首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthetic studies for novel structure of alpha;-nitrogenously functionalized alpha;-fluorocarboxylic acids. Part 1. The first synthesis and reactions ofN-protected alpha;-fluoroglycines
【24h】

Synthetic studies for novel structure of alpha;-nitrogenously functionalized alpha;-fluorocarboxylic acids. Part 1. The first synthesis and reactions ofN-protected alpha;-fluoroglycines

机译:α含氮官能化α氟羧酸新结构的合成研究。第 1 部分。N-保护α-氟甘氨酸的首次合成与反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1991 Synthetic Studies for Novel Structure of a-Nitrogenously Functionalized a-Fluorocarboxylic Acids. Part I. The First Synthesis and Reactions of N-Protected a-Fluoroglycines Yoshio Takeuchi," Manabu Nabetani, Kumiko Takagi, Toru Hagi and Toru Koizumi Faculty of Pharmaceutical Sciences, Toyama Medical amp; Pharmaceutical University, Sugitani 2630, Toyama 930-01,Japan The first synthesis of the N-protected a-fluoro-or-amino acid esters 12, 13, 21 and 22, and the corresponding acids 16 and 24, is described. Reaction of ethyl and t-butyl bromofluoroacetates 4 and 9 with di-t-butyl and dibenzyl iminodicarboxylate potassium salts IOc and 20b gave the fluoroglycine derivatives 12, 13, 21 and 22, respectively. Hydrolysis of the ethyl ester 12 and the t-butyl ester 22 successfully afforded the key compounds N,N-di(t-butoxycarbonyl) -a-fluoroglycine 16 and N,N-di( benzyloxycarbonyl) -a-fluoroglycine 24.Conversion into the novel structure of a-fluoroglycine itself (1; R = H) by acidic N-deprotection of compound 16 or hydrogenative debenzylation of compound 24, however, failed to produce any decomposition products associated with de h yd rof Iuori nat ion. Following recent rapid progress in studies on the synthesis and reactions of organofluorine compounds, many attempts have been made to introduce a fluorine atom into biologically significant molecules such as sugars and steroids.' There have also been quite a few attempts at chemical2 and enzymatic3 syntheses and biological activity examination of fluorine- containing a-amino acids in anticipation of the inherent chemical properties and activities caused by the introduction of a fluorine atom.However, no compounds have been reported where fluorine (or any other halogen atom) is introduced into the a-position (k,on the chiral centre) of any a-amino acid. The reason for this seems to be the inherent instability of the geminally halogenated amine moiety, which easily dehydro- halogenates to form another unstable structure -an imine. The a-amino-a-halogeno acids are therefore significant not only as modified bioactive compounds but also from a structural chemistry viewpoint, although they are small molecules. F IR -C-C02-I+ N"3 1 We thought the a-fluoro-a-amino acid structure 1 might be capable of existing under certain controlled conditions because of the general strength of the C-F bond, as evidenced by the meagre leaving ability of fluoride ion compared with the other halide ions.There had been, however, no published syntheses of any a-nitrogenously functionalized a-fluorocarboxylic acid derivatives before we first reported our preliminary work.6 We here describe a full account of the synthetic details of the preparation of this new class of fluorine compounds and our attempted construction of the novel a-fluoro-a-amino acid structure 1. Results and Discussion Since both selective monofluorination7 at the a carbon of protected amino acid derivatives and electrophilic amination t of 2-fluoro esters seemed very difficult, we attempted nucleo- philic introduction of the amino functionality into 2-fluoro esters.Ammonolysis of 2-bromo-2-fluorocarboxylic acids 2a or esters 2b,prepared from the corresponding a-amino esters," produced mixtures of undesired dehydrohalogenated products 3a or 3b. In order to avoid the problem of elimination, we next examined the simplest structure of the clan, namely ethyl bromofluoroacetate 4. Reaction of compound 4 with ammonia 5a or the protected amine derivatives 5M l1 in the presence of an appropriate base, however, did not give the desired compounds 8, yielding instead mainly bromofluoroacetamide (6) l2 from substrates 5a-and defluorination product 7from 5d, respectively, probably due to the instability of the metal amide nucleophiles or the high reactivity of the products (Scheme 1).F = PhIRi-C-C02R2 (R' = Me,CH2Ph) -I (" )H C02R2 X=F*BrIBr 2a; R~=H b; R2= Et F IH-C-CO2Et + RNH2 ii I Br 4 5a;R=H b; R=COCF3 C; R = C02CHzPh d; R=COCH2Ph 3a; R~ = H b; R2 = Et BrFCHCONH2 6 F * I I NHR H-C-CO2Et OH I H-C-CO2Et a I N HCOC H2P h 7 Scheme 1 Reagents: i, NH,, EtOH; ii, NaH, KH, KOBu', or LDA, THF or EtOH Our next attempt at the introduction of nitrogenous functionality onto the fluorine-bearing carbon focused on Gabriel's method.' Reaction of bromo ester 4 with potassium phthalimide 10a in heated N,N-dimethylformamide (DMF) successfully produced the first a-fluorinated a-amino acid derivative, N-phthaloyl-a-fluoroglycine ethyl ester 11.6 How-ever, application of the rather vigorous conditions required for removal of the phthaloyl group l4 and also for cleavage of the t Electrophilic amination using various reagents * was unsuccessful presumably due to the difficulty of generating a-fluorocarbanion~.~ 50 ester linkage 15,16 to product 11 damaged the C-F bond.In the course of considering much more gentle deprotective conditions adaptable to later stages of our synthetic strategy, we chose di-t- butyl iminodicarboxylate 10b as an amino functionality, which was prepared easily from t-butyl oxamate according to the method l7 of Jones. Condensation of the potassium salt 1Oc with the ethyl ester 4 and the corresponding t-butyl ester 9 ' in DMF gave the fluoroglycine derivatives 12 and 13, respectively, in gaod yield (Scheme 2).F I H-C-CO2R' + MN(COR2)2I Br 4 R' = Et 10 a; M = K, R2-$ = 9 R'= But b; M = H, R2= OBu' C; M = K,R~= OBU' Ii t F I H-C-CO2R' I N(COR2), 12 R' = Et, R2 = OBU' 13 R' = But, R2 = OBu' Scheme 2 Reagents and conditions: i, DMF, 9amp;120 "C (72-89 yield) The key compounds 12 and 13 now being to hand, we started to investigate their possible construction into the novel m-fluoro amino acid structure (1; R = H). The well known C-F bond stability was also a matter of interest in our case.19 Acidic cleavage of the amino protective group of compound 12 with CF,CO,D resulted in the formation of defluorinated products 15, presumably via the oxazolone intermediate 14.Therefore, cleavage of the ester moiety prior to deprotection of the amino group seemed indispensable to maintain the fluorine atom. Saponification of the ethyl ester 12 with 5 NaOH was accomplished smoothly, happily without the anticipated defluorination, to afford the N-protected a-fluoroglycine 16 in excellent yield. The final process was attempted by treatment of compound 16 with a catalytic amount of CF3C02D or HF in CDC1, as monitored by 'H and 19FNMR spectroscopy. One of the two carboxylates protecting the amino group was cleaved easily to form the unstable N-t-butoxycarbonyl-a-fluoroglycine 17.*However, prolonged exposure of compound 17 to an excess of acidic media (HF in CDCI,), in expectation of complete deprotection, seemed unsatisfactory.Decomposition of com- pound 17 under acidic media via the N-carboxyimine structure 18 could be the possible reason.? Similar acid-treatment of * As the signals of 16 decreased in intensity, new signals which originated from compound 17 S, 1.51 (9 H, s, But) and 6.27 (1 H, d, J 47.9 Hz); 6, -157.06 (d, J47.8 Hz) and Bu'F S, 1.38 (9 H, d, J21.2 Hz, Bu'); SF -131.11 (10-plet, J21.4 Hz) appeared as monitored by NMR spectroscopy.7 Finally, a t-butyl signal S, 1.28 (s) which seemed to correspond to structure 18 was observed, and after removal of all volatile material no fluorine-containing compounds were found in the residue as checked by the NMR spectra.$ The yield of 20a was sometimes meagre both because of its instability and the difficulty of separating it from the reaction admixture. 5 When the saponification of ester 21 was carried out with aq. NaOH- THF, N-benzyloxycarbonyl-cc-hydroxyglycinewas obtained. J. CHEM. SOC. PERKIN TRANS. 1 1991 t-butyl ester 13 resulted in the formation of the partially deprotected t-butyl ester 19 as evidenced by NMR spectroscopy, which upon application of the stronger acidic conditions produced the same compound 18 (Scheme 3). ii IH-C-CO~H iii 12 -F - H-C-CO,H I N(CO2BU32 iHC0,Bd I 16 17 li -1iL OBu' 1 // 14 F I l5 / -"H-C-COZHII .---*decomposition NHCO~BU' NC02But products 19 18 Scheme 3 Reagents and conditions: i, CF,CO,D, CDCl,; ii, 5 NaOH, EtOH (92 yield); iii, catalytic amount of CF,CO,D or HF, CDCl,; iv, excess of HF, CDCl, From these results, application of acidic conditions for the removal of the N-protective group at the final step seemed unfavourable because we anticipated that protonation on the fluorine atom would accelerate dehydrofluorination. Free amine generation and concomitant zwitterion formation (as depicted by structure 1) should be necessary at the final stage since carboxylate ion formation would suppress deprotonation of the amino group which could be the initial stage of dehydrofluorination.In considering these results, we decided that neutral conditions for N-deprotection such as hydro-genative deprotection at the final stage would probably be the only way in which we might accomplish our synthesis.Neutral conditions would also be helpful in the work-up procedure so that the target compound could be isolated without tedious manipulation. It was now necessary to obtain the benzyl analogue 20a, which Jones reported as being so difficult to prepare. After several attempts, including the unsuccessful application of a modified published procedure,20 we finally found a simple reaction to obtain compound 20a. Reaction of benzyl carbamate with benzyl chloroformate in the presence of an equimolar amount of potassium hydride produced target compound 20a in 64 yield.$ The dibenzyl iminodicarboxylate 20a was treated with aqueous KOH to afford the potassium salt 20b.Introduction of the new amino functionality 20b into bromo esters 4 and 9 was achieved satisfactorily, under conditions similar to the preparation of compounds 12 and 13, to produce the protected fluoroglycine esters 21 and 22, respectively. In contrast to the case of the t-butyl carbamate derivative 12, attempted hydrolysis of the benzyl carbamate ethyl ester 21 produced unwanted products. Thus, saponification of com- pound 21 with aq. NaOH-EtOH gave the fluorination product 23,s presumably via the same mechanism as the formation of compound 15. More gentle saponification conditions using LiOH or Ba(OH), afforded the carbamate 20a. Application of trimethylsilyl iodide (TMSI) or other non-saponificative conditions to compound 21 was also unsuccessful, yielding J.CHEM. SOC. PERKIN TRANS. 1 1991 F 4or11 I H2NC02CH2Ph + CIC02CH2Ph MN(C02CH2Ph)2 iii H-C-CO2RN(C02CH2Ph)2I 5c 20a; M=H-J~~ 21 R=Et b; M=K 22 R = Bu' OEt iv I- 21 H-C-CO2H 1 NHC02CHZPh 22 20a viiPhCH21 F F I I H-C-C02--+H-C-C02H decomposition I+ I NH3 N(C02CH2Ph)2 1; R=H 24 25 Scheme 4 Reagents and conditions:i, KH, THF (64yield); ii, aq. KOH, EtOH (100 yield); iii, DMF, 90-120 "C, 2-5 h (38-52'/; yield); iv, 5 NaOH, EtOH; v, LiOH or Ba(OH),, aq. THF; vi, TMSI, CDCI,; vii, CF,CO,D, CDC1, (49 yield); viii, H,/Pd-C, EtOH mainly PhCH,I rather than EtI and the decomposed counterpart. We finally tried the t-butyl ester 22,treatment of which with CF3C0,D in CDCl, successfully produced the desired carboxylic acid 24 in 49 yield. Compound 24 was submitted to Pd/C-catalysed hydrogenation.We hoped that, after completion of the reaction, removal of the catalyst and evaporation of any volatile material would yield the target compound (1; R = H) in an almost pure state. Hydrogenolysis of an ethanolic solution of compound 24 in the presence of 5 Pd/C, however, to our extreme disappointment, produced again unidentified defluorination products, as verified by 'H and "F NMR spectroscopy.* The use of TMSI for carbamate cleavage ,' of compound 24 was also attempted, but afforded initially the oxazolone 25, which decomposed slowly, accompanied by defluorination as had already been observed (Scheme 4).To sum up, we have developed the new amino functionality 20b and have succeeded for the first time in the preparation of several novel a-fluorinated a-amino acid derivatives, viz. 12,13, 16,21,22and 24.Although interconversion of protected amino acid 16 or 24 into the a-fluoro-a-amino acid itself was unsuccessful, we are currently examining the possible construction of the structural moiety of peptides containing an a-fluoro amino acid as a constituent. Experimental M.p.s were determined on a Yanagimoto apparatus and are uncorrected. B.p.s for micro-scale distillation indicate bath temperature. IR spectra were recorded on a JASCO A-102 or a Perkin-Elmer 1600 spectrometer. 'H NMR spectra were measured in CDCl, with Meamp; as internal standard and were recorded on a JEOL PMX-60 (60 MHz) or a JEOL GX-270 (270 MHz) spectrometer. 19F NMR spectra were measured in CDCl, with CFC13 as internal standard and were taken with a JEOL GX-270 (254 MHz) spectrometer.Upfield shifts are quoted as negative. Electron-impact (EI) mass spectra were taken with a JEOL JMS-300 spectrometer. Column chromatography was performed using Kieselgel60 (Merck, Art. 9385). * After substrate 24 had disappeared as monitored by TLC (ca. 30 h hydrogenation), the catalyst and the volatile materials were removed to give a semi-solid. Although debenzylation proceeded completely NMR spectra (in CD,COCD,), the characteristic signals S, 4.92 (d, J 116.0 Hz); 6, -150.81 (s) and -150.52(d, J 115.8 Hz) were difficult to assign to the target structure (1; R = H).General Procedure for Preparation of Bromojluoroacetamide 6.',-To a stirred, ice-cooled solution of trifluoroacetamide 5b or benzyl carbamate 5c (2 mmol) and an appropriate base (2 mmol) in tetrahydrofuran (THF) (10 cm3) was added a solution of ethyl bromofluoroacetate 4 (370 mg, 2 mmol) in THF (2 cm3). Precipitates formed immediately. The reaction mixture was stirred at 0-20 "C for 3.5-12 h. Evaporation of the solvent gave a semi-solid, which was chromatographed on silica gel with PhH-AcOEt (2: 1) as eluent to afford the title compound 6 as crystals in 35-8 1 yield; m.p. 40.5-41.0 "C; v,,,(KBr)/cm-' 3400 (NH) and 1685 (CO); amp;(60 MHz) 6.65 (1 H, d, J 51.2 Hz, CHF) and 6.80 (2 H, br, NH,); m/z 157,155 (M') and 113,111 (M+ -CONHI).Reaction of bromo ester 4 with ethanolic ammonia also produced the amide 6.' Ethyl 2-Hydro,uy-2-(phenylacetamido)acetate7.-A mixture of phenylacetamide 5d (203 mg, 1.5 mmol), bromo ester 4 (279 mg, 1.5 mmol) and Et3N (152 mg, 1.5 mmol) in THF (6 cm3) was heated at reflux for 2 days. The solvent was evaporated off under reduced pressure and the residue was chromatographed on silica gel with AcOEt-hexane (3:2) as eluent to afford the title compound 7 as crystals (180 mg, 50.6). Recrystallization from AcOEt gave prisms, m.p. 122.0-122.5 "C (Found: C, 60.5; H, 6.2; N, 6.0. CI2Hl5NO4 requires C, 60.8; H, 6.4; N, 5.9); v,,,(KBr)/cm-' 3410 (OH), 3320 (NH), 1725 (CO,), 1640 (CONH) and 1595 (Ph); 6,(60 MHz) 1.26 (3 H, t, J 7.2 Hz, Me), 1.63 (1 H, br s, OH), 3.72 (2 H, s, CH,CO), 4.27 (2 H, q, J 7.2 Hz, CH,O), 5.92 (1 H, d, J8.8 Hz, CH), 6.86 (1 H, br d, J8.8 Hz, NH) and 7.40 (5 H, s, Ph); m/z 237 (M'), 219 (Mf -H,O) and 164(Mf -C0,Et).General Procedure for the Preparation of Protected Amino Esters 11-13.-A suspension of potassium salt 10a or 1Oc (4 mmol) in dry DMF (30 cm3) was heated at 80 "C for 30 min. To the mixture was added dropwise a solution of bromo ester 4 or 9 (2mmol) in dry DMF (10 cm3) and the resultant solution was stirred at 90-120 "C for 2-5 h. The solvent was evaporated off under reduced pressure. Water (10 cm3) was added to the residue and the whole was extracted with AcOEt (10 cm3 x 3).The organic layer was washed with brine and dried over MgS04. Evaporation of the solvent gave a yellow oil, which was chromatographed on silica gel with PhH-AcOEt (3 : 1) or hexane-AcOEt (5: 1) as eluent to afford the title compounds 11,6 12 and 13. N,N-Bis(t-butoxycarbony1)-a-fluoroglycineethyl ester 12. Obtained as needles (928 mg, 72.3); m.p. 53.0 "C (Found: C, 52 52.3; H, 7.7; N, 4.6. C1,H,,FNO6 requires C, 52.3; H, 7.5; N, 4.4); v,,,(KBr)/cm-' 2990 (CH) and 1780, 1763 and 1727 (CO); SH(270 MHz) 1.36 (3 H, t, J7.1 Hz, CH,Me), 1.55 (18 H, s, But x 2),4.36(2H,q,J7.1Hz,CH2)and6.47(1H,d,J48.6Hz, +CH); 8, -156.78 (d, J 47.7 Hz); m/z 322 (M + l), 266 (M '-CH,=CMe, + 1) and 57 (t-Bu'). N,N-Bis(t-butoxycarbony1)-a-Juoroglycinet-butyl ester 13.Obtained as an oil (1.05 g, 75.4); b.p. 12G125 "C/4 x lo-, mmHg (Found: c, 55.1; euro;3, 8.2; N, 4.25. C16H,,FN06 requires C, 55.0; H, 8.1; N, 4.0); v,,,(film)/cm-' 3050 (CH) and 1785, 1760 and 1725 (CO); 6,(270 MHz) 1.51 (9 H, s, CFCO,Bu'), 1.53(18 H, s, NC0,Bu' x 2) and 6.27 (1 H, d, J47.9 Hz, CH); 6, -157.04 (d, J 47.8 Hz); m/z 350 (M' + l), 294 (M' -CH,=CMe, + 1) and 57 (t-Bu'). Also prepared was: N-(t-Butoxycarbony1)-cr-ethoxyglycineethyi ester 15. Ob-tained as prisms; m.p. 176.5-177.0 "C; v,,,(KBr)/cm-' 3380 and 3330(NH), 2960 (CH), 1742 (CHCO,) and 1687 (NHCO,); 6,(60 MHz) 1.21 (3 H, t, J7.1 Hz, CHOCH,Me), 1.24 (3 H, t, J 7.1 Hz, C02CH2Me), 1.48 (9 H, s, But), 3.72 (2 H, q, J 7.1 Hz, CHOCHJ, 4.27 (2 H, 9, J7.1 Hz, CO,CH,), 5.32 (1 H, d, J 11.4 Hz, CH) and 5.70 (br d, J 11.4 Hz, NH); m/z 248 (M + l), 202 + (Mf -OEt) and 102 (C0,Bu').N,N-Bis( t-butoxycarbony1)-a-Juoroglycine16.-A mixture of the ester 12 (102 mg, 0.32 mmol) in 5 NaOH (0.5 cm3)-EtOH (0.5 cm3) was stirred at room temperature for six hours. The mixture was evaporated and diethyl ether (5 cm3) was added to the residue. The mixture was extracted with 10 Na,CO, (5 cm3 x 3). The aq. layer was acidified with 5 HCl and extracted with CHC1, (5 cm3 x 3). The extract was washed with brine and dried over MgS0,. Evaporation of the solvent gave the title compound 16 as a viscous oil (86 mg, 92.4) Found: m/z 222.039. C7H9FNO6 (M' -CH,=CMe, -Me) requires m/z 222.041. Found: m/z 193.075. C7H12FN04 (M -+ CH,=CMe, -CO,) requires m/z 193.075.Found: m/z 174.077. C7Hl,NO4 (M' -CH,=CMe, -CO, -F) re-quires m/z 174.0771; v,,,(film)/cm-l 3380 (OH) and 1705 (CO); 6,(270 MHz) 1.53 (18 H, s, Bu' x 2), 5.45 (1 H, br s, OH) and 6.47 (1 H, d, J 47.6 Hz, CHF); ZF -156.31 (d, J 47.8 Hz); m/z 222 (M+ -CH,=CMe, -Me), 193 (M+ -CH,-CMe, -CO,), 174 (M' -CH,=CMe, -CO, -F) and 57 (t-Bu'). Dibenzyl Iminodicarboxylate 20a.-To a solution of benzyl carbamate 5c (1.76 g, 11.6 mmol) in dry THF (30 cm3) at 0 "C was added potassium hydride (24.6 suspension in mineral oil; 2.10 g, 12.9 mmol) and the mixture was stirred for 30 min. A solution of benzyl chloroformate (2.39 g, 13.9 mmol) in dry THF (3 cm3) was added and the mixture was stirred at room temperature for 20 min.The mixture was evaporated and water (10 cm3) was added to the residue. The aq. solution was acidified with 10 HCl and then extracted with AcOEt (30 cm3 x 3). The extract was washed with brine and dried over MgS0,. Evaporation of the solvent gave an oil, which was dissolved in diethyl ether (40 cm'). Sodium hydride (60 dispersion in mineral oil) was added in portions to the solution until no more gas generation was observed. After storage at room temperature for 1 h, crystals (sodium salt) were collected on a filter. The crystals were dissolved in water (20 cm3), the solution was acidified with 10 HCl and extracted with AcOEt (20 cm3 x 3), and the extract was washed with brine and dried over MgS04. Evaporation of the solvent gave a residual oil, which was dissolved in CCl,.The resultant solution was partially concentrated to give the title compound 20a as crystals (2.1 1 g, 63.8). An analytical sample was obtained by recrystallization from CCl, as needles, m.p. 110.5-1 11.0 "C (Found: C, 67.6; H, 5.25; N, 5.1. C16H15NO4 requires C, 67.35; H, 5.3; N, 4.9); J. CHEM. SOC. PERKIN TRANS. I 1991 v,,,(KBr)/cm-' 3200 (NH) and 1770 (CO); 6,(270 MHz) 1.62 (1 H, br s, NH), 5.22 (4 H, s, CH, x 2) and 7.35 (10 H, s, Ph x 2); mlz285 (Mf), 194(M+ -CH,Ph), 177 (M+ -OCH,Ph)and 91 (PhCHc). Dibenzyl Iminodicarboxylate Potassium Salt 2Ob.To a solution of dibenzyl iminodicarboxylate 20a (1.56 g, 5.5 mmol) in EtOH (6 cm3) was added slowly a solution of KOH (377 mg, 6.7 mmol) in water (2 cm3).The solvent was evaporated off and residual crystals were dried over P,O, under reduced pressure for two days. The title compound 20b was obtained as crystals in quantitative yield (1.75 g); m.p. 270 "C; v,,,(KBr)/cm-' 1695 (CO) and 1610 (Ph). General Procedure for Preparution of Triesters 21 and 22.-Compounds 21 and 22 were prepared by reaction of bromo esters 4 and 9 with the salt 20b in hot DMF by a procedure similar to that of the preparation of triesters 12 and 13. N,N-Bis(henzylo-~~~carbon~l)-a-Jluorogl.vcineethyl ester 21. Obtained as an oil in 51.5 yield; b.p. 175-185 "C/4 x mmHg Found: C, 61.7; H, 5.05; N, 3.7; m/z 298.066. C20H20FN06 requires C, 61.7; H, 5.2; N, 3.6; C,3H1,FNO6 +(M -CH,Ph) requires m/z 298.0661; v,,,(film)/cm-' 3000 (CH) and 1775, 1755 and 1720 (CO); 6,(270 MHz) 1.15 (3 H, t, J 7.2 Hz, Me), 4.06 (2 H, q, J 7.2 Hz, CH,Me), 5.28 (4 H, AB-type q, A6 0.04 ppm, J 12.0 Hz, CH2Ph x 2), 6.53 (1 H, d, J47.4 Hz, CH) and 7.34 (10 H, s, Ph x 2); 6, -157.59 (d, J 46.0 Hz); m/z 390 (M+ + l), 298 (M' -CH,Ph) and 91 (PhCHc).N,N-Bis(benzyloxycarbony~)-a-Jluoroglyc~net-butyl ester 22. Obtained as an oil in 37.6 yield; b.p. 19Cb195 "C/6 x lo-, mmHg Found: C, 63.7; H, 5.6; N, 3.2; m/z 361.098. C2,H2,FNO6 requires c, 63.3; H, 5.8; N, 3.4; C18H16FN06 (M -CH,=CMe,) requires m/z 361.0961; v,,,(film)/cm-' 3000+ (CH) and 1770,1740 and 1725 (CO); 6,(270 MHz) 1.39 (9 H, s, But), 5.27 (4 H, AB-type q, AS 0.05 ppm, J 12.2 Hz, CH, x 2), 6.41 (1 H, d, J47.4 Hz, CH) and 7.33 (10 H, s, Ph x 2); ;SF -157.29 (d, J47.8 Hz); m/z 417 (M'), 361 (M+ -CH,=CMe,) and 91 (PhCH?).Also prepared was N-(benzyloxycarbony1)-;r-ethoxyglycine 23. Obtained as prisms; m.p. 183.0-184.5 "C; v,,,(KBr)/cm-l 3350 (NH) and 1760 and 1660 (CO,); tjH(6O MHz) 1.25 (3 H, t, J 7.1 Hz, Me), 3.70 (2 H, q, J 7.1 Hz, CH,Me), 5.17 (2 H, s, CH2Ph),5.41 (1 H, d, J 9.4 Hz, CH), 6.07 (1 H, br d, J 9.4 Hz, NH), 7.35 (5 H, s, Ph) and 8.77 (1 H, br s, OH); m/z 254 (M' + l), 208 (M+ -OEt) and 164 (M' -OEt -CO,). N,N-Bis( benzylo"~}?carbonyl)-a-Jluoroglycine 24.-To a solution of compound 22 (120 mg, 0.289 mmol) in CDC13 (0.5 cm3) was added dropwise CF3C02D until the starting material had disappeared as monitored by 'H NMR spectroscopy.Evaporation of the solvent gave an oil, which was dissolved in diethyl ether (5 cm3). The ethereal solution was extracted with 10 Na,C03 (2 cm3 x 3). The aq. layer was carefully acidified with 5"/; HCI and extracted with CHCl, (5 cm3 x 3) and the extract was dried over MgSO,. Evaporation of the solvent gave the title compound 24 as a viscous oil (51 mg, 48.9) Found: m/z 360.088. CI8Hl5FNO6 (M+ -H) requires m/z 360.0881; v,,,(film)/cm-' 3380 (OH) and 1710 (CO); 6,(270 MHz) 5.27 (4 H,s,CH, x 2), 5.70(1 H, br,OH), 6.56(1 H,d, J47.1 Hz,CHF) and 7.32 (10 H, s, Ph x 2); SF -157.41 (d, J45.8 Hz); m/z 360 (M' -l), 91 (PhCH;) and 20 (HF). Acknowledgements We owe a great deal to Dr. M. Kimura, Mr. T. Yamaba and Mrs.R. Masanoto who worked on the preliminary projects. J. CHEM. SOC. PERKIN TRANS. 1 1991 References 1 J. T. Welch, Tetrahedron, 1987,43, 3123; M. Schlosser, Tetrahedron, 1978,34,3; A. Jordaan, S. Afr. J.Sci., 1977,73,201; J. T. Welch and S. Eswarakrishnan, J. Chem. Soc., Chem. Commun., 1985,186. 2 N. A. Thornberry, H. G. Bull, D. Taub, W. J. Greenlee, A. A. Patchett and E. H. Cordes, J.Am. Chem. Soc., 1987,109,7543; D. F. Loncrini and R. Filler, Adu. Fluorine Chem., 1970,6,43; T. Tsushima, K. Kawada, J. Nishikawa, T. Sato, K. Tori, T. Tsuji and S. Misaki, J. Org. Chem., 1984,49,1163; P. Bey, J. Vevert, V. V. Dorsselaer and M. Kolb, J. Org. Chem., 1979,44,2732; I. Ojima, K. Kato, K. Nakahashi, T. Fuchikami and M. Fujita, J. Org.Chem., 1989,54,4511; A. I. Ayi, M. Remli and R. Guedj, Tetrahedron Lett., 1981,22,1505; P. Bey and J. P. Vevert, Tetrahedron Lett., 1978, 1215; L. Somekh and A. Shanzer, J. Am. Chem. SOC., 1982,104,5836. 3 K. Uchida and H. Tanaka, Yuki Gosei Kagaku Kyokaishi, 1988,46, 977 (Chem. Abstr., 1989,110,75997d). 4 P. Bey, F. Gerhart, V. V. Dorsselaer and C. Danzin, J. Med. Chem., 1983,26, 1551; T. Tsushima, K. Kawada, T. Tsuji and K. Tawara, J. Med. Chrm., 1985, 28, 253; R. B. Silverman and R. H. Abeles, Biochemistry, 1977, 16, 5515. 5 R. Filler and Y. Kobayashi, Biomedicinal Aspects of Fluorine Chemistry, Kodansha, Tokyo, 1982; J. Mann, Chem. SOC. Rev., 1987, 16, 381. 6 Y. Takeuchi, M. Asahina, K. Nagata and T. Koizumi, J. Chem. SOC., Perkin Trans.1, 1987, 2203. 7 M. Hudlicky, Chemistry of Organic Fluorine Compounds, Ellis Horwood, Chichester, 1976. 8 E. W. Colvin, G. W. Kirby and A. C. Wilson, Tetrahedron Lett., 1982, 23,3835; G. Boche, M. Bernheim and W. Schrott, Tetrahedron Lett., 1982, 23, 5399; P. Beak and B. J. Kokko, J. Org. Chem., 1982, 47, 2822; G. Gennari, L. Colombo and G. Bertolini, J. Am. Chem. SOC., 1986, 108, 6394; D. A. Evans, T. C. Britton, R. L. Dorow and J. F. Dellaria, J. Am. Chem. SOC., 1986, 108,6395; L. A. Trimble and J. C. Vederas, J. Am. Chem. SOC.,1986, 108, 6397; W. Klotzer, H. Baldinger, E. M. Karpitschka and J. Knoflach, Synthesis, 1982, 592; Y. Tamura, J. Minamikawa and M. Ikeda, Synthesis, 1977, 1 and references cited therein. 9 R. D. Chambers, Fluorine in Organic Chemistry, Wiley, New York, 1973, p.64; R. D. Chambers and M. R. Bryce, Stud. Org. Chem. (Amsterdam),1987,5, 271. 10 Y. Takeuchi, H. Ogura, Y. Ishii and T. Koizumi, Chem. Pharm. Bull., 1990,38,2404. 11 P. A. Harland and P. Hodge, Synthesis, 1984,941. 12 M. H. Pendleburg, L. Phillips and V. Wray, J. Chem. SOC., Perkin Trans. 2,1974,787. 13 S. Gabriel, Ber. Dtsch. Chem. Ges., 1887, 20, 2224. 14 J. 0.Osby, M. G. Martin and B. Ganem, Tetrahedron Lett., 1984,25, 2093; S. Wolfe and S. K. Hasan, Can. J. Chem., 1970, 48, 3572; S. Kukolja and S. R. Lammert, J. Am. Chem. SOC., 1975,97, 5582; T. Kamiya, M. Hashimoto, 0. Nakaguchi and T. Oku, Tetrahedron, 1979, 35, 323; S. K. Boyer, R. A. Pfund, R. E. Portmann, G. H. Sedelmeier and H. F. Wetter, Helv. Chim. Acta, 1988,71, 337. 15 T. Ho and G. A. Olah, Angew. Chem., Znt. Ed. Engl., 1976, 15, 774; M. E. Jung and M. A. Lyster, J. Am. Chem. SOC., 1977,99,968; G. A. Olah, S. C. Narang, B. B. Gupta and R. Malhotra, J. Org. Chem., 1979,44,1247; T. Morita, Y. Okamoto and H. Sakurai, J. Chem. SOC., Chem. Commun., 1978,874. 16 F. C. Chang and N. F. Wood, Tetrahedron Lett., 1964, 2969; P. A. Bartlett and W. S. Johnson, Tetrahedron Lett., 1970, 4459; T. R. Kelly, H. M. Dali and W. Tsang, Tetrahedron Lett., 1977, 3859; D. Liotta, U. Sunay, H. Santiesteban and W. Markiewicz, J. Org. Chem., 1981,46,2605. 17 C. T. Clarke, J. D. Elliott and J. H. Jones, J.Chem. Soc., Perkin Trans. I, 1978, 1088. 18 Y. Takeuchi, H. Ogura, Y. Ishii and T. Koizumi, J. Chem. SOC., Perkin Trans. 1, 1989, 1721; J. D. Park, H. C. Cummings and J. R. Lacher, J. Org. Chem., 1958,23, 1785. 19 Y. Takeuchi, M. Asahina, K. Hori and T. Koizumi, J. Chem. SOC., Perkin Trans. 1, 1988, 1149. 20 L. Grehn and U. Ragnarsson, Synthesis, 1987,275. 21 R. S. Lott, V. S. Chauhan and C. H. Stammer, J. Chem. SOC.,Chem. Commun., 1979,495. Paper 0/029141 Received 28th June 1990 Accepted 20th August 1990
机译:J. CHEM. SOC. PERKIN, TRANS. 1, 1991, A-含氮官能化 α-氟羧酸新结构的合成研究。第一部分.N-保护的 a-氟甘氨酸的第一次合成和反应 Yoshio Takeuchi,“ Manabu Nabetani, Kumiko Takagi, Toru Hagi and Toru Koizumi 富山医科与药科大学药学系, 杉谷 2630, 富山 930-01,日本 描述了 N 保护的 α-氟或氨基酸酯 12、13、21 和 22 以及相应的酸 16 和 24 的首次合成。溴氟乙酸乙酯和叔丁基乙酸酯4和9与二叔丁基和二苄基亚氨基二甲酸钾盐IOc和20b反应,分别得到氟甘氨酸衍生物12、13、21和22。乙酯12和叔丁酯22的水解成功得到关键化合物N,N-二(叔丁氧羰基)-a-氟甘氨酸16和N,N-二(苄氧羰基)-a-氟甘氨酸24.转化为a-氟甘氨酸本身的新结构(1;R=H)通过化合物16的酸性N-脱保护或化合物24的加氢脱苄基化反应,然而,未能产生任何与de h yd rof Iuori nat离子相关的分解产物。随着最近有机氟化合物的合成和反应研究的快速进展,已经进行了许多尝试,将氟原子引入具有生物学意义的分子中,例如糖和类固醇。在化学2和酶3合成以及含氟a-氨基酸的生物活性检查方面也有相当多的尝试,以预测引入氟原子引起的固有化学性质和活性。然而,尚未报道将氟(或任何其他卤素原子)引入任何 a-氨基酸的 a 位(k,在手性中心)中的化合物。其原因似乎是卤化胺部分固有的不稳定性,它很容易脱卤化氢形成另一种不稳定的结构——亚胺。因此,a-氨基-a-卤素酸不仅作为改性的生物活性化合物具有重要意义,而且从结构化学的角度来看也很重要,尽管它们是小分子。F IR -C-C02-I+ N“3 1 我们认为 a-氟-a-氨基酸结构 1 可能能够在某些受控条件下存在,因为 C-F 键的一般强度,氟离子与其他卤化物离子相比的离开能力微薄。然而,在我们首次报告我们的初步工作之前,还没有发表任何a-含氮功能化a-氟羧酸衍生物的合成.6我们在这里描述了制备这种新型氟化合物的合成细节以及我们试图构建新型a-氟-a-氨基酸结构1。结果与讨论 由于受保护氨基酸衍生物的碳选择性单氟化7和2-氟酯的亲电胺化t似乎都非常困难,我们尝试将氨基官能团亲核引入2-氟酯中。由相应的a-氨基酯制备的2-溴-2-氟羧酸2a或酯2b的氨解,“产生不需要的脱卤代氢产物3a或3b的混合物。为了避免消除的问题,我们接下来研究了氏族最简单的结构,即溴氟乙酸乙酯4。然而,化合物4与氨5a或受保护的胺衍生物5M l1在适当碱存在下的反应没有得到所需的化合物8,而是主要从底物5a-和从5d产生主要溴氟乙酰胺(6)l2和从5d产生脱氟产物7,这可能是由于金属酰胺亲核试剂的不稳定性或产物的高反应性(方案1)。F = PhIRi-C-C02R2 (R' = Me,CH2Ph) -I (“ )H C02R2 X=F*BrIBr 2a;R~=H b;R2= Et F IH-C-CO2Et + RNH2 ii I Br 4 5a;R=H b;R=COCF3 C;R = C02CHzPh d;R=COCH2Ph 3a;R~ = H b;R2 = Et BrFCHCONH2 6 F * I I NHR H-C-CO2Et OH I H-C-CO2Et a i n HCOC H2P H 7 方案 1 试剂:i、NH、EtOH;ii、NaH、KH、KOBu' 或 LDA、THF 或 EtOH 我们下一次尝试将含氮官能团引入含氟碳,重点是加布里埃尔的方法。溴酯 4 与邻苯二甲酰亚胺钾 10a 在加热的 N,N-二甲基甲酰胺 (DMF) 中反应成功生成第一个 a-氟化 a-氨基酸衍生物 N-邻苯二甲酰基-a-氟甘氨酸乙酯 11.6 无论如何,应用去除邻苯二甲酰基 l4 和裂解 t 所需的相当剧烈的条件 使用各种试剂*的亲电胺化反应不成功,可能是由于难以生成 a-氟碳离子~.~ 50 酯键15,16 到产品 11 损坏了 C-F 键。在考虑更温和的脱保护条件以适应我们合成策略的后期阶段的过程中,我们选择了亚氨基二甲酸二叔丁酯10b作为氨基官能团,它很容易根据Jones的方法l7从草酸叔丁酯制备。1Oc钾盐与乙酯4和相应的叔丁酯9'在DMF中的缩合反应,分别得到氟甘氨酸衍生物12和13,收率为gaod(方案2)。F I H-C-CO2R' + MN(COR2)2I Br 4 R' = Et 10 a;M = K, R2-$ = 9 R'= 但是 b;M = H, R2= OBu' C;M = K,R~= OBU' ii t F I H-C-CO2R' I N(COR2), 12 R' = Et, R2 = OBU' 13 R' = But, R2 = OBu' 方案 2 试剂和条件:i、DMF、9&120“C(72-89% 产率) 关键化合物 12 和 13 现在已经到手,我们开始研究它们可能构建成新型间氟氨基酸结构 (1;R = H)。众所周知的C-F键稳定性也是我们案例中关注的一个问题。19化合物12的氨基保护基团与CF,CO,D的酸性裂解导致脱氟产物的形成15,可能是通过噁唑酮中间体14.因此,在氨基脱保护之前裂解酯部分似乎对于维持氟原子是必不可少的。用 5% NaOH 对乙酯 12 进行皂化反应顺利完成,无需预期的脱氟,从而获得 N 保护的 α-氟甘氨酸 16 的出色收率。最后的过程是通过在 CDC1 中用催化量的 CF3C02D 或 HF 处理化合物 16 来尝试的,如 'H 和 19FNMR 光谱所监测的那样。保护氨基的两种羧酸盐中的一种很容易裂解形成不稳定的N-叔丁氧羰基-a-氟甘氨酸17.*然而,化合物17长时间暴露于过量的酸性介质(CDCI中的HF)中,期望完全脱保护,似乎并不令人满意。在酸性介质下通过N-羧基亚胺结构18分解com-pound 17可能是可能的原因。* 的类似酸处理 随着16信号强度的降低,来自化合物17的新信号[S,1.51(9 H,s,But)和6.27(1 H,d,J 47.9 Hz);6,-157.06(d,J47.8 Hz)]和Bu'F [S,1.38(9 H,d,J21.2 Hz,Bu');SF -131.11 (10-plet, J21.4 Hz)] 在核磁共振波谱的监测下出现.7 最后,叔丁基信号 [S, 1.观察到似乎与结构18相对应的28(s)],并且在去除所有挥发性物质后,根据NMR波谱检查,在残留物中没有发现含氟化合物。5 当用水溶液进行酯21的皂化时。得到NaOH-THF,N-苄氧羰基-cc-羟基甘氨酸。如核磁共振波谱所证明的那样,J. CHEM. SOC. PERKIN TRANS. 1 1991 叔丁酯 13 导致部分脱保护叔丁酯 19 的形成,在应用强酸性条件下产生相同的化合物 18(方案 3)。ii IH-C-CO~H iii ]12 -F -[ H-C-CO,H I N(CO2BU32 iHC0,Bd I 16 17 li -1[iL OBu' 1 // 14 F I l5 / -“H-C-COZHII .---*分解 NHCO~BU' NC02但产品 19 18 方案 3 试剂和条件:i、CF、CO、D、CDCl、; ii、5% NaOH、EtOH(收率92%); iii、CF、CO、D或HF的催化量, CDCl,;iv, 过量的 HF, CDCl, 从这些结果来看,在最后一步应用酸性条件去除N-保护基团似乎是不利的,因为我们预计氟原子上的质子化会加速脱氢氟化。在最后阶段,游离胺的产生和伴随的两性离子形成(如结构1所示)是必要的,因为羧酸根离子的形成会抑制氨基的去质子化,这可能是脱氢氟化的初始阶段。在考虑这些结果时,我们决定N-脱保护的中性条件,例如最后阶段的水基脱保护,可能是我们完成合成的唯一方法。中性条件也有助于后处理程序,以便无需繁琐的操作即可分离目标化合物。现在有必要获得苄基类似物20a,琼斯报告说这种类似物很难制备。经过几次尝试,包括未成功应用修改后的已发表程序,20 我们终于找到了获得化合物 20a 的简单反应。氨基甲酸苄酯与氯甲酸苄酯在等摩尔量氢化钾存在下反应生成目标化合物20a,收率为64%。 将二苄基亚氨基二甲酸酯20a用KOH水溶液处理,得到钾盐20b。在与化合物12和13的制备相似的条件下,令人满意地将新的氨基官能团20b引入溴酸酯4和9中,分别产生受保护的氟甘氨酸酯21和22。与叔丁基氨基甲酸酯衍生物12的情况相反,试图水解氨基甲酸苄酯21产生不需要的产物。因此,将 com- pound 21 与水溶液进行皂化。NaOH-EtOH通过与化合物15形成相同的机制得到氟化产物23,s。使用LiOH或Ba(OH)的更温和的皂化条件,得到氨基甲酸酯20a。对化合物21应用三甲基碘硅烷(TMSI)或其他非皂化条件也未成功,产生了J.CHEM. SOC. PERKIN TRANS. 1 1991 F 4or11 I H2NC02CH2Ph + CIC02CH2Ph MN(C02CH2Ph)2 iii H-C-CO2RN(C02CH2Ph)2I 5c 20a;M=H-J~~ 21 R=Et b;M=K 22 R = Bu' OEt iv I- 21 H-C-CO2H 1 NHC02CHZPh 22 20a viiPhCH21 F F I I H-C-C02--+H-C-C02H 分解 I+ I NH3 N(C02CH2Ph)2 1;R=H 24 25 方案 4 试剂及条件:i、KH、THF(64%产率);ii, 水溶液 KOH, EtOH (100% 收率);iii,DMF,90-120“C,2-5小时(38-52'/;产量);iv、5%NaOH、EtOH;v, LiOH或Ba(OH),四氢呋喃水溶液;vi、TMSI、CDCI;vii,CF,CO,D,CDC1,(49%产率);viii、H、/Pd-C、EtOH主要为PhCH,I而不是EtI和分解的对应物。最后,我们尝试了叔丁酯22,在CDCl中用CF3C0,D处理,成功生产出所需的羧酸24,收率为49%。化合物 24 被提交到 Pd/C 催化的氢化反应中。我们希望,在反应完成后,去除催化剂并蒸发任何挥发性物质将产生目标化合物(1;R = H) 处于几乎纯净的状态。然而,令我们极度失望的是,化合物24的乙醇溶液在5%Pd/C存在下氢解,再次产生了未鉴定的脱氟产物,如“H和”F NMR波谱所证实的那样。综上所述,我们开发了新的氨基官能团20b,并首次成功制备了几种新型的a-氟化a-氨基酸衍生物,即12、13、16、21、22和24。实验 MP 是在 Yanagimoto 装置上测定的,并且未经校正。微量蒸馏的 B.p.s 表示浴温。在JASCO A-102或Perkin-Elmer 1600光谱仪上记录红外光谱。'H NMR波谱在CDCl中测量,以Me&为内标,并记录在JEOL PMX-60(60 MHz)或JEOL GX-270(270 MHz)波谱仪上。19F NMR波谱在CDCl中测量,以CFC13为内标,并用JEOL GX-270(254 MHz)波谱仪测量。上场转移被引用为负数。使用JEOL JMS-300光谱仪进行电子冲击(EI)质谱。使用Kieselgel60(Merck,Art.9385)进行柱层析。* 在TLC监测的底物24消失后(约30小时加氢),除去催化剂和挥发性物质,得到半固体。尽管脱苄基化完全进行[NMR谱图(CD,COCD,)],但特征信号[S,4.92(d,J 116.0 Hz);6,-150.81(s)和-150.52(d,J 115.8 Hz)]难以分配给靶结构(1;R = H)。溴酰氯脲乙酰胺6.'的制备通则,-向搅拌、冰冷的三氟乙酰胺5b或氨基甲酸苄酯5c(2mmol)和适当的碱(2mmol)四氢呋喃(THF)(10cm3)溶液中加入溴氟乙酸乙酯4(370mg,2mmol)的THF(2cm3)溶液。立即形成沉淀物。将反应混合物在0-20“C下搅拌3.5-12小时。蒸发溶剂得到半固体,将其在硅胶上色谱,以PhH-AcOEt(2:1)为洗脱液,得到标题化合物6为晶体,收率为35-8 1%;熔点 40.5-41.0 “C;v,,,(KBr)/cm-' 3400 (NH) 和 1685 (CO);&(60 MHz) 6.65 (1 H, d, J 51.2 Hz, CHF) 和 6.80 (2 H, br, NH,);m/z 157,155 (M') 和 113,111 (M+ -CONHI)。溴酯 4 与乙醇氨反应也生成酰胺 6。将2-氢乙酰胺,uy-2-(苯乙酰氨基)乙酸乙酯7.-A的混合物5d(203mg,1.5mmol),溴酯4(279mg,1.5mmol)和Et3N(152mg,1.5mmol)在THF(6cm3)中的回流加热2天。减压除去溶剂,残余物在硅胶上色谱,以AcOEt-己烷(3:2)为洗脱液,得到标题化合物7为晶体(180mg,50.6%)。从AcOEt再结晶得到棱镜,m.p.122.0-122.5“C(发现:C,60.5;H, 6.2;N,6.0。CI2Hl5NO4 需要 C, 60.8;H, 6.4;N, 5.9%);v,,,(KBr)/cm-' 3410 (OH)、3320 (NH)、1725 (CO,)、1640 (CONH) 和 1595 (Ph);6,(60 MHz) 1.26 (3 H, t, J 7.2 Hz, Me), 1.63 (1 H, br s, OH), 3.72 (2 H, s, CH,CO), 4.27 (2 H, q, J 7.2 Hz, CH,O), 5.92 (1 H, d, J8.8 Hz, CH), 6.86 (1 H, br d, J8.8 Hz, NH) 和 7.40 (5 H, s, Ph);m/z 237 (M')、219 (Mf -H,O) 和 164(Mf -C0,Et)。制备受保护氨基酯的一般方法11-13.-将钾盐10a或1Oc(4mmol)在干燥的DMF(30cm3)中的悬浮液在80“C下加热30分钟。向混合物中滴加溴酯4或9(2mmol)在干燥DMF(10cm3)中的溶液,并将所得溶液在90-120“C下搅拌2-5小时。减压下蒸发掉溶剂。向残留物中加入水(10 cm3),并用AcOEt(10 cm3 x 3)提取整体。有机层用盐水洗涤,用MgS04干燥。溶剂蒸发得到黄色油状物,将其用PhH-AcOEt(3:1)或己烷-AcOEt(5:1)作为洗脱剂在硅胶上色谱,得到标题化合物11,6,12和13。N,N-双(叔丁氧羰基1)-a-氟甘氨酸乙酯 12.以针头形式获得(928mg,72.3%);m.p. 53.0 “C (发现: C, 52 52.3;H, 7.7;N,4.6。C1,H,,FNO6 需要 C, 52.3;H, 7.5;N, 4.4%);v,,,(KBr)/cm-' 2990 (CH) 和 1780、1763 和 1727 (CO);SH(270 MHz) 1.36 (3 H, t, J7.1 Hz, CH,Me), 1.55 (18 H, s, But x 2),4.36(2H,q,J7.1Hz,CH2)和 6.47(1H,d,J48.6Hz, +CH);8, -156.78 (d, J 47.7 赫兹);m/z 322 (M + l)、266 (M '-CH,=CMe, + 1) 和 57 (t-Bu')。N,N-双(叔丁氧羰基1)-a-Juoroglycinet-丁酯 13.以油状形式获得(1.05 g, 75.4%);b.p. 12G125 “C/4 x lo-, mmHg (发现值: c, 55.1;3 欧元,8.2 欧元;N,4.25。C16H,,FN06 需要 C,55.0;H, 8.1;N, 4.0%);v,,,(胶片)/cm-' 3050 (CH) 和 1785、1760 和 1725 (CO);6,(270 MHz) 1.51 (9 H, s, CFCO,Bu'), 1.53(18 H, s, NC0,Bu' x 2) 和 6.27 (1 H, d, J47.9 Hz, CH);6, -157.04 (d, J 47.8 赫兹);m/z 350 (M' + l)、294 (M' -CH,=CMe, + 1) 和 57 (t-Bu')。还制备了:N-(叔丁氧羰基1)-cr-乙氧基甘氨酸乙酯15。作为棱镜获得;m.p. 176.5-177.0 “C;v,,,(KBr)/cm-' 3380 和 3330(NH)、2960 (CH)、1742 (CHCO) 和 1687 (NHCO);6,(60 MHz) 1.21 (3 H, t, J7.1 Hz, CHOCH,Me), 1.24 (3 H, t, J 7.1 Hz, C02CH2Me), 1.48 (9 H, s, But), 3.72 (2 H, q, J 7.1 Hz, CHOCHJ, 4.27 (2 H, 9, J7.1 Hz, CO,CH,), 5.32 (1 H, d, J 11.4 Hz, CH) 和 5.70 (br d, J 11.4赫兹,NH);m/z 248 (M + l)、202 + (Mf -OEt) 和 102 (C0,Bu')。N,N-双(叔丁氧羰基1)-a-Juoroglycine16.-酯12(102mg,0.32mmol)在5%NaOH(0.5cm3)-EtOH(0.5cm3)中的混合物在室温下搅拌6小时。蒸发混合物,向残余物中加入乙醚(5cm3)。混合物用10%Na,CO(5 cm3 x 3)萃取。水溶液层用5%HCl酸化,并用CHC1(5 cm3 x 3)萃取。提取液用盐水洗涤,用MgS0干燥。溶剂的蒸发得到标题化合物16为粘稠油(86mg,92.4%)[发现:m/z 222.039。C7H9FNO6 (M' -CH,=CMe, -Me) 需要 m/z 222.041。发现: m/z 193.075.C7H12FN04 (M -+ CH,=CMe, -CO,) 需要 m/z 193.075.Found: m/z 174.077.C7Hl,NO4 (M' -CH,=CMe, -CO, -F) 要求 m/z 174.0771;v,,,(薄膜)/cm-l 3380 (OH) 和 1705 (CO);6,(270 MHz) 1.53 (18 H, s, Bu' x 2), 5.45 (1 H, br s, OH) 和 6.47 (1 H, d, J 47.6 Hz, CHF);采埃孚 -156.31 (d, J 47.8 Hz);m/z 222 (M+ -CH,=CMe, -Me)、193 (M+ -CH,-CMe, -CO,)、174 (M' -CH,=CMe, -CO, -F) 和 57 (t-Bu')。亚氨基二甲酸二苄酯20a.-在氨基甲酸苄酯5c(1.76g,11.6mmol)在干燥THF(30cm3)中的溶液在0“C下加入氢化钾(24.6%悬浮液在矿物油中;2.10克,12.9毫摩尔),并将混合物搅拌30分钟。加入氯甲酸苄酯(2.39g,13.9mmol)在干燥THF(3cm3)中的溶液,并将混合物在室温下搅拌20分钟。蒸发混合物,向残留物中加入水(10 cm 3)。将水溶液用10%HCl酸化,然后用AcOEt(30 cm3 x 3)萃取。提取液用盐水洗涤,用MgS0干燥。溶剂蒸发得到油,将其溶解在乙醚(40厘米')中。将氢化钠(60%分散在矿物油中)分批加入溶液中,直到不再产生气体。在室温下储存1小时后,在过滤器上收集晶体(钠盐)。将晶体溶于水(20 cm3),溶液用10%HCl酸化并用AcOEt(20 cm3×3)萃取,提取液用盐水洗涤,用MgS04干燥。 溶剂的蒸发得到残留的油,其溶解在CCl中。将所得溶液部分浓缩,得到标题化合物20a为晶体(2.1 1 g,63.8%)。通过从CCl重结晶获得分析样品,如针状,熔点110.5-1 11.0“C(发现:C,67.6;H, 5.25;N,5.1。C16H15NO4需要 C,67.35;H, 5.3;N, 4.9%);J. CHEM. SOC. PERKIN 译.I 1991 v,,,(KBr)/cm-' 3200 (NH) 和 1770 (CO);6,(270 MHz) 1.62 (1 H, br s, NH), 5.22 (4 H, s, CH, x 2) 和 7.35 (10 H, s, Ph x 2);mlz285 (Mf)、194(M+ -CH,Ph)、177 (M+ -OCH,Ph) 和 91 (PhCHc)。亚氨基二甲酸二苄酯钾盐 2Ob.To 亚氨基二甲酸二苄酯20a(1.56g,5.5mmol)在EtOH(6cm3)中的溶液,缓慢加入KOH(377mg,6.7mmol)的水溶液(2cm3)。蒸发掉溶剂,将残留的晶体在P,O上减压干燥两天。标题化合物20b以定量收率(1.75 g)获得晶体;m.p. 270 “C;v,,,(KBr)/cm-' 1695 (CO) 和 1610 (Ph)。三酯 21 和 22 制备的一般程序-化合物 21 和 22 是通过溴酯 4 和 9 与盐 20b 在热 DMF 中反应制备的,其方法类似于三酯 12 和 13 的制备过程。N,N-双(henzylo-~~~carbon~l)-a-Jluorogl.vcineethyl ester 21.以油状获得,收率为51.5%;b.p. 175-185 “C/4 x mmHg [发现: C, 61.7;H, 5.05;N, 3.7%;M/Z 298.066。C20H20FN06需要 C,61.7;H, 5.2;N, 3.6%;C,3H1,FNO6 +(M -CH,Ph) 需要 m/z 298.0661;v,,,(胶片)/cm-' 3000 (CH) 和 1775、1755 和 1720 (CO);6,(270 MHz) 1.15 (3 H, t, J 7.2 Hz, Me), 4.06 (2 H, q, J 7.2 Hz, CH,Me), 5.28 (4 H, AB 型 q, A6 0.04 ppm, J 12.0 Hz, CH2Ph x 2), 6.53 (1 H, d, J47.4 Hz, CH) 和 7.34 (10 H, s, Ph x 2);6, -157.59 (d, J 46.0 赫兹);m/z 390 (M+ + l)、298 (M' -CH,Ph) 和 91 (PhCHc)。N,N-双(苄氧羰基~)-a-Jluoroglyc~净丁酯 22.以油状获得,收率为37.6%;b.p. 19Cb195 “C/6 x lo-, mmHg [发现: C, 63.7;H, 5.6;N, 3.2%;M/Z 361.098。C2,H2,FNO6 需要 c, 63.3;H, 5.8;N, 3.4%;C18H16FN06 (M -CH,=CMe,) 需要 m/z 361.0961;v,,,(薄膜)/cm-' 3000+ (CH) 和 1770,1740 和 1725 (CO);6,(270 MHz) 1.39 (9 H, s, But), 5.27 (4 H, AB 型 q, AS 0.05 ppm, J 12.2 Hz, CH, x 2), 6.41 (1 H, d, J47.4 Hz, CH) 和 7.33 (10 小时, 秒, Ph x 2); ;SF -157.29 (d, J47.8 赫兹);m/z 417 (M')、361 (M+ -CH,=CMe,) 和 91 (PhCH?)。还制备了N-(苄氧羰基1)-;R-乙氧基甘氨酸 23.以棱镜形式获得;m.p. 183.0-184.5 “C;v,,,(KBr)/cm-l 3350 (NH) 和 1760 和 1660 (CO);tjH(6O MHz) 1.25 (3 H, t, J 7.1 Hz, Me), 3.70 (2 H, q, J 7.1 Hz, CH,Me), 5.17 (2 H, s, CH2Ph), 5.41 (1 H, d, J 9.4 Hz, CH), 6.07 (1 H, br d, J 9.4 Hz, NH), 7.35 (5 H, s, Ph) 和 8.77 (1 H, br s, OH);m/z 254 (M' + l)、208 (M+ -OEt) 和 164 (M' -OEt -CO,)。N,N-双(苄基“~}?羰基)-a-Jluoroglycine 24.-向化合物22(120mg,0.289mmol)在CDC13(0.5cm3)中的溶液中滴加CF3C02D直到起始材料消失,如'H NMR波谱监测的那样。溶剂蒸发得到油,将其溶解在乙醚(5cm 3)中。用 10% Na,C03 (2 cm3 x 3) 萃取空灵溶液。水溶液层用5“/小心地酸化;HCI并用CHCl(5cm3×3)萃取,并将提取物用MgSO干燥。溶剂的蒸发得到标题化合物24为粘稠油(51mg,48.9%)[发现:m/z 360.088。CI8Hl5FNO6 (M+ -H) 需要 m/z 360.0881;v,,,(薄膜)/cm-' 3380 (OH) 和 1710 (CO);6,(270 MHz) 5.27 (4 H,s,CH, x 2), 5.70(1 H, br,OH), 6.56(1 H,d, J47.1 Hz,CHF) 和 7.32 (10 H, s, Ph x 2);SF -157.41(深,J45.8赫兹);m/z 360 (M' -l)、91 (PhCH;) 和 20 (HF)。致谢 我们非常感谢 M. Kimura 博士、T. Yamaba 先生和 R. Masanoto 夫人,他们参与了前期项目。J. CHEM. SOC. PERKIN TRANS. 1 1991 参考文献 1 J. T. Welch, Tetrahedron, 1987,43, 3123;M. Schlosser,四面体,1978,34,3;A. Jordaan, S. Afr. J.Sci., 1977,73,201;J. T. Welch 和 S. Eswarakrishnan, J. Chem. Soc., Chem. Commun., 1985,186.2 N. A. Thornberry, H. G. Bull, D. Taub, W. J. Greenlee, A. A. Patchett 和 E. H. Cordes, J.Am. Chem. Soc., 1987,109,7543;D. F. Loncrini 和 R. Filler,阿杜。氟化学, 1970,6,43;T. Tsushima, K. Kawada, J. Nishikawa, T. Sato, K. Tori, T. Tsuji 和 S. Misaki, J. Org. Chem., 1984,49,1163;P. Bey, J. Vevert, V. V. Dorsselaer 和 M. Kolb, J. Org. Chem., 1979,44,2732;I. Ojima, K. Kato, K. Nakahashi, T. Fuchikami 和 M. Fujita, J. Org.Chem., 1989,54,4511;A. I. Ayi, M. Remli 和 R. Guedj, Tetrahedron Lett., 1981,22,1505;P. Bey 和 J. P. Vevert,Tetrahedron Lett.,1978 年,1215 页;L. Somekh 和 A. Shanzer,J. Am. Chem. SOC.,1982,104,5836。3 K. Uchida 和 H. Tanaka, Yuki Gosei Kagaku Kyokaishi, 1988,46, 977 (Chem. Abstr., 1989,110,75997d)。4 P. Bey, F. Gerhart, V. V. Dorsselaer 和 C. Danzin, J. Med. Chem., 1983,26, 1551;T. Tsushima, K. Kawada, T. Tsuji 和 K. Tawara, J. Med. Chrm., 1985, 28, 253;R. B. Silverman 和 R. H. Abeles,生物化学,1977,16,5515。5 R. Filler 和 Y. Kobayashi,《氟化学的生物药用方面》,讲谈社,东京,1982 年;J. Mann, Chem. SOC. Rev., 1987, 16, 381.6 Y. Takeuchi, M. Asahina, K. Nagata and T. Koizumi, J. Chem. SOC., Perkin Trans.1, 1987, 2203.7 米Hudlicky,有机氟化合物化学,Ellis Horwood,Chichester,1976年。8 E. W. Colvin、G. W. Kirby 和 A. C. Wilson,Tetrahedron Lett.,1982 年,23,3835;G. Boche、M. Bernheim 和 W. Schrott,Tetrahedron Lett.,1982 年,23 页,5399 页;P. Beak 和 B. J. Kokko, J. Org. Chem., 1982, 47, 2822;G. Gennari, L. Colombo 和 G. Bertolini, J. Am. Chem. SOC., 1986, 108, 6394;D. A. Evans, T. C. Britton, R. L. Dorow 和 J. F. Dellaria, J. Am. Chem. SOC., 1986, 108,6395;L. A. Trimble 和 J. C. Vederas, J. Am. Chem. SOC.,1986, 108, 6397;W. Klotzer、H. Baldinger、EM Karpitschka 和 J. Knoflach,综合,1982 年,592 页;Y. Tamura, J. Minamikawa and M. Ikeda, Synthesis, 1977, 1 及其引用的参考文献。9 R.D.钱伯斯,《有机化学中的氟》,Wiley,纽约,1973年,第64页;RD Chambers 和 MR Bryce,梭哈。Org. Chem. (阿姆斯特丹), 1987,5, 271.10 Y. Takeuchi, H. Ogura, Y. Ishii and T. Koizumi, Chem. Pharm. Bull., 1990,38,2404.11 P.A.Harland和P.Hodge,《综合》,1984年,941。12 M. H. Pendleburg, L. Phillips and V. Wray, J. Chem. SOC., Perkin Trans. 2,1974,787.13 S.加布里埃尔,伯尔。化学Ges., 1887, 20, 2224.14 J. 0.Osby, M. G. Martin 和 B. Ganem, Tetrahedron Lett., 1984,25, 2093;S. Wolfe 和 S. K. Hasan, Can. J. Chem., 1970, 48, 3572;S. Kukolja 和 S. R. Lammert, J. Am. Chem. SOC., 1975,97, 5582;T.神谷,M.桥本,0。Nakaguchi 和 T. Oku,四面体,1979,35,323;SK Boyer、RA Pfund、RE Portmann、GH Sedelmeier 和 HF Wetter,Helv。奇姆。学报, 1988,71, 337.15 T. Ho 和 G. A. Olah, Angew.Chem., Znt. Ed. Engl., 1976, 15, 774;M. E. Jung 和 M. A. Lyster, J. Am. Chem. SOC., 1977,99,968;G. A. Olah, SC Narang, B. B. Gupta 和 R. Malhotra, J. Org. Chem., 1979,44,1247;T. Morita, Y. Okamoto 和 H. Sakurai, J. Chem. SOC., Chem. Commun., 1978,874.16 F. C. Chang 和 N. F. Wood, Tetrahedron Lett., 1964, 2969;P. A. Bartlett 和 W. S. Johnson,Tetrahedron Lett.,1970 年,4459 页;T. R. Kelly, H. M. Dali and W. Tsang, Tetrahedron Lett., 1977, 3859;D. Liotta、U. Sunay、H. Santiesteban 和 W. Markiewicz,J. Org. Chem.,1981,46,2605。17 C. T. Clarke, J. D. Elliott 和 J. H. Jones, J.Chem. Soc., Perkin Trans.我,1978 年,1088 年。18 Y. Takeuchi, H. Ogura, Y. Ishii and T. Koizumi, J. Chem. SOC., Perkin Trans. 1, 1989, 1721;JD Park、HC Cummings 和 J. R. Lacher,J. Org. Chem.,1958,23,1785。19 Y. Takeuchi, M. Asahina, K. Hori 和 T. Koizumi, J. Chem. SOC., Perkin Trans. 1, 1988, 1149.20 L. Grehn 和 U. Ragnarsson,《综合》,1987,275。21 R. S. Lott, V. S. Chauhan 和 C. H. Stammer, J. Chem. SOC.,Chem. Commun., 1979,495.论文 0/029141 收稿日期 1990年6月28日 录用日期 1990年8月20日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号