首页> 外文期刊>Marine environmental research >Phytoplankton dynamics based on satellite inherent optical properties and oceanographic conditions in a patagonian gulf frontal system in relation to the adjacent continental shelf waters
【24h】

Phytoplankton dynamics based on satellite inherent optical properties and oceanographic conditions in a patagonian gulf frontal system in relation to the adjacent continental shelf waters

机译:Phytoplankton dynamics based on satellite inherent optical properties and oceanographic conditions in a patagonian gulf frontal system in relation to the adjacent continental shelf waters

获取原文
获取原文并翻译 | 示例
       

摘要

The dynamics of phytoplankton across a seasonal frontal system formed in San Jose ' Gulf (SJG, Patagonia Argentina) and in neighbouring shelf waters was assessed based on bio-optical satellite data (2003-2018) and spring and summer in situ samplings. Bio-optical properties of the water masses on the eastern (ED) and western (WD) domains of the seasonal frontal system of SJG showed clear differences: the year-round-vertically-mixed waters from the WD, strongly connected with the adjacent shelf waters, evidenced a brief and strong single phytoplankton bloom, while those from the ED, showing lower exchange with shelf waters and a strong vertical stratification during the warm season, displayed an earlier and long-lasting spring phytoplankton bloom, followed by a late-summer and autumn bloom, both associated with the development and erosion of the seasonal thermocline. Waters from the entire system are optically influenced by the absorption of coloured dissolved organic matter and detritus (cdom + detritus), suggesting a strong sediment load contribution from the continent and the seabed. To remark, a strong correlation between satellite chlorophyll-a (Chla-sat) and absorption by phytoplankton (aphy443) in the outer shelf waters differs from the weak correlation of those variables in the gulf's water masses, whose optical parameters are more complex. In situ Chla records may indicate wind-driven upwelling and downwelling areas in the northern and southern coasts of the ED. Dissolved nitrogen was identified as the limiting macronutrient for phytoplankton growth in the ED during summer. This work contributes relevant ecological information that may support management actions on the SJG shellfish artisanal fishery.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号