如表 3 所示。然后通过下面给出的一般方法将咪唑酰氯环化,得到熔融的氮杂霉素22、23、26、29、32、33和34。将N-[2-(2-噻吩基)苄基)苯甲酰胺12b转化为N-[2-(2-噻吩基)苄基]苯并酰亚胺酰氯20波段环化,得到4-苯基-6H-噻吩并[3,2-d][2]苯并氮杂卓22。将N-[2-(2-噻吩1)苄基)苯甲酰胺(0.50g,1.7mmol),干乙醚(30cm')和氯化亚砜(10cm3,0.14mol)在干燥的氮气气氛下回流加热过夜。将溶剂蒸发,残渣在高真空下保持3小时。向残留物中加入干燥的THF(25cm'),将混合物冷却至0“C,然后在干燥氮气下快速搅拌,将固体叔丁醇钾(0.38g,3.4mmol)分一份加入其中。将混合物在0“C下搅拌30rnin,使其升温至室温并再搅拌30分钟。溶液用氯化铵水溶液(25%w/v)处理,搅拌10rnin,然后用二氯甲烷(20 an3)稀释。分离有机层,并用二氯甲烷(2 x 10 cm')萃取水层。将结合的有机层和提取物干燥并蒸发以提供油。对此(二氧化硅,乙酸乙酯-石油,1:9)进行干柱闪色谱,然后进行Kugelrohr蒸馏,得到化合物22作为油(0.32克,6879,b.p.185-190“C/0.3mmHg。将化合物22.苦味酸(1.17g,5.1mmol)用乙醇(3×3cm')洗涤,在滤纸上干燥并溶解在丙酮(4cm')中。在此中加入化合物22(0.25g,0.9mmol)的丙酮(2cm')。在室温下搅拌30 rnin后,滤去产物,得到黄色针状物(0.40 g,88%),熔点237-238“C.将化合物16转化为N-(3-苯基-2-噻吩基甲基-y1)苯并亚胺酰氯24并环化得到6-苯基-4H-噻吩并[2,3-d][2]苯并氮杂卓26。将氯化亚砜(0.46CM',6.3mmol)滴加到2-苯并-氨基甲基-3-苯基噻吩(1-50g,5.1mmol)在室温下在干燥DMF(6.14g,0.08mol)中的溶液中,然后将混合物搅拌30分钟。将溶剂在30-35“C的高真空下除去3小时,将THF(60cm')加入残渣中,并将混合物在氮气下冷却至0”C。将固体叔丁醇钾(3.24g,0.03mol)分一份加入到混合物中,在0“C下搅拌30 rnin,然后在室温下搅拌30 rnin。溶液用氯化铵水溶液(25%w/v)处理,搅拌10rnin,然后用二氯甲烷(30cm')稀释。分离有机层,并用二氯甲烷(2 x 10 cm')萃取水层。将合并的有机层和提取物干燥并蒸发。对残余油(二氧化硅,醚-石油,1:9)进行干快速色谱,然后结晶得到化合物26(0.97g,69%),熔点106-108“C(来自己烷)的小鹿晶体。N-[2-(3-呋喃基)苄基]苯甲酰胺12d的环化反应得到4-苯基-6H-呋喃0[2,3-d)[2)苯并氮杂卓31.-使用亚硫磷酰氯-DMF。将化合物12d(100mg,0.36mmol),干燥DMF(2cm')和氯化亚砜(60mg,0.54mmol)的混合物在室温下搅拌过夜,然后在30-35“C的高真空下除去溶剂3小时。将二氯甲烷(10 cm')和水(10 cm3)加入混合物中,分离有机层;然后用二氯甲烷(2 x 5 cm')萃取水层。将合并的有机层和提取物干燥并蒸发,并将残留物蒸馏(Kugelrohr),得到化合物31为油(73mg,78%),b.p.170-175“C/0.3mmHg。J. CHEM. soc. PERKIN TRANS. 1 1994 使用氯化亚砜醚。通过在回流下加热化合物12d(50mg,0.18mmol)干醚(5cm3)和氯化亚砜(1.71g,14.4mmol)的混合物过夜,也以83%的收率进行该转化。N-[2-(2-吡啶基)苄基]苯甲酰胺12g与氯二甲基甲酰亚胺氯化反应并环化,得到5-苯基-7H-吡啶并[3,2-d][2]苯并氮杂卓%。-该反应的第一部分是在与下面的NMR研究相似的条件下进行的,并且试剂的相对浓度相同。通过向干燥的DMF(9.719g,约10cm3)中加入氯化亚砜(0.908g,7.63mmol),在装有Suba密封的烧瓶中制备DMF中的氯二甲基甲酰亚胺溶液。将该溶液在室温下保持20分钟后,通过注射器将一份(3.70 an3,2.69 mmol)加入到装有Suba密封的烧瓶中的化合物12g(0.516g,1.79 mmol)中。酰胺迅速溶解,得到澄清的黄色溶液。在室温下12小时后,用干燥的THF(20cm3)稀释溶液,冷却至0°C,并在剧烈磁力搅拌下分批加入叔丁醇钾(新鲜升华)(0.91g,8.07mmol)。立即形成了一种深色和持久的颜色。将溶液在0“C下保持15分钟,然后在室温下过夜。干柱快速色谱(二氧化硅,乙酸乙酯-己烷,1:4)后得到化合物36(0.33g,68%),熔点186.5-187.5“C(来自己烷-乙酸乙酯)。酰胺12a、12e和12g与氯二甲基甲酰亚胺氯化物反应的NMR研究-在这些实验中获得的光谱在结果和讨论部分进行了讨论,对于12g,如图1所示。N-(2-苯基苯苄基)苯甲酰胺12a.通过注射器将氯化亚砜(36mg,0.3mmol)加入到装有Suba密封封口的玻璃瓶中的C2H7]DMF(0.25cm3)中。5分钟后,将溶液注射到化合物12a(50mg,0.2mmol)的溶液中,溶液包含在装有隔膜帽的NMR管中的['H,]DMF(0.40cm3)中。在12 h内通过'H NMR检查所得混合物.15 min后获得第一个光谱,12 h后获得最后一个光谱。 N-[2-(4-吡啶基)苄基]苯甲酰胺1%。使用化合物12e(50mg,0.2mmol)在['H,]DMF(0.40cm3)和氯化亚砜(36mg,0.3mmol)在['H,]DMF(0.25cm3)中进行了类似的实验。通过'H NMR检查所得混合物超过16小时。 N-[2-(2-吡啶基)苄基]苯甲酰胺12g。(a) 在['H,]DMF(0.40 cm3)中使用化合物12g(50 mg,0.2 mmol)和在['H,]DMF(0.25 cm3)中使用氯化亚砜(36 mg,0.3 mmol)进行了类似的实验。所得混合物在22小时内通过'H NMR检查。22 小时后,使用以下参数对样品进行AU实验:(360 MHz)S12 = 1024,SI1 = 512;SW2 = 1098.901,SWl = SW2/2 = 549.451;循环延迟 (DI) = 3 s,DO = 3 ms,D3 = 3 ms;递增延迟 (IN) = 455 ms;PI = 90“ 脉冲,8 ms;FID 数量 (NE) = 256;不。扫描次数 (NS) = 48。进行了NOE实验。在6 4.73处对双峰进行辐照,试图观察6 4.91处对双峰的饱和转移效应,然而,该实验仅得到14%的NOE。该样品也被加热,但当化合物降解时,在高达80“C时没有观察到双峰的聚结。(c)在核磁共振监测的类似实验之后,用碳酸钠水溶液处理反应混合物,得到的产物通过'H NMR仅含有12g酰胺。为了进行比较,还对酰胺12g及其盐酸盐37进行了2D 'H NMR谱图,吡啶基质子的化学位移如表5所示。参考文献 1 K. E. Cullenand J. T. Sharp, J. Chem. SOC., Perkin Trans. 1,1993,2961.2 K. E.Cul1enandJ.T.夏普, J.Chem. SOC., Chem. Commun., 1991,658.3 N. Miyaura、T. Yanagi 和 A. Suzuki,合成器。公社,198 1,11,5 13.4 S. Gronowitz, V. Bobosik 和 K. Lawitz, Chem. Scr., 1984,23,120.5 J. T. Sharp 和 C. E. D. Skinner,Tetrahedron Lett.,1986,27,869。6 J. T. Sharp, I. Gosney and A. G. Rowley, in Practical Organic Chemistry, a Student Handbook of Techniques, Chapman and Hall, London, 1989.7 T. K. Miller 和 J. T. Sharp, J. Chem. SOC., Perkin Trans. 1,1984,223.8 《综合杂环化学》多位作者,A. R. Katrisky 和 C. W. Rees 编,佩加蒙出版社,1978 年,伦敦。9 D. P. Munro 和 J. T. Sharp, J. Chem. SOC., Perkin Trans. 1, 1980, 1718.10 J. R. Johnson, M. G. Van Campen 和 0.Gummitt, J. Am. Chem. SOC.,1938,60, 1 1 1.11 S. Gronowitz 和 N. Gjm,化学学报,1967,21,2823。12 F. R. Bean 和 J. R. Johnson,J.Am. Chem. SOC.,1932,54,4415。13 B. P. Roques, D. Fluorentin 和 M. Callanquin, J. Heterocycl.化学。, 1975,12,195.14 M. Terashima, H. Kakimi, M. Isikikura 和 K. Kamata, Chem. Pharm. Bull., 1983,31,4573.15 J. A. Blanchette 和 E. V. Brown, J.Am. Chem. SOC., 1951,79,2779.论文 3/07 1491 收稿日期 1993 年 12 月 3 日 录用日期 1994 年 1 月 10 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号