...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Evaluation of whole atmosphere community climate model simulations of ozone during arctic winter 2004-2005
【24h】

Evaluation of whole atmosphere community climate model simulations of ozone during arctic winter 2004-2005

机译:Evaluation of whole atmosphere community climate model simulations of ozone during arctic winter 2004-2005

获取原文
获取原文并翻译 | 示例
           

摘要

[1] The work presented here evaluates polar stratospheric ozone simulations from the Whole Atmosphere Community Climate Model (WACCM) for the Arctic winter of 2004-2005. We use the Specified Dynamics version of WACCM (SD-WACCM), in which temperatures and winds are nudged to meteorological assimilation analysis results. Model simulations of ozone and related constituents generally compare well to observations from the Earth Observing System Microwave Limb Sounder (MLS). At most times, modeled ozone agrees with MLS data to within ~10%. However, a systematic high bias in ozone in the model of ~18% is found in the lowermost stratosphere in March. We attribute most of this ozone bias to too little heterogeneous processing of halogens late in the winter. We suggest that the model under-predicts ClONO_2 early in the winter, which leads to less heterogeneous processing and too little activated chlorine. Model HCl could also be overestimated due to an underestimation of HCl uptake into supercooled ternary solution (STS) particles. In late winter, the model overestimates gas-phase HNO_3, and thus NOy, which leads to an over-prediction of ClONO_2 (under-prediction of activated chlorine). A sensitivity study, in which temperatures for heterogeneous chemistry reactions were reduced by 1.5 K, shows significant improvement of modeled ozone. Chemical ozone loss is inferred from the MLS observations using the pseudo-passive subtraction approach. The inferred ozone loss using this method is in agreement with or less than previous independent results for the Arctic winter of 2004-2005, reaching 1.0 ppmv on average and up to 1.6 ppmv locally in the polar vortex.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号