首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Structures of tabernaelegantines Andash;D and tabernaelegantinines A and B, new indole alkaloids fromTabernaemontana elegans
【24h】

Structures of tabernaelegantines Andash;D and tabernaelegantinines A and B, new indole alkaloids fromTabernaemontana elegans

机译:tabernaelegantines A–D 和 tabernaelegantinines A 和 B 的结构,来自 Tabernaemontana elegans 的新吲哚生物碱

获取原文
获取外文期刊封面目录资料

摘要

1432 J.C.S. Perkin IStructures of Tabernaelegantines A-D and Tabernaelegantinines A and B,New lndole Alkaloids from Tabernaemontana eiegansBy Ezio Bombardelli, Attilio Bonati, Bruno Gabetta," Ernest0 M. Martinelli, and Giuseppe M ustich,Bruno Danieli," lstituto di Chimica Organica, Universita degli Studi, Centro per lo Studio della Chimica delleSostanze Organiche Naturali del C.N.R., 201 33 Milan, ItalyThe structures of tabernaelegantines A-D (l )-(4) and tabernaelegantinines A and B (5)-(6), new 'dimeric'indole alkaloids isolated from the root bark of Tabernaemontana elegans Stapf. h(we been determined from theiri.r., u.v., mass, and l H and 13C n.m.r. spectra. The structural elucidation required the analysis of the carbon-13spectra of voacangine, dregaminol, and tabernaemontanol.The 13C n.rn.r. investigation supports the revision ofthe reported configurations at C-20 of dregamine and tabernaemontanine.Research Laboratories, lnverni della Beffa, Via Ripamonti 99, 201 41 Milan, ItalyEXTRACTION of the root bark of Tabernaemontana elegansStapf., an Apocynaceous tree growing in Mozambique,with methanol affords a complex mixture of tertiarybases from which seven new indole alkaloids have beenobtained. The isolation procedure has been describedalready,l and the present paper is concerned with theelucidation of structures (1)-(6) for six of the new bases,designated, respectively, tabernaelegantines A (1) , B (2),C (3), and D (4) and tabernaelegantinines A (5) and B (6).These alkaloids are new members of the voacarnine (7)group; that is, they are ' dimer ' alkaloids composed ofcoupled vobasine-like and ibogamine-like units.Inparticular, the structures of the tabernaelegantininesA (5) and B (6) are of considerable biogenetic significanceas these two bases contain an extra C , unit in the ali-phatic portion of the ibogamine unit.The physical constants and the U.V. absorption maximaof the six alkaloids are reported in Table 1. The fourtabernaelegantines have the molecular formula C,H,N40, (high resolution mass spectra) and show verysimilar spectral properties. Their U.V. spectra (inneutral 95 ethanol) exhibit small differences in intensi-ties only. In particular, tabernaelegantines B (2) andD (4) show at 296 nm a maximum slightly more intensethan the absorption at 287 nm, whereas the isomersA (1) and C (3) display an opposite behaviour in thisregion.However all the spectra are consistent with thepresence of indole or alkoxyindole chromophores.The i.r. spectra also are very similar, the most promin-ent bands being at 3 450-3 370 (NH) and 1 730 cm-l1 B. Gabetta, E. M. Martinelli, and G. Mustich, Fitotevupiu,1975, 46, 1951976TABLE 1Physical constants and U.V. spectraM.p. ("C) a1D2' (")Alkaloid (solvent) (in CHC1,) RF * knax. (95 EtOH)/nm (1 4Tabernaelegantine A (1) 231 (MeOH) - 31.8 0.63 224 (4.70), 285 (4.14), 293 (4.10)Tabernaelegantine B (2) 199 (Me,CO) + 14.4 0.48 227 (4.71), 287 (4.09), 296 (4.23)Tabernaelegantine C (3) 171 (MeOH) - 36.8 0.35 224 (4.76), 285 (4.18), 293 (4.16)Tabernaelegantine D (4) 206 (MeOH) + 11.3 0.16 226 (4.73), 287 (4.13), 296 (4.16)Tabernaelegantinine A (5) 160 (n-C,H,,) - 53.7 0.60 224 (4.74). 285 (4.18), 293 (4.15)Tabernaelegantinine B (6) 215 (MeOH) + 39.1 0.11 227 (4.75), 287 (4.14), 295 (4.18)* On silica gel G (Merck F254) ; eluant n-hexane-acetone (I : I).1433(CO).As the mass spectral fragmentation patterns are,from a qualitative point of view, identical (Table 2), allthese data indicate that tabernaelegantines A-D are( 1 ) R' = p - E t , R 2 = H(3) R ' = w - - E ~ , R * = H( 5 ) R' p - Et, R 2 = CHiCOMe- HN( 2 ) R' p - E t ,( 4 ) R' = Ct-Et,R 2 = HR 2 = HMeo2c* (6) R' = f3 - E t , R2 = CHiCOMeTABLE 2Mass spectral data*Relative intensities (yo)closely related. The mass spectra of (1)-(4) all containpeaks at m/e 675 (C4,H,,N,O5), 648 (C,H5,N403), 524I.+Me02C 1.' MeO,C, I bsol;M eOCOzMe k'H IMe 0f L$ MeMe02C L bsol;MeI f !wle (1) (2) (3) (4)675 ion (a) 4 4 7 3511 ( d ; R = H) 14 38 80 100196 ( f )720 (M+ + Me - H) 28 32706 (M+) 81 62 36 80648 (b) 3 4 3 8524 (c; R = H) 100 100 100 98393(e; R = H) 11 67 13 3220 65 13 1846 96 45 48 Me19 50 26 3514 38 16 21+l I t :ti (0124 (2)122 (i) 16 41 18 23 Me02C* Obtained a t 70 eV; filament current 100 FA; vaporizationtemperature 130-140 "C.li I li 1434 J.C.S. Perkin I( C33H,N303) , 51 (c32H37N303) 393 (C,H,N203) , l96(C,,H1,NO,), 182 (C,amp;,,NO,), 136 (C,H,,N), 124(C,H,,N), and 122 (C,H,,N).The peaks with lower m/evalues are of particular diagnostic value, as fragments atm/e 196 ion (f), 182 (g), and 124 (i) and at m/e 136 (h)and 122 ( j ) occur 293 in the mass spectra of the 19,20-di-hydrovobasinols (8) and (9) and voacangine (lo), re-spectively, which suggests that the four tabernaelegan-tines are built up from 19,20-dihydrovobasine- andvoacangine-like units. The most representative lsquo; dimer rsquo;alkaloid of this type is voacamine (7),, the mass spectrumof which also shows peaks at m/e 524 ion (c), 511 (d), and122 ( j ) , whereas its molecular ion and the ions (a), (b),@ C02FvI e19linkage1 i nkagelinkageatatatc-11rsquo;C - 111 19,20c - 9rsquo;dihydrobut differs in physical properties from the taberna-elegantines.The proton n.m.r.spectra of (1)-(4) also are com-patible with 19,20-dihydrovoacamine-like structures.They are characterized (Table 3) by four three-protonsinglets near 6 3.9,3.7, 2.6, and 2.5. These signals fall inthe regions where, respectively, the OMe and C0,Mefunctions and the NMe and C0,Me groups of the voa-cangine and vobasine portions re~onate,~ the high-fieldshift of the C02Me signal of the vobasine unit arisingfrom the diamagnetic anisotropy effect of the indolenucleus. Furthermore, signals for two low-field protons(NH) and six aromatic protons, and a one-proton signalnear 6 5 C(3)H are present ; the most relevant change incomparison with voacamine is the lack of the ethylidenesignals and the appearance of an additional ethyl groupin the high-field region.The aromatic patterns of (1)and (3) show the presence of two ortho-protons, whereasthe spectra of (2) and (4) contain, like that of voacamine,a one-proton singlet at 6.78 p.p.m. Alkaloids of thevoacamine group are known to isomerize in acidic media.4For instance, voacamidine (12) turns into voacamine (7)on refluxing in 2~-hydrochlork acid.5 The isomerizationis partially accompanied by the cleavage of the 3,9rsquo;-linkage, so that from this reaction the ibogamine com-ponent of the lsquo; dimer rsquo; can also be obtained.6 After re-fluxing in methanol and concentrated hydrochloric acid,tabernaelegantines B (2) and D (4) were unchanged, butthe same acidic treatment converted tabernaelegantinesA (1) and C (3) into (2) and (a), respectively.In bothcases minor amounts of isovoacangine (13) were isolated.If now we consider the aromatic patterns of the protonspectra, the evidence so far discussed indicates that thehydrovobasine unit, connected through a linkage involv-ing C-3 and C-12rsquo; (l) and (3) or C-10rsquo; (2) and (4),respectively. If we assign p-orientations to the C-3protons of the four isomers on the basis of the argumentsadvanced by Buchi? there remains the possibility ofisomerism only at C-20; that is tabernaelegantines A-Dmust contain either a dregamine (14) or a tabernaemont-anine (15) unit.(10) Rrsquo;= OMe, R2= H, R3= CO2ble R4= H The configuration at C-20 for the latter two bases was(13) Rrsquo;= H, R2= OMe, R3= C02Me, R4= H first investigated by Renner and his co-workers,2 whosuggested the p-axial and a-equatorial orientations for (17) Rrsquo;= OMe, R2= H.R3= H, rsquo; RL= H the respective ethyl side chains. A recent X-ray crystal-(18) R1= H, R2= H, R3= C02Me,rsquo; RL= H, 15,20-didehydro lographic study has led to the revision of these argu-(19) Rrsquo;= OMe, R2= H, R3= C02Me, RL= H, 3-rsquo;Hd ments; thus dregamine and tabernaernontanine must(20) R1= H, R2= H, R3= C02Me, @= CHiCOMe be assigned the absolute configurations shown in formu-MeOzC (8) Rrsquo; = a - Et R 2 = p -OH(9) Rrsquo; = p - Et , ~2 = p - OH(1.4) R rsquo; = O( - Et, R2 = 0( 1 5 ) R rsquo; = p - E t , R 2 = 0(16) R t = EtCH:, R 2 = -OH four alkaloids contain an isovoacangine and a 19,20-di-(f), (g), and (i) contain two less hydrogen atoms thanthose from the tabernaelegantines, owing to the presenceof the 19,20-double bond. Catalytic hydrogenation ofvoacamine affords a dihydro-derivative (1 1) , whichexhibits the same mass spectral fragmentation pattern2 U.Renner, D. A. Prins, A. I. Burlingame, and K. Biemann,Helv. Chim. A d a , 1963, 46, 2186.9 H. Budzikiewicz, C. Djerassi, and D. H. Williams, lsquo; StructureElucidation of Natural Products by Mass Spectrometry,rsquo; Holden-Day, San Francisco, 1964, vol. I, p. 67.lae (14) and (15).Dregamine and tabernaemontanine can be spectro-scopically differentiated by the high-field regions of their100 MHz lH n.m.r. spectra. The spectrum of dregaminein CDCl, contains two well separated signals at 6 1.88 andG. Buchi, R. E. Manning, and S. A. Monti, J . Amer. Chm.SOC..1964, 86, 4631.ti U. Renner and H. Fritz, Tetrahedron Letters, 1964, 283.6 W. Winkler, Arch. Pharm., 1962, 295, 895.7 A. Husson, Y. Langlois, C . Riche, H. P. Husson, andP. Potier, Tetrahedron, 1973, 29, 30951976 1435TABLE 31H N.m.r. spectra (6 values) *(4)7.74 7.687.56 7.58 7.597.2-6.9 C 6.78 d 7.2-6.9 rsquo; 6.786.83 a 6.845.29(m) 5.06 (m) 5.27 6 5.04(m)3.91br f 3.96 3.92br g 3.96(3)7.64(1) (2)7.24 7.14-6.90 7.26 * 7.14-6.84 lsquo; i NHArHC(3)HArOMeC0,Me 3.70NMe 2.57C0,Me 2.48CH,Me 0.94CH,Me 0.80 {COMe* 100 MHz; solvent CDCl,;a 1 H, d, J 9 Hz. b 5 H, m.Carbon23567891011121314151618192021C0,MeC0,MeNMe2lsquo;3rsquo;5lsquo;6rsquo;7lsquo;8rsquo;9rsquo;10rsquo;11rsquo;12rsquo;13rsquo;14rsquo;15rsquo;16rsquo;17rsquo;18rsquo;19rsquo;20rsquo;21rsquo;C0,Mersquo;C0,Mersquo;ArOMeCH,.COMeCH,COMeCH,CO Me(8)137.166.959.019.3107.8129.4118.0119.1121.9110.6135.830.628.950.311.623.643.849.3175.450.342.43.672.572.430.94 80.86 {Me,Si standard.C 4 HI m.(9)137.167.159.217.7107.9129.4118.0119.1121.9110.6135.838.230.344.212.825.642.947.13176.050.442.93.70 3.672.64 2.632.52 2.440.92 { 0.92 i0.81 J 0.86 8(6)7.74 7.637.55 7.597.23 a 7.6-6.84 rsquo;7.15-6.9 0 6.79 d6.82 45.27(m) 5.04 ( m)3.97 3.93br h(5)3.712.582.520.94 80.80 62.003.662.632.440.93 i0.86 i2.09a l H , s .~ d d , J13and4Hz. f Wt5Hz. g Wi9Hz. hW+8Hz. i t , J 7 H z .TABLE 413C N.m.r.data (6 values) *(10)137.851.753.322.2110.2129.3100.9154.1111.3111.9130.927.432.155.236.511.726.839.157.552.6175.956.0(1)136.334.759.417.9109.1129.7118.2119.4122.1110.0137.036.935.244.012.925.743.147.0172.650.043.1136.351.363.022.1110.5124.6117.1105.1152.1114.9135.427.232.054.735.011.626.638.967.652.3174.957.0(2)135.635.159.717.6110.3130.4118.3118.6121.5110.0136.237.135.144.113.025.843.247.2172.750.043.2135.151.653.222.2111.1122.9117.6127.9163.893.0138.227.532.255.236.511.726.839.357.752.5176.256.0(3)136.234.759.219.5109.0129.6118.1119.4122.1110.0136.929.233.149.911.423.543.949.5172.049.942.5136.251.353.022.1110.3124.5117.1105.1152.1115.1135.327.131.954.635.111.626.638.957.652.3175.056.8(4)135.936.659.519.9110.0129.5117.9119.5122.1110.4136.231.531.949.810.722.941.648.4169.550.341.0135.551.553.422.0110.1122.7117.3126.9153.493.2139.027.331.854.936.111.726.839.157.652.7175.856.1(5)136.034.959.217.8108.7129.4117.8119.1121.9109.9136.636.835.243.812.825.643.046.7172.249.843.0136.054.651.322.0110.1124.4116.9104.9161.8114.7135.230.626.654.235.811.626.638.258.652.2174.456.746.7208.230.6(6)135.237.059.319.3110.6129.9117.2118.5121.1109.7135.930.931.849.711.423.543.849.7171.549.742.3134.855.151.422.0109.7122.4118.0127.6153.392.7137.932.927.054.737.511.726.738.458.352.4175.555.846.7208.330.9* Solvent CDCl,; Fourier transform instrument operating at 25.2 MHz ; standard internal Me,SiJ.C.S.Perkin I1.32 for the C-19 and C-20 protons, which, in the spec-trum of tabernaemontanine, form into a complex multi-plet centred at 6 1.50. However, these data cannot beused for determining the configurations at C-20 of com-pounds (1)-(4) owing to the complexity of these regionsin the spectra of the lsquo; dimersrsquo;. Hence, as carbon-13spectroscopy is much more sensitive to changes in stericrelationship between groups, an examination of thecarbon spectra of dregaminol (8) and tabernaemontanol(9) was undertaken.The results of this investigation aresummarized in Table 4.The aromatic carbon shifts of (8) and (9) are consistentwith the presence of indole units and can be assigned onthe basis of chemical shift theory.8 The non-aromaticregions are characterized by the presence of five doublets,four triplets, three quartets, and one singlet. The shiftsof the 0- and C-methyl groups and the carbonylfunction are derived from chemical shift theory. Asregards the methyne resonances, the assignments of C-3,-5, -15, and -20 the last occurs in the aromatic region inthe spectrum of vobasinol (l6) are based on simple elec-tronegativity considerations.The remaining methynecarbon, C-16, resonates at 6 44.2 in (9) and at 50.3 in (8).Molecular models of both (8) and (9) show that, if theethyl group at C-20 has a p-axial orientation, C-16experiences a strong steric interaction with C-19.Therefore, the high-field resonance of C-16 in (9) indicatesthat the ethyl side chain is p-oriented.The triplet resonances are due to C-21, -14, -19, and -6.The two spectra show signals in the regions 6 48 (C-21),24 C-19, shifted downfield in the spectrum of (16), and18 (C-6), whereas the C-14 signal falls at 6 30.6 and 38.2in (8) and (9), respectively. The resonances associatedwith C-14 are correctly assigned, as they are the solesignals which show significant shifts in the spectra of theparent compounds, dregamine (14) and tabernaemont-anine (15) (39.4 and 45.8, respectively).The markeddifference in C-14 chemical shifts also arises from thestereochemistry at C-20: if the ethyl side chain isor-equatorially oriented, C-19 interacts sterically with theC(14)-cc-H linkage and, as a consequence, the C-14 signalmoves to higher field. Hence, carbon-13 spectroscopyalso points to the revision of the original stereochemicalassignments and, on the basis of the observed differencesin chemical shift of C-14 and -16, this technique shouldprovide valuable information about the stereochemistryat C-20 of the tabernaelegantines. However, unam-biguous carbon signal assignment of the spectra of thesebases required examination of the spectrum of isovo-acangine (13) as well.Owing to the extremely smallamount of (13) at our disposal, the investigation wascarried out on its isomer, voacangine (lo), which pos-sesses the same aliphatic skeleton. Inspection of thecarbon spectrum of ibogaine (17) also appeared useful, asthe removal of the methoxycarbonyl function from the8 G. W. Gribble, R. B. Nelson, J. L. Johnson, and G. C. Levy,J . Org. Chem., 1976, 40, 372.9 G. C. Levy and G. L. NeIson, lsquo; Carbon-13 Nuclear MagneticResonance for Organic Chemists,rsquo; Wiley-Interscience, New York,1972, p. 48.voacangine skeleton predictably affects only the C-20 and-17 signals, which are expected9 to move to lower andhigher field, respectively.Additional evidence for thecorrectness of the carbon shift assignments of thequinuclidine system was also provided by inspection ofthe spectrum of catharanthine (18).The aromatic carbon shifts of voacangine are consistentwith the presence of a 10-methoxyindole unit (Table 4).The non-aromatic region contains signals for thirteencarbon atoms (three quarters, six triplets, three doublets,and one singlet). Apart from the C-16 and methylsignals, which are easily attributable on the basis of theirmultiplicity and of chemical shift theory, the doubletresonances are for C-21, -20, and -14 and are readilyassigned since they have markedly different chemicalshifts: C-21 (6 57.5) is linked to Nb whereas the C-20signal (39.1) is shifted downfield relative to C-14 (27.4)owing to the @-effect of C-21.In the spectrum ofibogaine (17), C-14 (8 26.6) and C-21 (57.6) show nosignificant change, whereas C-20 suffers the expecteddownfield shift (2 p.p.m.). Furthermore, the high-fieldregion of the catharantine (18) spectrum containsdoublets for only two carbon atoms, C-21 (6 61.9) andThe six triplet resonances of the voacangine spectrumare for C-3, -5, -6, -15, -17, and -19. C-3 and -5 are linkedto the Nb and their signals are shifted downfield (6 53.3and 51.7) relative to those of the other methylene carbonatoms. In the ibogaine (17) spectrum, these two signalsfall at 54.3 and 50.1, but it is possible to allocate theseresonances by an investigation of the spectrum of3-2H,ibogaine (19) ,lo which indicates that the low-fieldsignal must be attributed to C-5.The C-17 resonance at 6 36.5 in the spectrum ofvoacangine is distinguished from the other methylenesignals by its high-field shift (34.1) in the spectrum ofibogaine, whereas, of C-15 and -19, the signal of theformer is expected to be the farthest downfield as it issubject to many p-effects.Furthermore, in the cathar-anthine spectrum the C-15 signal moves to 6 123.5,whereas C-19 still resonates in the 6 26 region.With the chemical shifts of the models (euro;9, (9), and (10)established, the 13C n.m.r. analysis of the lsquo;dimersrsquo; issimple. The aromatic signals corresponding to the dreg-amine or tabernaemontanine units remain almost un-affected, and the substitution at C-10rsquo; or -12rsquo; can beeasily deduced.In fact, in the case of a C-10rsquo; linkage ahigh-field doublet is present at 6 ca. 93, characteristic l1of C-12rsquo; of an 11rsquo;-methoxy-substituted unit, whereasC-10rsquo; resonates as a singlet a t 6 ca. 127. If the substi-tution is at C-12rsquo;, C-10rsquo; and -12lsquo; resonate at ca. 105 and115, respectively.Of the saturated carbon signals, only the resonances ofC-3, -14, and -15 are perturbed by the replacement of theC-3 hydroxy-group of (8) and (9) (upfield shifts for C-3C-14 (30.9).lo M. F. Bartlett, D. F. Dickel, and W. J. Taylor, J . Amer.11 D. W. Cochran, P1i.D. Dissertation, Indiana University,Chem. SOC., 1958, 80, 126.19711976and -14, downfield shift for C-15).12 The remainingsignals can be easily assigned by a simple subtractiveprocess.The stereochemistry at C-20 of (1)-(4) can be deduced,from the above considerations.Tabernaelegantines A(1) and B (2) show C-16 resonances at 6 44.0 and 44.1, andthose of C-14 at 36.8 and 37.1, whereas in tabernaelegan-tines C (3) and D (4) these carbons resonate at 49.9 and49.8, and at 29.2 and 31.5, respectively. These shiftssupport p- and a-orientations for the ethyl side chains,respectively, as shown in structures (1)-(4).In addition to the aromatic patterns of the proton andcarbon spectra, the differences in substitution at C-10rsquo; or-12lsquo; are reflected in (i) the C-3 proton resonance (ca. 0.23p.p.m. upfield shift if the substitution is at C-10rsquo;) ; (ii) theshape of the 290 nm region of the U.V.spectra (Table 1);(iii) the shape of the 11rsquo;-methoxy-signal in the protonspectra dramatic broadening (Table 3) if the substitutionis at C-lorsquo;; (iv) the possibility of interconversion be-tween the two pairs (1) and (2), and (3) and (4), as only a3,12rsquo;-bond can be converted into a 3,lOrsquo;-bond; (v) amass spectral peak 14 mass units greater than themolecular weight if the substitution is at C-10rsquo; (Table 2).The mass spectrum of voacamine also shows an M +- 14peak arising from intermolecular methyl transfer involv-ing the voacangine methoxycarbonyl group as methyldonor and Nb of the vobasinol component as acceptor.13The quaternary ammonium salt thus formed can undergoKofrnann degradation, the proton abstractor being thecarboxylate anion.Molecular models of the tabernaelegantines indicatethat rotation about the 3,12rsquo;-bond of (1) and (3) issterically more inhibited than that around the 3,lOrsquo;-bondof (2) and (4); this accounts for the possibility of con-version in acidic media of the former alkaloids into themore stable ones (2) and (4).Furthermore, the iso-voacangine methoxycarbonyl groups of (1) and (3) appearto be crowded by the dihydrovobasinol units, and conse-quently unavailable for ion-molecule collisions in themass spectrometer. No transmethylation processes arein fact observed in the case of (1) and (3), even at highervaporization temperatures, whereas the intensities of theiW + 14 peaks exhibited by (2) and (4) appear to be de-pendent on vaporization temperature (the spectra re-ported in Table 2 were recorded at 130-140 ldquo;C).In addition, the molecular models show that in themost stable conformations of (2) and (4) the aromaticrnethoxy-groups of the isovoacangine units are linked tothe indole NH group of the dihydrovobasine componentby strong hydrogen bonding, which causes broadening ofthe OMe signals in the proton spectra.On the otherhand, the restricted rotation about the 3,12rsquo;-bonds of (1)and (3) inhibits the formation of such intramolecularhydrogen bonds, so that the shapes of the methoxy-signals are in this case unaffected.Tabernaelegantinines A (5) and B (6) have the molec-12 J. D. Roberts, F. J. Weigert, J. I. Kroschwitz, and H. J.l3 D. W. Thomas and K. Biemann, J . Amer. Chem.SOC., 1965,Reich, J . Amer. Chem. SOC., 1970, 92, 1338.87, 5447.1437ular formula C,H5,N,0,. They are two further mem-bers of the voacamine family, as suggested by theirproton and carbon n.m.r. spectral properties (Tables 3and 4). In particular the aromatic regions of the carbonspectra are almost identical with those of (1) and (2),respectively. In addition, the mass spectrum of taberna-egantinine B (6) contains, like (2) and (4), the ion at m/e776 (M + 14, 23) indicating the presence of a 3,12rsquo;-bond.In comparison to the tabernaelegantines , the taberna-elegantinines (5) and (6) contain three additional carbonatoms, involved in a CH,*CO*CH, grouping (3H as asinglet in the 6 2 region of the proton spectra; CO at 208,CH, at 46, and CH, at 6 30 in the carbon spectra).Thisgrouping must be placed in the isovoacangine unit as, inaddition to the peaks at m/e 762 (M+, 87 and 48,respectively), 731 (M - Me, 6 and 5), 719 (M -COMe, 3 and 12), 705 (M - CH,*COMe, 26 and 15),673 (M - CH,COMe - OMe - H, 12 and 3:4,), 196 ion(f), 26 and 39x1, 182 ion (g), 89 and 95, 136 ion (h),9 and 21y0, 124 ion (i), 9 and 19, and 122 ion ( j ) , 14and 25, the mass spectra of (5) and (6) contain theions (c) (R = CH,COMe, m/e 580, 100, and 8674), (d)(R = CH,-COMe, m/e 567, 13, and loo), and (e)(R = CH,*COMe, mle 449, 7 and 20) shifted by +56m.u. in comparison with the corresponding ions of thetabernaelegantines. Ions at mle 522 (c) - Me,CO, 56and 7oy0 and 509 (d) - Me,CO, 6 and 29) are alsopresent.The aliphatic regions of the carbon spectra show that(5) and (6) possess opposite configurations at C-20.Infact, C-16 and -14 resonate at 6 43.0 and 36.8 in (5), andat 49.7 and 30.9 in (6), in agreement with an axial and anequatorial orientation, respectively, of the C-20 ethylside chains. In addition, a comparison of the carbonshifts of the isovoacangine units of (1)-(4) and (5) and(6) shows that in the tabernaelegantinines one of theaminomethylene carbon signals is a doublet thus in-dicating that the CH,*CO*CH, grouping is at either C-3lsquo;or -5rsquo;. The substitution does not notably affect theresonances of C-6rsquo;, -17lsquo;, and -20lsquo;, whereas those of C-14rsquo;and -15rsquo; suffer, respectively, downfield and upfield shifts.These chemical shift changes can be explained if theCH,*CO*CH, grouping is at position 3rsquo;, as in this caseC-14rsquo; experiences a p-effect and C-15rsquo; interacts stericallywith the substituent and consequently resonates athigher field.The configurations at C-3rsquo; of these alka-loids are therefore those represented in the stereostruc-tures (5) and (6).A compound having an ibogamine-like skeleton carry-ing an extra C, unit has been recently isolated,lP and thelocation of this unit at position 3 has been proposed onthe basis of the chemical reactivity of this centre. Thenature of the tabernaelegantinines suggests that theassignment of structure (20) to this alkaloid is probablycorrect. As acetone has been used for their separation,G. Delle Monache, I.L. Drsquo;Albuquerque, F. Delle Monache,and G. B. Marini-Bettolo, Atti Accad. naz. Lincei, Rend. ClasseS c i . 3 ~ . mat. nut., 1972, 52, 3751438 J.C.S. Perkin Ithe possibility that these alkaloids are artefacts cannotbe e~c1uded.l~ However, if they are genuine products,we consider that nucleophilic attack of an acetoacetyl-CoA unit at C-3 of a 3,4-dehydroibogamine component,followed by decarboxylation, is the most probablemechanism of formation of this kind of compound.EXPERIMENTALIH N.m.r. spectra were determined with a Varian XL-100spectrometer. High resolution mass measurements wereobtained with a Varian MAT 311 instrument. 13C N.m.r.spectra were recorded a t 26.2 MHz with a Varian XL-100instrument equipped with Fourier transform facility.Conversion of Tabernaelegantine A (1) into Taberna-elegantine B (2) .-Tabernaelegantine A (200 mg) dissolvedl5 V. C. Agpada, Y . Morita, V. Renner, M. Hesse, and H.Schmid, Helv. Chim. Acta, 1975, 58, 1001.in methanol (10 ml) and concentrated hydrochloric acid (1ml) was heated under reflux for 24 h. Sodium carbonatesolution and methylene chloride were added and the organicphase was washed with water, dried (Na,SO,), and evapor-ated. The residue was chromatographed on silica gel toafford pure isovoacangine (13) (15 mg) , starting material (75Conversion of Tabernaelegantine C (3) into Taberna-elegantine D (a).-A solution of tabernaelegantine C (50 mg)in methanol (8 ml) and concentrated hydrochloric acid (1 ml)was heated under reflux for 16 h. The mixture was dilutedwith sodium carbonate solution and extracted with methyl-ene chloride, and the extract was evaporated. Preparativet.1.c. {silica gel; EtOAc-MeOH-H20 (100 : 5 : 2) yieldedcompounds (3) (13 mg), (13) (8 mg), and (4) (26 mg).We thank Drs. N. Neuss and I. Scott for samples of Ibogaalkaloids.6/018 Received, 5th January, 19763mg), and (2) (90 mg)
机译:1432 J.C.S. Perkin ISracctures of Tabernaelegantines A-D 和 Tabernaelegantinines A and B,New lndole Alkaloids from Tabernaemontana eiegans作者:Ezio Bombardelli, Attilio Bonati, Bruno Gabetta,“ Ernest0 M. Martinelli, and Giuseppe M ustich,Bruno Danieli,” lstituto di Chimica Organica, Universita degli Studi, Centro per lo Studio della Chimica delleSostanze Organiche Naturali del C.N.R., 201 33 Milan, 意大利tabernaelegantines A-D [(l )-(4)]和tabernaelegantinines A和B [(5)-(6)]的结构,从Tabernaemontana elegans Stapf的根皮中分离出的新型“二聚”吲哚生物碱。h(我们根据iri.r.、u.v.、mass和l H和13C n.m.r.光谱确定。结构解析需要分析voacangine、dregaminol和tabernaemontanol的碳-13光谱。13C n.rn.r.调查支持修订 C-20 报告的 dregamine 和 tabernaemontanine 配置。Research Laboratories, lnverni della Beffa, Via Ripamonti 99, 201 41 Milan, Italy用甲醇提取生长在莫桑比克的 Tabernaemontana elegans Stapf. 的根皮,提供复杂的三级碱混合物,从中获得了七种新的吲哚生物碱。分离过程已经描述过,本文涉及六个新碱基的结构(1)-(6)的阐明,分别指定为tabernaelegantines A(1)、B(2)、C(3)和D(4)以及tabernaelegantinesA(5)和B(6)。这些生物碱是 voacarnine (7) 组的新成员;也就是说,它们是由偶联的Vobasine样和Ibogamine样单元组成的“二聚体”生物碱。特别是,tabernaelegantininesA(5)和B(6)的结构具有相当大的生物遗传学意义,因为这两个碱基在ibogamine单元的脂肪族部分含有一个额外的C单元。表1报告了六种生物碱的物理常数和紫外线吸收最大值。四叶草具有分子式C,H,N40(高分辨率质谱),并显示出非常相似的光谱特性。它们的紫外光谱(非中性95%乙醇)仅在强度连接方面表现出微小的差异。特别是,tabernaelegantines B (2) 和 D (4) 在 296 nm 处表现出的最大强度略高于 287 nm 处的吸收,而异构体 A (1) 和 C (3) 在该区域表现出相反的行为。然而,所有光谱都与吲哚或烷氧基吲哚发色团的存在一致。红外光谱也非常相似,最突出的谱带为3 450-3 370 (NH)和1 730 cm-l1 B. Gabetta, E. M. Martinelli, and G. Mustich, Fitotevupiu,1975, 46, 1951976表1物理常数和紫外光谱M.p.(“C”)[a1D2'(“)生物碱(溶剂)(在CHC1中),RF*knax。(95% EtOH)/nm (1% 4Tabernaelegantine A (1) 231 (MeOH) - 31.8 0.63 224 (4.70), 285 (4.14), 293 (4.10)Tabernaelegantine B (2) 199 (Me,CO) + 14.4 0.48 227 (4.71), 287 (4.09), 296 (4.23)Tabernaelegantine C (3) 171 (MeOH) - 36.8 0.35 224 (4.76), 285 (4.18), 293 (4.16)Tabernaelegantine D (4) 206 (MeOH) + 11.3 0.16 226 (4.73), 287 (4.13), 296 (4.16)Tabernaelegantinine A (5) 160 (n-C,H,,) - 53.7 0.60 224 (4.74).285 (4.18), 293 (4.15)Tabernaelegantinine B (6) 215 (MeOH) + 39.1 0.11 227 (4.75), 287 (4.14), 295 (4.18)* 硅胶 G (Merck F254) ;洗脱液正己烷-丙酮(I:I).1433(CO)。由于质谱碎裂模式在定性上是相同的(表2),所有这些数据都表明tabernaelegantines A-D是( 1 ) R' = p - E t , R 2 = H(3) R ' = w - - E ~ , R * = H( 5 ) R' p - Et, R 2 = CHiCOMe- HN( 2 ) R' p - E t ,( 4 ) R' = Ct-Et,R 2 = HR 2 = HMeo2c* (6) R' = f3 - E t , R2 = CHiCOMe表2质谱数据*相对强度(yo)密切相关。(1)-(4)的质谱图均在m/e 675 (C4,H,,N,O5)、648 (C,H5,N403)、524I.+Me02C 1'处出现峰。MeO,C, I \M eOCOzMe k'H IMe 0f L$ MeMe02C L \MeI f !wle (1) (2) (3) (4)675 [ion (a)] 4 4 7 3511 ( d ;R = H) 14 38 80 100196 ( 女 )720 (M+ + Me - H) 28 32706 (M+) 81 62 36 80648 (b) 3 4 3 8524 (c;R = H) 100 100 100 98393(e;R = H) 11 67 13 3220 65 13 1846 96 45 48 Me19 50 26 3514 38 16 21+l I t :ti (0124 (2)122 (i) 16 41 18 23 Me02C* 获得 t 70 eV; 灯丝电流 100 FA; 汽化温度 130-140 “C.li I li 1434 J.C.S. Perkin I( C33H,N303) , 51 (C32H37N303) 393 (C,H,N203) , l96(C,,H1,NO,), 182 (C,&,,NO,), 136 (C,H,,N), 124(C,H,,N) 和 122 (C,H,,N).在19,20-二氢伏巴醇(8)和(9)和伏阿坎嗪(lo)的质谱图中,具有较低m/e值的峰具有特别的诊断价值,这表明四个tabernaelegan-tines是由19,20-二氢vobasine-andvoacangine样单元构成的,m/e值较低的α/e 196 [ion (f)]、182 (g)和124 (i)以及m/e 136 (h)和122 ( j)处出现293,这表明这四个tabernaelegan-tines是由19,20-dihydrovobasine-andvoacangine样单元构成的。该类型中最具代表性的二聚体生物碱是voacamine (7),其质谱图也显示峰在m/e 524 [离子(c)]、511(d)和122(j)处,而其分子离子和离子(a)、(b)、@C02FvI e19linkage1 i nkagelinkageageatatatc-11'C - 111 19,20c - 9'二氢在物理性质上与taberna-elegantines不同。(1)-(4)的质子n.m.r.光谱也与19,20-二氢鳄梨胺样结构兼容。它们的特征(表3)由6附近的四个三质子单体(3.9,3.7,2.6和2.5)表征。这些信号分别落在 voa-cangine 和 vobasine 部分的 OMe 和 C0,Mefunctions 以及 NMe 和 C0,Me 组重新~onate,~ vobasine 单元的 C02Me 信号的高场移位由吲哚核的抗磁各向异性效应引起。此外,还存在两个低场质子(NH)和六个芳香质子的信号,以及6 5附近的一个质子信号[C(3)H];与voacamine相比,最相关的变化是亚乙基信号的缺失和高场区域中额外乙基的出现。(1)和(3)的芳香族模式显示存在两个正质子,而(2)和(4)的光谱与voacamine一样,在下午6点78分包含一个单质子单线态。已知 thevoacamine 基团的生物碱在酸性介质中异构化.4 例如,voacamidine (12) 在 2~-hydrochlork 酸中回流时变成 voacamine (7).5 异构化部分伴随着 3,9'-键的裂解,因此从该反应中也可以获得“二聚体”的 iboamine 成分.6 在甲醇和浓盐酸中重新通熔后,tabernaelegantines B (2) 和 D (4) 没有变化,但相同的酸性处理将 tabernaelegantinesA (1) 和 C (3) 分别转化为 (2) 和 (a)。在这两种情况下,都分离出少量的异伏菌素 (13)。如果现在我们考虑质子光谱的芳香模式,迄今为止讨论的证据表明,水鳍单元通过分别涉及 C-3 和 C-12' [(l) 和 (3)] 或 C-10' [(2) 和 (4)] 的连接连接。如果我们根据 Buchi 提出的论点为四种异构体的 C-3 质子分配 p 取向?仅在C-20时仍然存在异构化的可能性;也就是说,tabernaelegantines A-D必须包含 dregamine (14) 或 tabernaemont-anine (15) 单位。(10) R'= OMe, R2= H, R3= CO2ble R4= H 后两个碱基在 C-20 处的构型为 (13) R'= H, R2= OMe, R3= C02Me, R4= H 首先由 Renner 和他的同事研究,2 他们提出了 (17) R'= OMe, R2= H.R3= H, ' RL= H 各自的乙基侧链的 p 轴和 a 赤道取向。最近的一项 X 射线晶体-(18) R1= H, R2= H, R3= C02Me,' RL= H, 15,20-二脱氢晶体学研究导致了这些 argu-(19) R'= OMe, R2= H, R3= C02Me, RL= H, [3-'Hd ments; 因此 dregamine 和 tabernaernontanine 必须 (20) R1= H, R2= H, R3= C02Me, @= CHiCOMe 被分配 formu-MeOzC 中所示的绝对构型 (8) R' = a - Et R 2 = p -OH(9) R' = p - Et , ~2 = p - OH(1.4) R ' = O( - Et, R2 = 0( 1 5 ) R ' = p - E t , R 2 = 0(16) R t = EtCH:, R 2 = -OH 四种生物碱含有一种异鳄胆碱和一种 19,20-二-(f)、(g) 和 (i) 含有比 tabernaelegantine 少两个氢原子,因为存在 19,20-双键。voacamine 的催化氢化反应产生二氢衍生物 (1 1) ,其表现出相同的质谱碎裂模式2 U.Renner, D. A. Prins, A. I. Burlingame, and K. Biemann,Helv.奇姆。A d a , 1963, 46, 2186.9 H. Budzikiewicz, C.Djerassi 和 D. H. Williams,“通过质谱法对天然产物进行结构阐释”,Holden-Day,旧金山,1964 年,第 I 卷,第 67 页。Drigamamine 和 tabernaemontanine 可以通过其 100 MHz lH n.m.r. 光谱的高场区域进行光谱学区分。dregaminein CDCl 的光谱包含两个分离良好的信号,分别位于 6 1.88 和 G。Buchi, RE Manning 和 SA Monti, J. .Amer. Chm.SOC..1964, 86, 4631.ti U. Renner and H. Fritz, Tetrahedron Letters, 1964, 283.6 W. Winkler, Arch. Pharm., 1962, 295, 895.7 A. Husson, Y. Langlois, C .Riche、HP Husson 和 P.Potier, Tetrahedron, 1973, 29, 30951976 1435表31H N. 磁共振光谱(6个值) *(4)7.74 7.687.56 7.58 7.597.2-6.9 C 6.78 d 7.2-6.9 ' 6.786.83 a 6.845.29(m) 5.06 (m) 5.27 6 5.04(m)3.91br f 3.96 3.92br g 3.96(3)7.64(1) (2)7.24 7.14-6.90 7.26 * 7.14-6.84 ' i NHArHC(3)HArOMeC0,Me 3.70NMe 2.57C0,Me 2.48CH,Me 0.94CH,Me 0.80 {COMe* 100 MHz; 溶剂 CDCl,;a 1 H, d, J 9 Hz. b 5 H, m.Carbon23567891011121314151618192021C0,MeC0,MeNMe2'3'5'6'7'8'9'10'11'12'13'14'15'16'17'18'19'20'21'C0,Me'C0,Me'ArOMeCH,.COMeCH,COMeCH,CO Me(8)137.166.959.019.3107.8129.4118.0119.1121.9110.6135.830.628.950.311.623.643.849.3175.450.342.43.672.572.430.94 80.86 {Me,Si 标准。C 4 HI m.(9)137.167.159.217.7107.9129.4118.0119.1121.9110.6135.838.230.344.212.825.642.947.13176.050.442.93.70 3.672.64 2.632.52 2.440.92 { 0.92 i0.81 J 0.86 8(6)7.74 7.637.55 7.597.23 A 7.6-6.84 '7.15-6.9 0 6.79 d6.82 45.27(m) 5.04 ( m)3.97 3.93br h(5)3.712.582.520.94 80.80 62.003.662.632.440.93 i0.86 i2.09a l H , s .~ d d , J13and4Hz.f Wt5Hz. g Wi9Hz.hW+8Hz. i t , J 7 H z .表 413C N.m.r.data(6 个值) *(10)137.851.753.322.2110.2129.3100.9154.1111.3111.9130.927.432.155.236.511.726.839.157.552.6175.956.0(1)136.334.759.417.9109.1129.7118.2119.4122.1110.0137.036.935.244.012.925.743.147.0172.650.043.1136.351.363.022.1110.5124.6117.1105.1152.1114.9135.427.232.054.735.011.626.638.967.652.3174.957.0(2)135.635.159.717.6110.3130.4118.3118.6121.5110.0136.237.135.144.113.025.843.247.2172.750.043.2135.151.653.222.2111.1122.9117.6127.9163.893.0138.227.532.255.236.511.726.839.357.752.5176.256.0(3)136.234.759.219.5109.0129.6118.1119.4122.1110.0136.929.233.149.911.423.543.949.5172.049.942.5136.251.353.022.1110.3124.5117.1105.1152.1115.1135.327.131.954.635.111.626.638.957.652.3175.056.8(4)135.936.659.519.9110.0129.5117.9119.5122.1110.4136.231.531.949.810.722.941.648.4169.550.341.0135.551.553.422.0110.1122.7117.3126.9153.493.2139.027.331.854.936.111.726.839.157.652.7175.856.1(5)136.034.959.217.8108.7129.4117.8119.1121.9109.9136.636.835.243.812.825.643.046.7172.249.843.0136.054.651.322.0110.1124.4116.9104.9161.8114.7135.230.626.654.235.811.626.638.258.652.2174.456.746.7208.230.6(6)135.237.059.319.3110.6129.9117.2118.5121.1109.7135.930.931.849.711.423.543.849.7171.549.742.3134.855.151.422.0109.7122.4118.0127.6153.392.7137.932.927.054.737.511.726.738.458.352.4175.555.846.7208.330.9* 溶剂 CDCl,;工作频率为 25.2 MHz 的傅里叶变换仪器;C-19 和 C-20 质子的标准内部 Me,SiJ.C.S.Perkin I1.32,在 tabernaemontanine 的规格中,形成一个以 6 1.50 为中心的复杂多层。然而,这些数据不能用于确定 com-pounds (1)-(4) 在 C-20 处的构型,因为这些区域在“二聚体”光谱中的复杂性。因此,由于碳-13光谱对组间空间关系的变化更为敏感,因此对dregaminol(8)和tabernaemontanol(9)的碳光谱进行了检查。(8)和(9)的芳香族碳位移与吲哚单元的存在一致,可以根据化学位移理论进行分配.8非芳族区域的特征是存在5个双峰,4个三重态,3个四重态和1个单态。0-和C-甲基的位移和羰基官能团的位移是由化学位移理论推导出来的。关于甲炔共振,C-3、-5、-15 和 -20 [最后发生在 vobasinol (l6) 光谱中的芳香区] 的分配基于简单的电正负性考虑。剩余的甲炔碳 C-16 在 6 44.2 in (9) 和 50.3 in (8) 处共振。(8)和(9)的分子模型都表明,如果C-20处的乙基具有p轴向,则C-16与C-19具有很强的空间相互作用。因此,(9)中C-16的高场共振表明乙基侧链是p取向的。两个光谱显示信号位于区域6 48 (C-21)、24 [C-19,在(16)的频谱中向下移动]和18(C-6),而C-14信号分别落在6 30.6和38.2英寸(8)和(9)。与 C-14 相关的共振被正确分配,因为它们是显示母体化合物 dregamine (14) 和 tabernaemont-anine (15) 光谱显着变化的唯一信号 (分别为 39.4 和 45.8)。C-14化学位移的显著差异也源于C-20的立体化学:如果乙基侧链是赤道方向的,则C-19与C(14)-cc-H键发生空间相互作用,因此,C-14信号移动到更高的场。因此,碳-13光谱学也指出了对原始立体化学分配的修正,并且根据观察到的C-14和-16化学位移的差异,该技术应提供有关tabernaelegantines的C-20立体化学的有价值的信息。然而,这些碱基光谱的 unam-biguous 碳信号分配也需要检查 isovo-acangine 的光谱 (13)。由于我们掌握的(13)数量极少,因此对其异构体voacangine(lo)进行了研究,该异构体具有相同的脂肪族骨架。对 ibogaine (17) 碳谱的检查似乎也很有用,因为从 8 G. W. Gribble, R. B. Nelson, J. L. Johnson, and G. C. Levy,J .Org. Chem., 1976, 40, 372.9 G. C. Levy 和 G. L. NeIson, ' Carbon-13 Nuclear MagneticResonance for Organic Chemists', Wiley-Interscience, New York,1972, p. 48.voacangine 骨架可预见地只影响 C-20 和 C-17 信号,预计 9 将分别移动到较低和较高的场。奎宁环系统碳位移分配的正确性也通过检查catharanthine的光谱提供了其他证据(18)。voacangine的芳香碳位移与10-甲氧基吲哚单元的存在一致(表4)。非芳香族区域包含十三个碳原子(四分之三、六个三重态、三个双峰和一个单峰)的信号。除了 C-16 和甲基信号(根据它们的多重性和化学位移理论很容易归因)之外,双谐振是针对 C-21、-20 和 -14 的,并且很容易分配,因为它们具有明显不同的化学位移:C-21 (6 57.5) 与 Nb 相连,而 C-20 信号 (39.1) 相对于 C-14 (27.4) 向下移动,这是由于 C-21.In ibogaine 光谱的 @ 效应 (17), C-14 (8 26.6) 和 C-21 (57.6) 没有显著变化,而 C-20 则遭受了预期的下场偏移(下午 2 点)。此外,catharantine(18)光谱的高场区仅包含两个碳原子C-21(6 61.9)的双峰,而voacangine光谱的六个三重态共振分别为C-3、-5、-6、-15、-17和-19。C-3 和 -5 与 Nb 相连,它们的信号相对于其他亚甲基碳原子的信号向下移动(6、53.3 和 51.7)。在 ibogaine (17) 频谱中,这两个信号分别位于 54.3 和 50.1,但可以通过研究 [3-2H,]ibogaine (19) 的频谱来分配这些共振,这表明低场信号必须归因于 C-5。在voacangine频谱中,6 36.5处的C-17共振与其他亚甲基信号的区别在于其在ibogaine频谱中的高场位移(34.1),而在C-15和-19中,前者的信号预计是最远的下场,因为它受到许多p效应的影响。此外,在cathar-anthine频谱中,C-15信号移动到6 123.5,而C-19仍然在6 26区域共振。随着模型(€9、(9)和(10))的化学位移的建立,“二聚体”的13C n.m.r.分析变得简单。与渣胺或tabernaemontanine单元相对应的芳香族信号几乎不受影响,并且可以很容易地推断出C-10'或-12'处的取代。事实上,在C-10'连杆的情况下,高场双合态存在于6 ca处。93,11'-甲氧基取代单元的C-12'的特征l1,而C-10'作为单线态共振a t 6 ca. 127。如果取代在C-12',则C-10'和-12'分别在约105和115处共振。在饱和碳信号中,只有 C-3、-14 和 -15 的共振受到 (8) 和 (9) 的 C-3 羟基置换的扰动(C-3C-14 (30.9) 的上场位移)。Amer.11 D.W.科克伦,P1i.D.学位论文,印第安纳大学,化学SOC.,1958,80,126.19711976和-14,C-15).12剩余的信号可以很容易地通过简单的减法过程分配。从上述考虑可以推导出(1)-(4)在C-20处的立体化学。Tabernaelegantines A(1)和B(2)在6 44.0和44.1处显示出C-16共振,C-14在36.8和37.1处显示出共振,而在tabernaelegan-tines C(3)和D(4)中,这些碳分别在49.9和49.8以及29.2和31.5处共振。这些位移分别支持乙基侧链的p-和a-取向,如结构(1)-(4)所示。除了质子和碳光谱的芳香模式外,C-10'或-12'处取代的差异还反映在(i)C-3质子共振(如果取代在C-10'处,则约为0.23p.p.m.上场位移);(ii) 紫外线 290 nm 区域的形状光谱(表1);(iii)质子谱中11'-甲氧基信号的形状[如果取代在C-lo'处,则急剧展宽(表3)];(iv)两对(1)和(2)以及(3)和(4)之间相互转换的可能性,因为只有a3,12'-键可以转化为3,lO'键;(v)如果取代物为C-10',则质量谱峰比分子量大14个质量单位(表2)。voacamine 的质谱图还显示 M +- 14 峰由分子间甲基转移产生,其中 voacangine 甲氧羰基作为甲基供体,Vobasinol 组分的 Nb 作为受体.13 这样形成的季铵盐可以发生 Kofrnann 降解,质子提取物是羧酸阴离子。tabernaelegantines的分子模型表明,围绕(1)和(3)的3,12'-键的旋转比围绕(2)和(4)的3,lO'-键的旋转更受抑制;这解释了在酸性介质中将以前的生物碱转化为更稳定的生物碱的可能性[(2)和(4)]。此外,(1)和(3)的异voacangine甲氧羰基似乎被二氢vobasinol单元所拥挤,因此在质谱仪中无法进行离子分子碰撞。在(1)和(3)的情况下,即使在较高的汽化温度下,也没有观察到转甲基化过程,而(2)和(4)所表现出的iW + 14峰的强度似乎与汽化温度有关(表2中重新移植的光谱记录在130-140“C”)。此外,分子模型表明,在(2)和(4)最稳定的构象中,等伏菌素单元的芳香族乙氧基通过强氢键与二氢伏巴因组分的吲哚NH基团连接,这导致质子谱中的OMe信号变宽。另一方面,围绕(1)和(3)的3,12'-键的受限旋转抑制了这种分子内氢键的形成,因此在这种情况下甲氧基信号的形状不受影响。Tabernaelegantinines A (5) 和 B (6) 具有 molec-12 J. D. Roberts, F. J. Weigert, J. I. Kroschwitz, and H. J.l3 D. W. Thomas and K. Biemann, J .Amer. Chem.SOC., 1965,Reich, J .Amer. Chem. SOC., 1970, 92, 1338.87, 5447.1437ular分子式C,H5,N,0,.它们是voacami家族的另外两个mem-bers,正如它们的质子和碳n.m.r.光谱特性所暗示的那样(表3和表4)。特别是,碳光谱的芳香区分别与(1)和(2)的芳香区几乎相同。此外,taberna-egantinine B (6) 的质谱图与 (2) 和 (4) 一样,含有 m/e776 (M + 14, 23%) 处的离子,表明存在 3,12'-键。与tabernaelegantines相比,taberna-elegantines(5)和(6)包含三个额外的碳原子,参与CH,*CO*CH,分组(3H在质子光谱的6 2区域中为单线态;碳谱中CO在208、CH、46和CH在6 30处)。除了m/e 762(M+,分别为87%和48%)、731(M - Me,6和5%)、719(M -COMe,3和12%)、705(M - CH,*COMe,26和15%)、673(M - CH,COMe - OMe - H,12和3:4),196 [ion(f),26和39x1, 182 [离子 (g),89 和 95%]、136 [离子 (h)、9 和 21y0]、124 [离子 (i)、9 和 19%] 和 122 [离子 (j) ,14 和 25%],(5) 和 (6) 的质谱图包含 (c) (R = CH,COMe,m/e 580、100 和 8674)、(d)(R = CH,-COMe、m/e 567、13 和 loo%),以及 (e)(R = CH,*COMe、mle 449、7 和 20%) 偏移了 +56m.u。与tabernaelegantines的相应离子相比。mle 522 [(c) - Me,CO, 56 和 7oy0] 和 509 [(d) - Me,CO, 6 和 29%)] 处的离子也存在。碳谱的脂肪族区域表明,(5)和(6)在C-20处具有相反的构型。事实上,C-16 和 -14 在 6 43.0 和 36.8 in (5) 以及 49.7 和 30.9 in (6) 处共振,分别与 C-20 乙基侧链的轴向和赤道方向一致。此外,对(1)-(4)和(5)和(6)的等伏菌素单元的碳移的比较表明,在tabernaelegantines中,氨基亚甲基碳信号之一是一个双峰,因此表明CH,*CO*CH分组在C-3'或-5'。换人对C-6'、-17'和-20'的换人没有明显影响,而C-14'和-15'的换人则分别受到下场和前场转移的影响。如果CH,*CO*CH基团位于3'位置,则可以解释这些化学位移变化,因为在这种情况下,C-14'经历p效应,C-15'与取代基在空间上相互作用,因此在更高的场中共振。因此,这些碱基体在C-3'位点的构型是立体结构(5)和(6)中表示的构型。最近分离出一种具有类似伊博加胺的骨架的化合物,该骨架带有额外的 C,单元,lP,并且根据该中心的化学反应性提出了该单元位于位置 3 的位置。tabernaelegantinines的性质表明,将结构(20)分配给这种生物碱可能是正确的。由于丙酮已被用于分离,G. Delle Monache、IL D'Albuquerque、F. Delle Monache 和 G. B. Marini-Bettolo、Atti Accad。纳兹。林塞,伦德。ClasseS c i .3 ~ .Mat. Nut., 1972, 52, 3751438 J.C.S. Perkin I这些生物碱是人工制品的可能性不能e~c1uded。l~ 然而,如果它们是真品,我们认为乙酰乙酰辅酶A单元在3,4-脱氢伊博胺组分的C-3处的亲核攻击,然后脱羧,是最有可能形成这种化合物的机制。EXPERIMENTALIH N.m.r. 光谱使用瓦里安 XL-100 光谱仪测定。使用瓦里安 MAT 311 仪器获得高分辨率质量测量值。使用配备傅里叶变换装置的瓦里安 XL-100 仪器在 t 26.2 MHz 的频率下记录了 13C N.m.r.光谱。将 Tabernaelegantine A (1) 转化为 Taberna-elegantine B (2) .-Tabernaelegantine A (200 mg) 溶解dl5 V. C. Agpada, Y .Morita、V. Renner、M. Hesse 和 H.Schmid、Helv。奇姆。Acta, 1975, 58, 1001.in 甲醇(10ml)和浓盐酸(1ml)回流加热24小时。加入碳酸钠溶液和二氯甲烷,有机相用水洗涤,干燥(Na,SO,),蒸发。将残留物在硅胶上色谱,以获得纯异鳄胆碱(13)(15 mg),起始原料(75将Tabernaelegantine C(3)转化为Taberna-elegantine D(a).-tabernaelegantine C(50 mg)在甲醇(8 ml)和浓盐酸(1 ml)中的溶液在回流下加热16 h。将混合物用碳酸钠溶液稀释并用氯甲烷萃取,蒸去提取液。制备t.1.c.{硅胶;EtOAc-MeOH-H20(100:5:2)]产生化合物(3)(13mg)、(13)(8mg)和(4)(26mg)。我们感谢 N. Neuss 博士和 I. Scott 博士提供 Ibogaalkaloids 样本。[6/018 收到,19763 年 1 月 5 日)和 (2)(90 毫克)

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号