首页> 外文期刊>The Journal of Chemical Physics >A multiscale time-Laplace method to extract relaxation times from non-stationary dynamic light scattering signals
【24h】

A multiscale time-Laplace method to extract relaxation times from non-stationary dynamic light scattering signals

机译:A multiscale time-Laplace method to extract relaxation times from non-stationary dynamic light scattering signals

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic Light Scattering (DLS) is a well-known technique to study the relaxation times of systems at equilibrium. In many soft matter systems, we actually have to consider non-equilibrium or non-stationary situations. We discuss here the principles, the signal processing techniques we developed, based on regularized inverse Laplace transform, sliding with time, and the light scattering signal acquisition, which enable us to use DLS experiments in this general situation. In this article, we show how to obtain such a time-Laplace analysis. We claim that this method can be adapted to numerous DLS experiments dealing with non-equilibrium systems so as to extract the non-stationary distribution of relaxation times. To prove that, we test this time-Laplace method on three different non-equilibrium processes or systems investigated by means of the DLS technique: the cooling kinetics of a colloidal particle solution, the sol-gel transition and the internal dynamics of a living cell nucleus. Published under an exclusive license by AIP Publishing.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号