首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Effects of Amiloride, an Ion Channel Blocker, on Alamethicin Pore Formation in Negatively Charged, Gold-Supported, Phospholipid Bilayers: A Molecular View
【24h】

Effects of Amiloride, an Ion Channel Blocker, on Alamethicin Pore Formation in Negatively Charged, Gold-Supported, Phospholipid Bilayers: A Molecular View

机译:Effects of Amiloride, an Ion Channel Blocker, on Alamethicin Pore Formation in Negatively Charged, Gold-Supported, Phospholipid Bilayers: A Molecular View

获取原文
获取原文并翻译 | 示例
       

摘要

The effects of amiloride on the structure and conductivity of alamethicin ion pore formation within negatively charged, gold-supported, 1,2-dimyristoyl-sn-glyc- ero-3-phosphocholine/Egg-PG membranes were investigated with the help of electrochemical impedance spectroscopy EIS), photon polarization modulation-infrared reflection spectroscopy (PM-IRRAS), and atomic force microscopy (AFM). The EIS results indicate that ion conductivity across negatively charged phospholipid bilayers containing alamethicin decreases by an order of magnitude when amiloride is introduced to the system. Despite the reduction in ion conductivity, the PM-IRRAS data shows that amiloride does not inhibit ion channel formation by alamethicin peptides. High-resolution AFM images revealed that amiloride enlarges and distorts the shape of alamethicin ion pores when introduced to the system, indicating that it is inserting itself into the mouth of the alamethicin pores. This effect is driven by electrostatic interactions between positively charged amiloride molecules and the negative charge on the membrane.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号