首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Imidoylstannanes, improved preparation and uses as acylanion equivalents
【24h】

Imidoylstannanes, improved preparation and uses as acylanion equivalents

机译:亚胺基锡烷,改进的制备和用作酰基阴离子当量

获取原文
获取外文期刊封面目录资料

摘要

2283J. CHEM. SOC. PERKIN TRANS. I 1994 Imidoylstannanes, Improved Preparation and Uses as Acylanion Equivalents Bernard Jousseaume,a Nathalie Vilcot,a Alfredo Ricci and Edward R. T. Tiekink'j a Laboratoire de Chimie Organique et Organometallique, URA 35 CNRS, Universite Bordeaux I, 357, cows de la Liberation, 33405 Talence, France Department of Chemistry, The University of Adelaide, Adelaide, S.A. 5005 Australia An improved preparation of imidoylstannanes, by reaction of triorganostannyllithiums with imidoyl chlorides, is reported. This reaction is effective when phenyl or methyl groups are substituents on the tin atom, and when N-aryl C-alkyl or C-aryl imidoyl chlorides are used. After reaction with acyl chlorides, imidoylstannanes led to high yields of a-keto imines, which can be further hydrolysed into a-diketones.Transmetallation with organolithiums selectively gave the corresponding lithium reagents which showed a normal behaviour with alkyl halides, silicon halides, epoxides or chloroformates, leading to functional imines, hydrolysable to the corresponding ketones. This route forms a new entry to Walborski reagents. Acyl anion equivalents are versatile intermediates in synthetic organic reactions. They have been known for a long time as, for instance, acetylide anions that, after reaction and hydrolysis, can be converted into ketones,2 or nitronate anions which after addition to carbonyl compounds can be transformed into a carbonyl group.3 More recently, new acyl anion equivalents have been developed from the metallation of dithioacetals and vinyl derivatives,' and studies in this field continued apace.6 On the other hand, organotin compounds have proven to be important reagents in organic synthesis.The ease with which tin-carbon bonds are cleaved often allows the selective transfer of organic moieties from the metal to organic substrates.' This transfer can be performed after transmetallation with a lithium reagent from vinyl-,' all~l-,~ benzyl and a-hetero substi- tuted organostannanes, or under palladium catalysis. l2 The latter reaction broadened the scope of applications of organotins to carbonsarbon bond formation, since this mild method may be used in the presence of numerous functional groups.l2 Acylstannanes can be employed under catalysis, allowing an easy transfer of acyl groups to organic substrates such as acyl halide^.'^ Imidoylstannanes, known for a long time,14 and for which we recently proposed a new method of preparation,' ' have found only a limited number of applications.lh However, recent findings on the access to (silyliminomethy1)stannanes by the palladium-catalysed reac-tion of isocyanides with organo~ilylstannanes,~ and on their selective transmetallation with butyllithium,' * showed the potential of this class of compounds. In the same field, Walborsky earlier demonstrated the stability and usefulness of iminoyllithiums, prepared by addition of lithium reagents to isocyanides." Herein is reported an account of an improved synthesis of aryl imidoylstannanes by coupling triorgano- stannyllithiums with imidoyl chlorides, and of their reactivity towards acyl chlorides and organolithiums.Results and Discussion Imidoylstannanes were obtained in high yield by the coupling of imidoyl chlorides with triorganostannyllithiums. This route has previously been described to give imidoylstannanes in very low yield l4 and, with acyl chlorides, only impure acylstannanes 2o were obtained. With a careful control of the reaction temperature, however, and with the use of a bulky 2,6-xylyl group on nitrogen instead of a simple phenyl to improve stability towards oxygen, better results were obtained (Table 1). The stoichiometry of the reagents is also critical, since Table 1 Preparation of imidoyltriorganostannanes R' R2 Yield () Me Ph 86 Ph Ph 79 Me Me Me p-MeOC,H, Mep-ClC,H, 69 72 68 Bu Me 16" Me Et 67 Me Bur 69 a Estimated yield by 19Sn NMR.unchanged imidoyl chloride reacts with the imidoylstannane formed at room temperature, and thus lowers the yield of the reaction. R2 R2 AN=;( + R'amp;nLi -,B"cMF Ad=( CI SnR13 Ar = 2,6-Me,C,H3 The reaction is general enough to tolerate alkyl (Me, Et, Bur) and aryl (Ph, p-MeOCamp;,, p-CIC,H,) groups on the imidoyl carbon. On the tin atom, methyl and phenyl groups were successfully used. With tributylstannyllithium, the imidoyl- stannane was recovered in low yield, together with aldimine, which suggests a single electron-transfer process leading to reductiom2 Imidoylstannanes are characterized by their '3C NMR spectra having a signal for the imine carbon around 190 ppm with a 1J('3C-1'9Sn) in the range 200-280 Hz.With methyl groups on the tin atom, the I9Sn NMR resonance lies in the range -80 to -90 ppm; this is the same region as for acylstannanes.*' NMR data indicate that only one isomer was formed during the reaction. Since imidoyl chlorides exist in the 2 configuration22 and, further, since the coupling of lithium reagents with vinylic species usually occurs stereo~pecifically,~~ it was reasonable to assign the Z configuration to the imidoylstannanes. A 2D NOESY experiment conducted on 4-chloro-a-(2,6-xylylimino)benzyltrimethylstannane showed a clear correlation between the trimethylstannyl hydrogens and the methyl hydrogens of the xylyl group.No correlation was observed between ortho hydrogen of the 4-chlorobenzyl group and methyl hydrogens of the xylyl group. An independently reported NOE experiment on butyliminoethyl(tributy1)- c(35) yi!?C(34) Fig. 1 ORTEP38 view of 2,6-Me2C6H4NC(SnPh,)Ph with thermal ellipsoids at the 20 probability level. Selected interatomic bond lengths (A) and angles Sn-C(1), 2.178(5); Sn-C(l l), 2.121(6);(O): Sn-C(21), 2.1 19(6); Sn-C(3 l), 2.122(6);C( 1)-N( l), 1.272(7);C( 1kC(41), 1.484(8); N( I)-C(51), 1.41 4(8); C( 1 )-Sn-C( I l), 107.7(2); C( 1 )-Sn-C(21), 117.7(2); C(1)-Sn-C(31), 110.3(2); C(l 1)-Sn-C(21), 108.8(2); C(11)- Sn-C(31), 107.5(2); C(21)-Sn-C(31), 104.5(2); Sn-C(1)-N(I), 122.8(4); Sn-C(l)-C(41), 119.4(4); N(1)-C(1 jC(41), 117.8(5); C(l)-N(ljC(51), 123.4(5).Table 2 Reaction of imidoylstannanes with acyl chlorides Keto imine a-Diketone R2 R3 yield () yield () Ph Ph Ph Ph Ph Ph p-ClC,H, Me Ph stannane led to the same conclu~ion.~~ Nevertheless, a crystal structure determination was conducted on ~r-(2,6-xylyl-imino)benzyl(triphenyl)stannane (Fig. 1). It revealed a Z configuration which confirmed the NOESY studies. There were no significant intermolecular contacts; the closest non- hydrogen contact occurs between C(35) and C(35') 3.41(1) A. In the molecule, the tin atom exists in a distorted tetrahedral geometry with the C-Sn-angles lying in the relatively narrow range of 104.5(2)-117.7(2)"; the greatest deviation from the ideal tetrahedral angle is found for C( 1)-Sn-C(21).Reflecting the disparate organic groups, the Sn-C bond distances fall into two classes, i.e. the Sn--C(Ph) distances lie in the range 2.119(6)- 2.122(6) A, in contrast to the Sn-C(1) bond which is significantly longer at 2.178(5) A, in the range of tin-vinyl bonds.25 The C(1)-N(1) bond distance of 1.272(7) A is consistent with significant double bond character and the angles subtended by the donor atoms at both the C(l) and N(l) are indicative of sp2 centres. The Sn, N(l), C(1), C(41) and C(51) atoms lie 0.000(4), 0.035(6), 0.016(6), -0.024(6) and -0.046(7) A, respectively, out of the least-squares plane through these atoms.The PhC=NC,H,Me, ligand is not planar, however, as shown in the torsion angles of 6.6(9) and -89.0(8)" for C(42)/C(41)/C( 1)/N( 1) and C(52)/C(5l)/N(l)/C( l), respectively. The imidoylstannanes were then treated with acyl chlorides J. CHEM. SOC. PERKIN TRANS. 1 1994 under palladium catalysis, to give keto imines as previously described for acylstannanes.I3 In fact, they were much more reactive than acylstannanes, since a palladium catalyst, heating and long contact time were unnecessary to achieve the reaction. Indeed, the coupling occurred very rapidly at room tem-perature, leading to the desired products in good yield. These were purified by column chromatography on alumina, without hydrolysis of the imine moiety or by distillation.The reaction was very effective when aromatic imidoylstannanes and aromatic acyl chlorides were used (Table 2). With either aliphatic imidoylstannanes and aromatic acyl chlorides, or with aromatic imidoylstannanes and aliphatic acyl chlorides, the coupling failed, and only degradation products were recovered. Aliphatic acyl chlorides were also found unsuitable in the coupling with acylstannanes. l3 Keto imines, which can be considered as monoprotected 1,2-diketone~,~,cannot be obtained from unsymmetrical a-diketones since the mono-imination of a-dicarbonylated compounds is only selective with well-differentiated groups around the carbonyls, such as in 1 -phenylpropane- 1,2-dione or phenylglyoxal. 27 After hydrolysis, 172-diketones can be recovered in high yield.R2 200c+ R3COCI Et20Ad=( SnMe3 ArNq I? 0 When treated with methyllithium, at -78 "C in THF, aromatic imidoylstannanes underwent clean transmetallation, leading to the corresponding iminoyllithiums. The reaction was very selective since no addition to the azomethine linkage was observed; this contrasts to what happens with acylstannanes. The imidoyllithium having R = Ph was characterized by treatment with deuterium oxide, which led to N-2Hbenzyl- idene-2,6-xylylamine containing 95 deuterium incorpor- ation. This method turns out to be a good way to prepare this class of lithium reagent, since addition of aryllithiums to isocyanides gives less good yields of the corresponding imidoyllithiums than aliphatic lithium compounds, l9 and since transmetallation of (silyliminomethy1)stannanes does not allow an access to aromatic imidoyllithiums.* R2 MeLi, THF. -78 "C -ArNd R2 A~N=( (-Me,Sn)SnMe, Li Ar = 2,6-Me,C6H3 When the same transmetallation was attempted with 1-(2,6- xylylimino)ethyl(trimethyl)stannane and methyllithium, fol-lowed by alkylation with ethyl bromide, the coupling product was isolated in only 39 yield, together with 1-(2,6-xyIyl-imino)butane (25) and 3-(2,6-~ylylimino)hexane(873, indi-cating that lithiation occurred also on the methyl to the azomethine. The reactivity of the aromatic imidoyllithiums was then probed with alkyl halides, silicon halides, benzaldehyde and isobutyl chloroformate (Table 3).The corresponding products were isolated in high yield, indicating a normal behaviour of R2 R2 ArN==( ArN=( HDIH -o=(R2 Li E E Ar = 2,6-Meamp;H3 J. CHEM. SOC. PERKIN TRANS. 1 1994 2285 Table 3 Reactions of imidoyllithiums with selected electrophiles Imine 2,6-Me2C6H,N=CR'R2 Aldehyde or ketone R2 EX ( yield) ( yield) Ph Ph Ph Ph Ph Ph Ph Ph p-CIC6H4 H2O D2O Me1 EtBr EtBr Me3SiC1 Bu'Me,SiCl PhCHO CICOOBu' R' = H,R2 = Ph(98) R' = D,R2 = Ph(97) R' = Et, R2 = Ph (86) R' = Et, R2 = p-CIC6H4 (82) R' = SiMe,, R2 = Ph (82) R' = SiMe2Bu',R2 = Ph(88) R' = C(OH)Ph,R2 = Ph(87) R' = COZBui, R2 = Ph (65) R' = Me, R2 = Ph (85) PhCHO (95) PhCDO (95) PhCOMe (81) PhCOEt (84) p-ClC,H,COEt (78) PhCOSi(Me,)Bu' (81) PhCOCH(0H)Ph (82) PhCOC0,Bu' (60) Table4 Crystallographic data for a-(2,6-~ylylimino)benzyl(triphenyl)-stannane Formula C33H29NSn Crystal size (mm) 0.23 x 0.23 x 0.40 Crystal system Monoclinic Space group 4 1 6.51O( 2)p21 In WA 9.036(3) CIA 1 8.896( 2) PI" 110.58(1) VIA3 2638.9(7) z 4 PcIg cm F(000) 1.405 1136 p/cm-' 9.89 Transmission coefficients 0.948-1.058 Data collected -h, +k, fl No.of data collected 6922 No. of unique data 670 1 Ra 0.049 No. of unique data with I b 30(I) 460 1 R 0.032 Residual density (e A-3)Rw 0.057 0.39 these lithium compounds. Alkylation was effective both with iodides (85) and bromides (82), when, in contrast, imidoyllithium prepared from (butylimino)propyltributyl-stannane failed to give the expected coupling products with organic halides.24 Trimethylchlorosilane and tert-butyl-(dimethy1)chlorosilane led into the corresponding iminoyl- silanes, which could be hydrolysed to acylsilanes.With benzaldehyde, the desired a-hydroxy imine was obtained (87), and hydrolysed to give the corresponding a-hydroxy ketone (81). It is noteworthy that the recently reported samarium- mediated coupling of organic halides, isocyanide and carbonyl compounds, very effective with alkyl halides, does not allow the preparation of aryl-substituted a-hydroxy imines.28 Isobutyl chloroformate gave the desired a-imino ester (65), which, in turn, led to the corresponding a-keto ester (60), after hydrolysis.Thus, the present procedure broadens the synthetic utilities of organostannanes. It provides a valuable access to imidoyl- stannanes and demonstrates their synthetic applications for carbon4arbon bond formation either by direct reaction with acyl chlorides, or after transmetallation with lithium reagents. Experimental All reactions were carried out under a nitrogen atmosphere. THF and diethyl ether were distilled from sodium benzo- phenone ketyl prior to use. Pentane and light petroleum were distilled from calcium hydride. Imidoyl chlorides were obtained from the reaction of the corresponding amides with phosphorus pentachloride. 'O Tributylstannyllithium 30 was prepared by deprotonation of tributylstannane. Lithium tri- phenyl- and trimethyl-stannates were prepared by cleavage of the corresponding hexaorganodistannane ,' by lithium in THF.The tin reagents were used immediately after preparation. 'H and 13C NMR spectra were recorded on a Bruker WH 250 (internal reference Me,Si). "Sn NMR spectra were recorded on a Bruker AC 200 (internal reference Me,Sn). J Values are given in Hz. Crystallography.-Intensity data were measured (0-28 scan technique, room temperature) on a Rigaku AFC6R diffract- ometer using graphite-monochromatized Mo-Ka radiation, A = 0.710 73 A, up to a maximum Bragg angle of 27.5'. The data set was corrected for Lorentz and polarization effects32 and an empirical absorption correction was applied. The structure was solved by direct-methods34 and refined by a full-matrix least-squares procedure based on F'.Non-H atoms were refined with anisotropic thermal parameters and H atoms were included in the model at their calculated positions. Unit weights were employed in the refinement. The teXsan software package,32 installed on an Iris Indigo workstation, was employed for data manipulation. For details of the crystal data see Table 4. Tables of atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.* Procedure for Preparation of Imidoy1stannanes.-To a solution of imidoyl chloride (20 mmol) in THF (30 cm3) at -78 'C were slowly added a triorganostannyllithium solution (20 mmol) via a cannula.The solution was stirred at -78 "C for 1 h and at ambient temperature for 1 h and was then evaporated. The residue was extracted with pentane (100 cm3) and the extract then evaporated. The product was isolated by liquid chromatography on a deactivated (6 H,O) alumina column using light petroleum as eluent. Alternatively, trimethylstannylated compounds can be distilled in a Kugel- rohr apparatus. a-(2,6-Xylylimino)benzylidene(trimethyl)-stannane: 86; m.p. 48 "C; 6,(250 MHz; CDCl,) 0.12 (9 H, s, 2JSn,H53), 2.25 (6 H, s) and 7.0-7.8 (8 H, m); 6,(62.9 MHz; CDCl,) -6.9('JSn,c320), 18.3,123.5, 127.1,128.0, 128.5, 129.5, 143.9(2Jsn,c107), 152.1 (3Jsn,c52); 162.5 and 190.9 ('Jsn,c317); 6,,(74.5 MHz; C,D,) -76.1; Found (FABHRMS): 374.0904.Calc. for C,~H,,NSI'I: m/z 374.09313. a-(2,6-Xylylimino)-benzylidene(tripheny1)stannane: 79; m.p. 94 'C;6,(250 MHz; CDCl,) 2.21 (6 H, s), 6.75 (3 H, m), 7.40 (18 H, m) and 8.15 (2 H, m); 6,(62.9 MHz; CDCl,) 18.7, 124.7, 125.7, 128.2, 128.6 (2Jsn,c51),128.9,130.5, 137.0(3Jsn,c39), 139.4, 143.5, 151.8and 186.3 ('Jsn,c297); 6,,(74.5 MHz; C,D,) -184.6 Found * For details of the scheme see 'Instructions for Authors (1994)', J. Chem. Soc., Perkin Trans. I, 1994, Issue 1. (FABHRMS): 560.1377. Calc. for C,,H,,NSn: m/z 560.14001. 4-Methoxy-a-(2,6-xylylimino)benzylidene(trimethyl)stannane: 69; b.p. 155 "C ( lo4 Torr); 6,(250 MHz; CDCl,) 0.01 (9 H, s, ,JSn,, 51), 2.08 (6 H, s), 3.49 (3 H, s), 6.9 (5 H, m) and 7.8 (2 H, m); 6,(62.9 MHz; CDCl,) -6.9 (lJsn,c316), 18.4, 54.9; 114.1, 123.3,128.1,129.1,130.1,131.7,136.5,162and191.5(1Jsn,c312); 6,,(74.5 MHz; C6D6) -79.6; Found (FABHRMS): 404.1000.Calc. for C, 9H26NOSn: m/z 404.10361. 4-Chloro-a-(2,6- xylylimino)benzylidene(trimethyl)stannane: 72; m.p. 94 "C; b.p. 160 "C Torr); 6,(250 MHz; CDCl,) -0.01 (9 H, s, ,JSn,, 51), 2.08 (6 H, s) and 6.9-7.8 (7 H, m); 6,(62.9 MHz; CDCI,) -7.1 ('Jsn,,-319), 18.4,123.6,128.2,128.7, 128.8, 135.6, 142.1 (2Jsn,c112), 152.3 50); 160.9 and 188.0 (lJsn,c308); d~~(74.5MHZ; C6D6) -74.8 Found (FABHRMS): 408.0539. Calc. for C,,H,,ClNSn: m/z 408.05411. Trimethyl1-(2,6- xylylimino)ethylstannane: 68; b.p. 130 "C ( Torr); 6,(250 MHz;CDCl,) -0.15(9H,~,~J,,,,55), 1.94(6H,s),2.35(3H,s, ,JSn,H 28) and 6.7-6.9 (3 H, m); dc(62.9 MHz; CDC1,) -8.7 ('.Isn,,-316), 18.3, 31.8 (2Jsn,c137), 123.4, 128.1, 128.4, 152.4 (,Jsn,c 60) and 191.6 ('Js,,~313); d~~(74.5 MHZ; C6D6) -81.8 Found: (HRMS): 31 1.0691. Calc.for C,,H,,NSn: m/z 3 1 1.06961. Tributylc1-(2,6-~ylylimino)ethylstannane: 16; b.p. 160 "C (10-4Torr);6H(250 MHz; CDCl,) 0.7-1.6(27 H, m), 2.05(6H,s),2.46(3H,s,3Js,,,26)and6.8-7.0(3H,m);6c(62.9 J. CHEM. SOC. PERKIN TRANS. 1 1994 m.p. 98 "C (Found: C, 75.72; H, 4.94; N, 3.87. Calc. for C,,H,,ClNO: C, 75.97; H, 5.22; N, 4.03); 6,(250 MHz; CDCl,) 2.05 (6 H, s) and 6.6-7.9 (12 H, m); 6,(62.9 MHz; CDCl,) 18.8,124.3,127.7,128.0,128.2,128.3,128.4,129.0,129.2, 130.4,132.0, 133.3,135.4,166.7 and 195.9. 1-(4-Nitropheny1)-2- phenyl-2-(2,6-xylylimino)ethanone:46; m.p.1 18 "C (Found: C, 74.2; H, 5.3;N, 7.4. Calc. for C,,H,,N,O,: C, 73.73; H, 5.06; N, 7.82); 6,(250 MHz; CDCl,) 2.08 (6 H, s) and 6.4-8.2 (12 H, m);6,-(62.9 MHz; CDCl,) 18.4,118.0,123.7, 124.3,127.9,128.0, 129.2,129.3,132.3,134,139.3,146.6,150.5,165.9and196.3.1-(1-Naphthyl)-2-phenyl-2-(2,6-xylylimino)ethanone:72 (Found: C,85.8; H,6.0;N,3.6.Cak.fOrC26H21NO:C,85.92;H,5.82;N, 3.85);6,(250 MHz; CDC1,) 2.13 (6 H, s) and 6.5-8.6 (15 H, m); 6,(62.9 MHz; CDCl,) 18.7, 123.7, 124.2, 125.9, 126.8, 128.1, 128.3, 128.5, 128.7, 129.2, 130.6, 131.7, 134.1, 135.9, 147.5, 167.8 and 199.4. 2-(4-Chlorophenyl)- 1-(4-methoxyphenyl)-2-(2,6-~ylylimino)ethanone:74 (Found: C, 72.6; H, 4.95; N, 4.0. Calc. for C,,H,,ClNO,: C, 73.1 1; H, 5.33; N, 3.71); 6,(250 MHz; CDCl,) 2.25 (6 H, s), 3.13 (3 H, s) and 6.4-7.9 (1 1 H, m); 6,(62.9 MHz; CDCl,) 18.6, 54.7, 113.8, 123.9, 127.4, 127.8, 127.9, 128.2, 129.2, 129.4, 131.4, 134.1, 137.7, 147.5, 166.0 and 194.2.Procedure for the Preparation of Diketones.-A solution of MHz;CDCl,) 10.2('JSn,,-307), 13.6, 18.3,27.3(2Jsn,c60),29.3,keto imine (5 mmol) in a mixture of THF (20 cm3) and HCl(3 32.7 (2Jsn,c112), 123.4, 127.8, 128.0, 152.4 (,JSn,,-50) and 192.8 ('Jsn,,-312); 6sn(74.5 MHZ; C6D6) -85.6; Found (HRMS): 437.2197. Calc. for C,,H,,NSn; m/z 437.21041. Trimethylcl- (2,6-xylylimino)propylstannane:67; b.p. 135 "C ( lo4 Torr); 6,(250 MHz; CDCl,) -0.13 (9 H, s, ,JSn,, 53, 1.17 (3 H, t), 1.96 (6 H, s), 2.63 (2 H, q, ,JSn,, 24) and 6.8-7.0 (3 H, m); dc(62.9 MHz; CDCl,) -8.4 ('Jsn,c312), 10.8, 18.0, 38.0 (,JSn,c 123), 123.1, 126.0,127.9, 151.9 (3Jsn,c49) and 195.0 ('JSn,,-302); 6sn(74.5 MHz; C6D6) -81.3; Found (HRMS): 325.0858.Calc. for C,,H,,NSn: m/z 325.08521. 2,2-Dimethyl-l-(2,6- xyly1imino)ethyll trimethylstannane: 69; b.p. 140 "C (1OP4 Torr); 6,(250 MHz; CDC1,) 0.03 (9 H, s, 2JSn,H56), 1.33 (9 H, s), 2.07 (6 H, s) and 6.8-7.0 (3 H, m); 6,(62.9 MHz; CDCl,) 6 -5.1 ('Jsn,,304), 18.2,28.1,45.0(2Js,,,117),123.0,125.6,128.0, 150.7 (,JSn,c59) and 197.9 ('Jsn,c301); 6,,(74.5 MHZ; C6D6) -89.0; Found (HRMS): 353.1 154. Calc. for C,,H,,NSn: m/z 353.1 1651. Procedure for the Preparation of Keto 1mine.s.-In a Schlenk tube containing a solution of imidoylstannane (10 mmol) in diethyl ether (10 cm3) at room temperature, was added dropwise acyl chloride (10 mmol).After the mixture had been stirred for 15 min, it was evaporated and the residue chromatographed on silica gel (eluent light petroleum-diethyl ether 95 : 5). The crystalline keto imines were recrystallized from toluene-light petroleum (50 : 50). 1,2-Dipheny1(2,6-xylylimino)-ethanone: 80; m.p. 108 "C (Found: C, 84.7; H, 5.7; N, 4.15. Calc. for C,,H,,NO: C, 84.32; H, 6.1 1; N, 4.47);6,(250 MHz; CDC1,) 2.12 (6 H, s) and 6.7-8.0 (12 H, m); 6,(62.9 MHz; mol dm-,; 10 cm3) was stirred for 15 h at room temperature. The mixture was extracted with ether (2 x 30 cm3), and the combined extracts were dried, filtered and evaporated. The product was then purified by column chromatography on silica (eluent: light petroleum4iethyl ether, 90 : 10).Benzil, 76; m.p. 95 "C. 2-(4-Methoxyphenyl)-l -phenylethanedione: 73; m.p. 53 "C(lit.,35 52 "C); 6,(250 MHz; CDCl,) 3.1 (3 H, s) and 7.0- 7.9 (9 H, m); 6,(62.9 MHz; CDCl,) 54.6, 113.8, 126.5, 128.0, 128.4, 131.9, 136.7, 192.9 and 193.6. 2-(3-Methoxyphenyl)-l- phenylethanedione: 69; m.p. 92 "C; 6,(250 MHz; CDCl,) 3.61 (3 H, s) and 7.0-7.8 (9 H, m); 6,-(62.9 MHz; CDCl,) 55.4, 113.1, 121.7,123.1,129.1,129.8,130.1,132.9,134.2,134.9,160.1, 193.9 and 194.6 (Found: C, 74.4; H, 5.4. Calc. for Cl,Hl2O3: C, 74.99; H, 5.03). 2-(4-Chorophenyl)- 1-phenylethanedione: 68, m.p. 76 "C (lit.,35 75 "C); 6,(250 MHz; CDCI,) 7.1-7.9 (9 H, m); 6,-(62.9 MHz; CDCl,) 129.1, 129.4, 129.9, 131.2, 131.3, 132.8, 135.1, 141.5, 193.0 and 193.8.2-(4-Nitrophenyl)-l-phenyl-ethanedione: 40; m.p. 138 "C (lit.,36 139 "C); 6,(250 MHz; CDCl,) 7.0-8.2 (8 H, m); 6,-(62.9 MHz; CDCl,) 118.2, 124.6, 129.0, 132.1, 134.2, 139.6, 146.1, 150.2, 192.8 and 193.3. 2-(1- Naphthy1)-1-phenylethanedione: 67; m.p. 97 "C (lit.,,, 97 "C); 6,(250 MHz; CDCl,) 6.8-8.0 (1 1 H, m) and 9.55 (1 H, d); 6,(62.9 MHz; CDCl,) 124.6, 127.2, 127.7, 128.1, 128.4, 129.0, 129.2, 129.6, 130.1, 134.5, 135.2, 135.8, 194.6 and 197.5. 1-(4-Chlorophenyl)-2-(4-methoxyphenyl)ethanedione: 68; m.p. 127 "C (lit.,36 128 "C); 6,(250 MHz; CDCl,) 4.1 (3 H, s) and 6.9-8.0 (8 H, m); 6,-(62.9 MHz; CDCl,) 61.0, 120.0, 130.2, 134.8, 136.4, 136.5, 137.4, 145.6, 170.2, 197.7and 198.9.CDCl,) 18.8,124.1,127.7,128.1,128.3,128.5,128.8,129.0,129.2, Transmetallation of Imidoy1stannanes.-To a solution of 131.9,133.9,135.2,135.7,167.3and 197.1.1-(4-Methoxyphenyl)-imidoylstannane (10 mmol) in THF (20 cm3) at -78 "C, was 79; m.p. 132 "C (Found: added dropwise methyllithium in diethyl ether (1.6 mol dm-,; 10 2-phenyl-2-(2,6-xylylimino)ethanone: mmol). After 15 min, the electrophile (1 1 mmol) in THF (10 C,80.2;H,5.75;N,3.8.Calc.forC,3H,,NO,:C,80.44;H,6.16; N, 4.08); 6,(250 MHz; CDCl,) 2.22 (6 H, s), 3.05 (3 H, s) and cm3) was also added to the mixture and the whole was then stirred for 1 h at room temperature. After this it was hydrolysed 6.3-8.1(12H,m);6c(62.9MHz;CDC1,)18.9,54.9,114.0,123.9, and extracted with diethyl ether (2 x 50 cm3). The solvents 126.6,127.7,128.0,128.1,128.3,128.4,128.8,129.1,131.8,136.0, 167.4 and 194.9.1-(3-Methoxyphenyl)-2-phenyl-2-(2,6-xylyl-imino)ethanone: 78 (Found: C, 80.05;H, 5.7; N, 3.8. Calc. for C,,H,,NO,: C, 80.44;H, 6.16; N, 4.08);6,(250 MHz; CDCl,) 2.09 (6 H, s), 2.94 (3 H, s) and 6.8-7.9 (12 H, m);dC(62.9 MHz; CDCl,) 18.8,54.7,112.1, 121.2, 122.6, 124.1,127.7, 128.2, 128.3, 129.2, 129.6, 131.9, 135.8, 136.4, 147.8, 160.2, 167.2 and 196.9. 1-(4-Chlorophenyl)-2-phenyl-2-(2,6-xylylimino)ethanone:77; were evaporated and the products were purified by distillation (Kugelrohr apparatus). N-Benzylidene-2,6-xylylamine:91; b.p. 100 "C (0.05 Torr) (Found: C, 85.4; H, 7.6; N, 6.3. Calc. for C,,H,,N: C, 86.08; H, 7.22; N, 6.69); 6,(250 MHz; CDCl,) 2.14 (6 H, s), 6.9-7.8 (8 H, m) and 8.15 (1 H, s); 6,-(62.9 MHz; CDCI,) 18.3,124.3,127.6,128.6,129.0,129.3,132.0,136.6,151.7 and 162.6.N-(2HBenzylidene)-2,6-xylylamine: 93; b.p. J. CHEM. SOC. PERKIN TRANS. 1 1994 100 "C (0.05 Torr); 6,(250 MHz; CDCI,) 2.14 (6 H, s) and 6.9-7.9(8H,m);6,(62.9MHz;CDC13)18.7,124.1,127.3,128.5, 128.8, 129.1, 131.8, 136.4, 151.7 and 162.8 (t, 'JC,,24). N-(l- Phenylethylidene)-2,6-~yIylamine:85; b.p. 120 "C (0.05 Torr) (Found: C, 85.4; H, 8.1; N, 5.8. Calc. for C,,H,,N: C, 86.06; H, 7.67; N, 6.27); 6,(250 MHz; CDCI,) 2.1 (6 H, s), 2.2 (3 H, s), 7.1-8.3 (8 H, m);6,(62.9 MHz; CDCI,) 17.6, 18.2, 123.0, 125.8, 127.3, 128.1, 128.6, 129.0, 130.5, 139.3 and 162.7.N-(l- Phenylpropylidene)-2,6-~ylylamine:86; b.p. 130 "C (0.05 Torr) (Found: C, 85.5; H, 7.8; N, 5.5. Calc. for C1,H19N: C, 86.03; H, 8.07; N, 5.90);6,(250 MHz;CDC1,) 1.03 (3 H, t), 2.17 (6 H, s), 2.56 (2 H, q) and 7.0-8.1 (8 H, m);6,(62.9 MHz; CDCl,) 11.7, 18.5, 24.1, 123.0, 125.8, 127.9, 128.2, 128.8, 130.6, 138.2, 149.1 and 170.5. N- 1-(4-Chlorophenyl)propylidene-2,6-xylyl-amine: 82; b.p. 140 OC (0.05)(Found: C, 75.7; H, 6.35; N, 4.8. Calc. for C, 7H1 ,ClN: C, 75.17; H, 6.68; N, 5.15); 6,(250 MHz; CDC13)1.08(2H,t),2.21(6H,s),2.59(3H,q)and7.0-8.1(7H, m);6,(62.9 MHz; CDCl,) 11.6, 18.4, 23.8, 123.1, 125.5, 128.2, 128.9,129.2,136.3,136.6,148.8and 169.1. Trimethyl(2,6-xylyl- imino)benzylsilane: 82; b.p. 130 "C (0.05 Torr) (Found: C, 76.2; H, 7.7; N, 5.2.Calc. for C,,H,,NSi: C, 76.81; H, 8.24; N, 4.98); 6,(250 MHz; CDCI,) 0.40 (9 H, s), 2.03 (6 H, s), and 6.8-7.9 (8 H, m); 6,(62.9 MHz; CDC1,) -0.9, 18.6, 122.9, 125.7, 127.8, 128.3, 129.1, 129.9, 130.3 and 131.6. tert-But yl (dimet h yl )a-(2,6-xylylimino) benzy1)silane: 8 8; b.p. 145 "C (0.05 Torr) (Found: C, 78.4; H, 8.7; N, 4.8. Calc. for C,,H,,NSi: C, 77.96; H, 9.03; N, 4.33);6,(250 MHz; CDCI,) 0.44 (6 H, s), 1.20 (9 H, s), 2.17 (6 H, s) and 6.9-7.2 (8 H, m); dc(62.9 MHz; CDCl,) -4.7, 19.0, 27.2, 122.2, 124.7, 125.6, 127.7, 127.9, 128.0, 141.8, 150.9 and 188.3. 1,2-Diphenyl-2-(2,6- xyly1imino)ethanol: 87; b.p. 180 "C (0.01 Torr) (Found: C, 83.5; H, 6.6; N, 4.75. Calc. for C,,H,,NO: C, 83.78; H, 6.71; N, 4.44); 6,(250 MHz; CDCl,) 2.26 (6 H, s), 4.92 (1 H, s), 5.93 (1 H, s) and 6.8-7.9 (13 H, m); 6,(62.9 MHz; CDCI,) 19.4, 65.7, 122.1, 127.9, 128.1, 128.8, 128.9, 129.0, 129.1, 129.4, 133.6, 135.4, 138.6, 144.2 and 198.7.Isobutyl 2-phenyl-2-(2,6- xy1ylimino)acetate: 65; b.p. 150 "C (0.05 Torr) (Found: C, 78.1; H, 7.0; N, 4.8. Calc. for C,,H,,NO,: C, 77.64; H, 7.49; N, 4.53); 6,(250 MHz; CDCl,) 0.97 (6 H, d), 2.00 (1 H, m), 2.12 (6 H, s), 4.15 (2 H, d) and 6.9-8.0 (8 H, m); 6,(62.9 MHz; CDCI,) 19.0,27.7,71.9, 124.3, 127.8, 128.6, 129.3, 128.9, 129.9, 132.5, 134.9, 164.1 and 170.0. Hydrolysis of Imines.-A solution of imine (5 mmol) in a mixture of THF (20 cm3) and HCl (10 cm3; 3 mol drn-,) was stirred for 15 h at room temperature and then extracted with ether (2 x 30 cm3).The combined extracts were dried, filtered and evaporated. The product was then purified by column chromatography on silica (eluent: petroleum-diethyl ether, 90 : 10). Their characteristics were found identical with those of authentic materials. Acknowledgements The Australian Research Council is thanked for support of the crystallographic facility. We are indebted to Schering-France Company for a gift of organotins. References 1 For comprehensive reviews see: 0.W. Lever, Tetrahedron, 1976,32, 1943. D. J. Ager, in Umpoled Synthons: A Survey of Sources and Uses in Synthesis, ed. T. A. Hase, Wiley, New York, 1987. 2 V. Jager and H. G. Viehe, Methoden der Organischen Chemie, 4th edn., vol.V/2a, 1977. 3 S. F. Martin, Synthesis, 1979, 633. 4 B. T. Grobel and D. Seebach, Synthesis, 1977,357. 5 J. E. Baldwin, 0. W. Lever and N. R. Izodikov, J. Org. Chem., 1976,41,2312. 6 D. Seyferth, R. M. Weinstein, R. C. Hui, W. L. Wang and C. M. Archer, J. Org. Chem., 1992,57,5620;J. Org. Chem., 1991,56,5768. C.J. Rao and P. Knochel, J. Org. Chem., 1991,56,4593; G. A. Olah and A. Wu, J. Org. Chem., 1991,56,902; A. R. Katritzky, Z. Yang and J. N. Lam, J. Org. Chem., 1991,56,6917; H. C. Cheng and T. H. Yan, Tetrahedron Lett., 1990, 673; M. Nemoto, Y. Kubota and Y. Yamamoto, Org. Chem., 1990,55,4515; J. Ichihawa, T. Sonoda and H. Kobayashi, Tetrahedron Lett., 1989, 5437; A. B. Smith, J. R. Empfield and H. A. Vaccaro, Tetrahedron Lett., 1989, 7325; K.Tamao, Y. Nakagawa, M. Arai, N. Miguchi and Y. Ito, J. Am. Chem. Soc., 1988,110,3712;S. W. McCombie, B. B. Shankar, A. K. Ganguly, A. Padwa, W. H. Bullock and A. D. Dyszlewski, Tetrahedron Lett., 1987,412; P. G. McDougal and J. G. Rico, J. Org. Chem., 1987,52,4817; A. B. Smith and M. J. Fukui, J. Am. Chem. Soc., 1987,109,1269. 7 M. Pereyre, J. P. Quintard and A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1987. 8 D. Seyferth and M. A. Weiner, J. Am. Chem. Soc., 1961, 83, 3583. 9 D. Seyferth and M. A. Weiner, J. Org. Chem., 1959,24, 1395. 10 D. Seyferth, R. Suzuki, C. J. MurphyandC. R. Sabet, J.Organometal. Chem., 1964,2,431. 11 D. Seyferth, F. M. Armbrecht, R. L. Lambert and W. Tronich, J. Organometal. Chem., 1972,44,299.12 J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986,25,508;T. N. Mitchell, Synthesis, 1992, 803. 13 J. B. Verlhac, E. Chanson, B. Jousseaume and J. P. Quintard, Tetrahedron Lett., 1985, 6075. 14 J. Jappy and P. N. Preston, Inorg. Nucl. Chem. Lett., 1971, 7, 181. 15 B. Jousseaume, M. Pereyre, N. Petit, J. B. Verlhac and A. Ricci, J. Organometal. Chem., 1993,441, C 1. 16 A. Degl'Innocenti, S. Pike, D. R. M. Walton, G. Seconi, A. Ricci and M. Fiorenza, J. Chem. Soc., Chem. Commun., 1980,1201;G. Seconi, G. Pirazzini, A. Ricci, M. Fiorenza and C. Eaborn, J. Chem. Soc., Perkin Trans. 2, 1981, 1043. 17 Y. Ito, T. Bando, T. Matsuura and M. Ishikawa, J. Chem. Soc., Chem. Commun., 1986,980. 18 Y. Ito, T. Matsuura and M. Murakami, J.Am. Chem. Soc., 1987,109, 7888; M. Murakami, T. Matsuura and Y. Ito, Tetrahedron Lett., 1988, 355. Y. Ito and M. Murakami, Synthesis, 1990,245. 19 G. E. Nisnik, W. H. Morrison and H. M. Walborsky, J. Org. Chem., 1974,39,600. 20 A. Capperucci, A. Degl'Innocenti, C. Faggi, G. Reginato and A. Ricci, J. Org. Chem., 1989, 54, 2966; G. Peddle, J. Organomet. Chem.,1968,14,139. E. Lindner and U. Kunze, J. Organomet. Chem., 1970, 21, P19. 21 J. K. Kochi, Organometallic Mechanisms and Catalysis, Academic Press, New York, 1978. 22 0. Exner, The Chemistry of Double Bonded Functional Groups, ed. S. Patai, Wiley, New York, 1977, p. 22. 23 B. J. Wakefield, The Chemistry of Organolithium Compounds, Pergamon Press, Oxford, 1974. 24 H. Ahlbrecht and V.Baumann, Synthesis, 1993,981. 25 B. Jousseaume, P. Villeneuve, M. Draeger, S. Roller and J. M. Chezeau, J. Organomet. Chem., 1988,349, C1. 26 T. W. Greene and P. G. M. Wuts, Protective Group in Organic Synthesis, Wiley, New York, 1992. 27 D. Armesto, M. G. Gallego, W. M. H. Horspooi, M. J. Ortiz and R. Perez-Ossorio, Synthesis, 1987, 657; B. Alcaide, G. Escobar, R. Perez-Ossorio, J. Plumet and I. M. Rodriguez, An. Quim., 1985, 81C, 190; B. Alcaide, G. Escobar, R. Perez-Ossorio, J. Plumet and D. Sanz, J. Chem. Res., 1984, (M), 1466. 28 M. Murakami, T. Kawano and Y. Ito, J. Org. Chem., 1993, 58, 1458. 29 B. C. Challis and J. A. Challis, The Chemistry of Amides, ed. S. Patai, Wiley, New York, 1970, p. 809. 30 W. C. Still, J. Am. Chem. Soc., 1978,100, 1481. 31 C. Tamborski, F. E. Ford and E. J. Soloski, J. Org. Chem., 1963,28, 237. 32 teXsan, Structure Analysis Sofrtware, Molecular Structure Corpor- ation, Texas, USA, 1992. 33 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158. 34 G. M. Sheldrick, SHELXS 86, Program for the Automatic Solution of Crystal Structure, University of Gottingen, Germany, 1986. 2288 J. CHEM. SOC. PERKIN TRANS. 1 1994 35 H. Kwart and M. M. Baevsky, J. Am. Chem. Soc., 1958, 80, 38 C. K. Johnson, Report ORNL-5138, Oak Ridge National 580. Laboratory, Oak Ridge, TN, 1976. 36 M. L. Black and H. A. Smith, J. Org. Chem., 1952,17, 1315. Paper 4/0 1508H 37 E. Anders, T. Clark and T. Gassner, Chem. Ber., 1986, 119, Received 14th March 19941350. Accepted 20th April 1994
机译:2283J. CHEM. SOC. PERKIN 译.I 1994 亚胺酰锡,改进的制备和用作环化物当量 Bernard Jousseaume,A Nathalie Vilcot,A Alfredo Ricci 和 Edward R. T. Tiekink'j a Laboratoire de Chimie Organique et Organometallique, URA 35 CNRS, Universite Bordeaux I, 357, cows de la Liberation, 33405 Talence, France 阿德莱德大学化学系, 阿德莱德, S.A. 5005 澳大利亚 亚胺酰锡的改进制备, 据报道,通过三有机锡烷基锂与酰亚胺酰氯的反应。当苯基或甲基是锡原子上的取代基时,以及当使用N-芳基C-烷基或C-芳基亚胺酰氯时,该反应是有效的。与酰氯反应后,亚胺基锡化物得到a-酮亚胺,可进一步水解为a-二酮酮。有机锂的金属化反应选择性地得到相应的锂试剂,这些试剂与烷基卤化物、卤化硅、环氧化物或氯甲酸酯表现出正常行为,导致官能亚胺,可水解为相应的酮。该路线是Walborski试剂的新入口。酰基阴离子当量是合成有机反应中的多功能中间体。长期以来,人们一直认为乙炔阴离子在反应和水解后可以转化为酮2,或者硝基阴离子在添加到羰基化合物后可以转化为羰基。3 最近,从二硫代缩醛和乙烯基衍生物的金属化中开发了新的酰基阴离子当量,并且该领域的研究继续快速发展.6另一方面,有机锡化合物已被证明是有机合成中的重要试剂。锡-碳键易于切割,通常允许有机部分从金属选择性转移到有机基材上。这种转移可以在用乙烯基-'all~l-,~苄基和a-杂取代的有机雌锡烷的锂试剂进行金属转移后,或在钯催化下进行。l2 后一种反应拓宽了有机锡在碳沙邦键形成中的应用范围,因为这种温和的方法可以在存在许多官能团的情况下使用.l2 酰基锡可以在催化下使用,允许酰基很容易转移到有机底物上,例如酰基卤化物^。^ 亚胺基锡,早已为人所知,14 我们最近提出了一种新的制备方法,'只发现了有限的应用.lh 然而,最近关于通过钯催化的异氰化物与有机~酰基锡烷的再反应获得(水利基锡1)锡,~以及它们与丁基锂的选择性金属化反应的发现,*显示了这类化合物的潜力。在同一领域,Walborsky早些时候证明了亚氨基酰锂的稳定性和有用性,亚氨基酰锂是通过将锂试剂添加到异氰化物中制备的。“ 本文报道了通过偶联三有机锡基锂与酰亚胺酰氯来改进芳基亚胺基锡烷的合成,以及它们对酰氯和有机锂的反应性。结果与讨论 亚胺酰氯与三有机锡烷基锂偶联得到亚胺酰亚胺酰锡,收率很高。该途径先前已被描述为以非常低的收率 l4 得到亚胺基锡,并且使用酰氯时,仅获得不纯的酰基锡烷 2o。然而,通过仔细控制反应温度,并在氮上使用大块的2,6-二甲苯基团代替简单的苯基来提高对氧的稳定性,获得了更好的结果(表1)。试剂的化学计量也很重要,因为表 1 亚胺酰基三有机甾烷的制备 R' R2 收率 (%) Me Ph 86 Ph Ph 79 Me Me p-MeOC,H, Mep-ClC,H, 69 72 68 Bu Me 16“ Me Et 67 Me Bur 69 a 估计收率 by 19Sn NMR.unchanged 亚胺酰氯与室温下形成的亚胺基锡烷反应, 从而降低反应的收率。R2 R2 AN=;( + R'&nLi -,B“cMF Ad=( CI SnR13 Ar = 2,6-Me,C,H3 该反应具有足够的一般性,足以耐受酰亚胺基碳上的烷基(Me,Et,Bur)和芳基(Ph,p-MeOC&,,p-CIC,H,)。在锡原子上,甲基和苯基被成功使用。使用三丁基锡烷基锂时,亚胺基锡烷与醛亚胺一起以低产率回收,这表明导致还原的单电子转移过程2 亚胺基锡的特点是其'3C NMR波谱在190 ppm左右,亚胺碳的信号在200-280 Hz范围内为1J('3C-1'9Sn)。这与酰基锡烷的区域相同。 核磁共振数据表明,在反应过程中只形成了一种异构体。由于亚胺酰氯以 2 构型存在22,此外,由于锂试剂与乙烯基物质的偶联通常以立体~特异性方式发生,~~ 因此将 Z 构型分配给亚胺基锡是合理的。对[4-氯-a-(2,6-木酰亚氨基)苄基]三甲基锡烷进行的二维NOESY实验表明,三甲基锡酰氢与二甲苯基甲基的甲基氢之间存在明显的相关性。4-氯苄基的邻位氢与二甲苯基的甲基氢之间没有相关性。一项独立报道的丁基亚氨基乙基(三丁基1)-c(35)yi!?C(34) 图1 2,6-Me2C6H4NC(SnPh,)Ph ORTEP38 20%概率水平下热椭球的视图。选定的原子间键长度(A)和角度Sn-C(1),2.178(5);锡-C(l l), 2.121(6);(O):Sn-C(21),2.1 19(6);锡-C(3 l), 2.122(6);C( 1)-N( l), 1.272(7);C( 1kC(41), 1.484(8);N( I)-C(51), 1.41 4(8);C( 1 )-Sn-C( I l), 107.7(2);C(1)-Sn-C(21), 117.7(2);C(1)-锡-C(31),110.3(2);C(l 1)-Sn-C(21), 108.8(2);C(11)-锡-C(31),107.5(2);C(21)-Sn-C(31), 104.5(2);Sn-C(1)-N(I), 122.8(4);锡-C(l)-C(41),119.4(4);N(1)-C(1 jC(41), 117.8(5);C(l)-N(ljC(51), 123.4(5).表2 酰亚胺基锡烷与酰氯酮亚胺a-二酮R2反应 R3收率(%) Ph Ph Ph Ph Ph Ph p-ClC,H, Me Ph Ph 锡烷导致相同的结果~离子~~ 然而,对~r-(2,6-二甲苯基亚氨基)苄基(三苯基)锡进行了晶体结构测定(图1)。它揭示了证实了NOESY研究的Z配置。没有明显的分子间接触;最接近的非氢接触发生在C(35)和C(35')之间[3.41(1)A]。在分子中,锡原子以扭曲的四面体几何形状存在,C-Sn角位于相对较窄的104.5(2)-117.7(2)“范围内;C(1)-Sn-C(21)与理想四面体角的偏差最大。反映不同的有机基团,Sn-C键距离分为两类,即Sn--C(Ph)距离在2.119(6)-2.122(6)A范围内,而Sn-C(1)键在2.178(5)A处明显更长,在锡-乙烯基键范围内.25 1.272(7) A的C(1)-N(1)键距离与显着的双键特性一致,供体原子在C(l) 和 N(l) 均表示 sp2 中心。Sn、N(l)、C(1)、C(41) 和 C(51) 原子分别位于通过这些原子的最小二乘平面外的 0.000(4)、0.035(6)、0.016(6)、-0.024(6) 和 -0.046(7) A。然而,PhC=NC,H,Me配体不是平面的,如C(42)/C(41)/C( 1)/N( 1)和C(52)/C(5l)/N(l)/C( l)的扭转角分别为6.6(9)和-89.0(8)”。然后用酰氯J. CHEM. SOC. PERKIN TRANS. 1 1994在钯催化下处理酰亚胺基锡,得到如前所述的酰基锡烷的酮亚胺。I3 事实上,它们比酰基锡更具反应性,因为钯催化剂、加热和长时间接触是实现反应所必需的。事实上,在室温下,偶联发生得非常快,从而产生了高产量的所需产品。这些通过氧化铝柱层析纯化,不水解亚胺部分或蒸馏。当使用芳香族酰亚胺基锡烷和芳香酰氯时,该反应非常有效(表2)。无论是脂肪族酰亚胺基锡烷和芳香族酰氯,还是芳香族酰亚胺基锡和脂肪族酰氯,偶联失败,仅回收降解产物。脂肪族酰氯也被发现不适合与酰基锡烷偶联。l3酮亚胺,可被认为是单保护的1,2-二酮~,~,不能从不对称的a-二酮中获得,因为a-二甲酰化化合物的单亚胺化反应仅对羰基周围的分化良好的基团具有选择性,例如在1-苯基丙烷-1,2-二酮或苯基乙二醛中。27 水解后,172-二酮可高收率回收。R2 200c+ R3COCI Et20Ad=( SnMe3 ArNq I? 0 当用甲基锂处理时,在-78“C的THF溶液中,芳香族亚胺基锡发生了干净的金属化,产生了相应的亚氨基酰锂。该反应具有很强的选择性,因为没有观察到偶氮亚甲基键的添加;这与酰基锡烷的情况形成鲜明对比。具有R = Ph的亚胺基锂通过氧化氘处理进行表征,其导致N-[2H]苄基亚胺-2,6-二甲胺含95%氘掺入>。这种方法被证明是制备这类锂试剂的好方法,因为在异氰化物中添加芳基锂比脂肪族锂化合物 l9 产生相应亚胺基锂的收率低,并且由于 (水酰基酰甲酰亚锡1) 的金属转移不允许获得芳香族酰亚胺基锂。-78 “C -ArNd R2 A~N=( (-Me,Sn)SnMe, Li Ar = 2,6-Me,C6H3 当尝试用1-(2,6-木酰亚氨基)乙基(三甲基)锡烷和甲基锂进行相同的金属转移反应时,通过与溴乙烷烷基化反应,与1-(2,6-xyIyl-亚氨基)丁烷(25%)和3-(2,6-~ylylimino)己烷(873, 表明锂化也发生在甲基到偶氮甲胺上。然后用烷基卤化物、卤化硅、苯甲醛和氯甲酸异丁酯探测芳香族酰亚胺基锂的反应性(表3)。相应产物以高产率分离,表明 R2 R2 ArN==( ArN=( HDIH -o=(R2 Li E E Ar = 2,6-Me&H3 J. CHEM. SOC. PERKIN TRANS. 1 1994 2285 表3 亚胺基锂与特定亲电试剂亚胺的反应 2,6-Me2C6H,N=CR'R2 醛或酮 R2 EX (% 产率) (% 产率) Ph氯化硅 PhCHO CICOOBu' R' = H,R2 = Ph(98) R' = D,R2 = Ph(97) R' = Et, R2 = Ph (86) R' = Et, R2 = p-CIC6H4 (82) R' = SiMe,, R2 = Ph 值 (82) R' = SiMe2Bu',R2 = Ph值(88) R' = C(OH)Ph,R2 = Ph值(87) R' = COZBui, R2 = 酸度 (65) R' = 我, R2 = 酸度 (85) PhCHO (95) PhCDO (95) PhCOMe (81) PhCOEt (84) 对ClC,H,COEt (78) PhCOSi(Me,)Bu' (81) PhCOCH(0H)Ph (82) PhCOC0,Bu' (60) 表4 a-(2,6-~ylylimino)benzyl(triphenyl)-stannane 的晶体学数据 分子式 C33H29NSn 晶体尺寸 (mm) 0.23 x 0.23 x 0.40 晶体系 单斜晶系 空间群 4 1 6.51O( 2)p21 西澳 9.036(3) CIA 1 8.896( 2) PI“ 110.58(1) VIA3 2638.9(7) z 4 PcIg cm F(000) 1.405 1136 p/cm-' 9.89 透射系数 0.948-1.058 收集的数据 -h, +k, fl 收集的数据数量 6922 数量唯一数据 670 1 Ra 0.049 No.具有 I b 30(I) 460 1 R 0.032 残余密度 (e A-3)Rw 0.057 0.39 这些锂化合物的唯一数据。烷基化对碘化物(85%)和溴化物(82%)均有效,而相比之下,由[(丁基亚氨基)丙基]三丁基锡烷制备的亚胺基锂未能与有机卤化物产生预期的偶联产物.24三甲基氯硅烷和叔丁基-(二甲基1)氯硅烷导致相应的亚氨基基-硅烷,可水解为酰基硅烷。用苯甲醛,得到所需的a-羟基亚胺(87%),并水解得到相应的a-羟基酮(81%)。值得注意的是,最近报道的钐介导的有机卤化物,异氰化物和羰基化合物的偶联,与烷基卤化物非常有效,不允许制备芳基取代的α-羟基亚胺.28氯甲酸异丁酯得到所需的a-亚胺基酯(65%),这反过来又导致相应的a-酮酯(60%),在水解后。因此,本方法拓宽了有机甾烷的合成效用。它为亚胺酰锡提供了宝贵的途径,并展示了它们通过与酰氯直接反应或用锂试剂进行金属转移反应后形成碳4arbon键的合成应用。实验 所有反应均在氮气气氛下进行。THF和乙醚在使用前从苯并苯甲酮基钠中蒸馏出来。戊烷和轻质石油是从氢化钙中蒸馏出来的。亚咪酰氯由相应的酰胺与五氯化磷反应得到。'O 三丁基锡基锂 30 是通过三丁基锡烷的去质子化制备的。三苯基锡酸锂和三甲基锡酸锂是通过在THF中用锂裂解相应的六有机锡烷来制备的。制备后立即使用锡试剂。'H 和 13C NMR 波谱记录在布鲁克 WH 250(内部参考 Me,Si)上。“Sn NMR 波谱记录在布鲁克 AC 200(内部参考 Me,Sn)上。J 值以 Hz 为单位。 晶体学-强度数据是在理学 AFC6R 衍射仪上使用石墨单色化 Mo-Ka 辐射测量的(0-28 扫描技术,室温),A = 0.710 73 A,最大布拉格角为 27.5'。对数据集的洛伦兹效应和偏振效应进行了校正32,并应用了经验吸收校正。该结构采用直接方法34求解,并采用基于F'的全矩阵最小二乘法进行细化。使用各向异性热参数对非H原子进行细化,并将H原子的计算位置包含在模型中。在细化中采用了单位重量。安装在 Iris Indigo 工作站上的 teXsan 软件包 32 用于数据操作。晶体数据详见表4。原子坐标、键长和角度以及热参数的表格已存放在剑桥晶体学数据中心。 亚胺基1锡烷的制备方法-在-78'C下向酰亚胺酰氯(20mmol)在THF(30cm3)中的溶液中缓慢加入三有机锡基锂溶液(20mmol)。将溶液在-78“C下搅拌1小时,在环境温度下搅拌1小时,然后蒸发。残余物用戊烷(100 cm3)萃取,然后蒸发萃取物。使用轻石油作为洗脱液,在失活的(6%H,O)氧化铝柱上通过液相色谱分离产物。或者,三甲基锡烷化化合物可以在Kugel-rohr装置中蒸馏。a-(2,6-木酰亚氨基)亚苄基(三甲基)-锡烷: 86%;m.p. 48 “C;6,(250 兆赫;CDCl,) 0.12 (9 H, s, 2JSn,H53), 2.25 (6 H, s) 和 7.0-7.8 (8 H, m);6,(62.9兆赫;CDCl,) -6.9('JSn,c320), 18.3,123.5, 127.1,128.0, 128.5, 129.5, 143.9(2Jsn,c107), 152.1 (3Jsn,c52);162.5 和 190.9 ('Jsn,c317);6,,(74.5 兆赫;C,D,)-76.1;[找到 (FABHRMS):374.0904.C,~H,,NSI'I:m/z 374.09313。a-(2,6-木酰亚氨基)-亚苄基(三酚1)锡: 79%;熔点 94 'C;6,(250 MHz;CDCl,) 2.21 (6 H, s), 6.75 (3 H, m), 7.40 (18 H, m) 和 8.15 (2 H, m);6,(62.9兆赫;CDCl,) 18.7, 124.7, 125.7, 128.2, 128.6 (2Jsn,c51),128.9,130.5, 137.0(3Jsn,c39), 139.4, 143.5, 151.8 和 186.3 ('Jsn,c297);6,,(74.5 兆赫;C,D,) -184.6 [已找到 * 有关该方案的详细信息,请参阅“作者说明(1994)”,J. Chem. Soc.,Perkin Trans.I,1994年,第1期。(FABHRMS):560.1377。C,,H,,NSn的计算值: m/z 560.14001.4-甲氧基-a-(2,6-木酰亚氨基)亚苄基(三甲基)锡: 69%;b.p. 155 “C ( lo4 Torr);6,(250 兆赫;CDCl,) 0.01 (9 H, s, ,JSn,, 51), 2.08 (6 H, s), 3.49 (3 H, s), 6.9 (5 H, m) 和 7.8 (2 H, m);6,(62.9兆赫;CDCl,) -6.9 (lJsn,c316), 18.4, 54.9;114.1、123.3、128.1、129.1、130.1、131.7、136.5、162和191.5(1Jsn,c312);6,,(74.5 兆赫;C6D6)-79.6;[实测值 (FABHRMS): 404.1000.Calc. for C, 9H26NOSn: m/z 404.10361. 4-氯-a-(2,6-木酰亚氨基)亚苄基(三甲基)锡: 72%; 熔点 94 “C;b.p. 160 “C Torr);6,(250 兆赫;CDCl,) -0.01 (9 H, s, ,JSn,, 51), 2.08 (6 H, s) 和 6.9-7.8 (7 H, m);6,(62.9兆赫;CDCI,) -7.1 ('Jsn,,-319), 18.4,123.6,128.2,128.7, 128.8, 135.6, 142.1 (2Jsn,c112), 152.3 50);160.9 和 188.0 (lJsn,c308);d~~(74.5MHZ;C6D6) -74.8 [实测值 (FABHRMS): 408.0539. C,,H,,ClNSn 的计算值: m/z 408.05411.三甲基[1-(2,6-木糖基亚氨基)乙基]锡:68%;b.p. 130 “C ( 托尔);6,(250 兆赫;CDCl,) -0.15(9H,~,~J,,,,55),1.94(6H,s),2.35(3H,s,,JSn,H 28)和6.7-6.9(3 H,m);直流(62.9 MHz;CDC1,) -8.7 ('.Isn,,-316)、18.3、31.8 (2Jsn,c137)、123.4、128.1、128.4、152.4 (,Jsn,c 60) 和 191.6 ('Js,,~313);d~~(74.5 MHZ;C6D6) -81.8 [发现: (HRMS): 31 1.0691.C,,H,,NSn的计算值: m/z 3 1 1.06961.三丁基C1-(2,6-~ylylimino)乙基]锡烯:16%;b.p. 160 “C (10-4Torr);6H(250 MHz;CDCl,) 0.7-1.6(27 H, m), 2.05(6H,s),2.46(3H,s,3Js,,,26)和6.8-7.0(3H,m);6c(62.9 J. CHEM. SOC. PERKIN TRANS. 1 1994 m.p. 98 “C (Found: C, 75.72;H, 4.94;N,3.87。C,,H,,ClNO的计算值: C, 75.97;H, 5.22;N, 4.03%);6,(250 兆赫;CDCl,) 2.05 (6 H, s) 和 6.6-7.9 (12 H, m);6,(62.9兆赫;CDCl,)18.8,124.3,127.7,128.0,128.2,128.3,128.4,129.0,129.2,130.4,132.0,133.3,135.4,166.7和195.9。1-(4-硝基苯基1)-2-苯基-2-(2,6-木基亚氨基)乙酮:46%;m.p.1 18“C(发现值:C,74.2;H, 5.3;N,7.4。计算 C,,H,,N,O,: C, 73.73;H, 5.06;N, 7.82%);6,(250 兆赫;CDCl,) 2.08 (6 H, s) 和 6.4-8.2 (12 H, m);6,-(62.9 兆赫;CDCl,) 18.4,118.0,123.7, 124.3,127.9,128.0, 129.2,129.3,132.3,134,139.3,146.6,150.5,165.9和196.3.1-(1-萘基)-2-苯基-2-(2,6-木基亚氨基)乙酮:72% (实测值: C,85.8;H,6.0;N,3.6.Cak.fOrC26H21NO:C,85.92;H,5.82;N, 3.85%);6,(250 兆赫;CDC1,) 2.13 (6 H, s) 和 6.5-8.6 (15 H, m);6,(62.9兆赫;CDCl,)18.7、123.7、124.2、125.9、126.8、128.1、128.3、128.5、128.7、129.2、130.6、131.7、134.1、135.9、147.5、167.8和199.4。2-(4-氯苯基)-1-(4-甲氧基苯基)-2-(2,6-~基亚氨基)乙酮:74%(实测值:C,72.6;H, 4.95;N,4.0。C,,H,,ClNO,: C, 73.1 1;H, 5.33;N, 3.71%);6,(250 兆赫;CDCl,) 2.25 (6 H, s), 3.13 (3 H, s) 和 6.4-7.9 (1 1 H, m);6,(62.9兆赫;CDCl,) 18.6、54.7、113.8、123.9、127.4、127.8、127.9、128.2、129.2、129.4、131.4、134.1、137.7、147.5、166.0 和 194.2.制备双酮的程序。CDCl,) 10.2('JSn,,-307)、13.6、18.3、27.3(2Jsn,c60)、29.3、酮亚胺(5 mmol)在THF(20 cm3)和HCl(3 32.7 (2Jsn,c112)、123.4、127.8、128.0、152.4(,JSn,,-50)和192.8('Jsn,,-312)的混合物中; 6sn(74.5兆赫;C6D6) -85.6;[实测值(HRMS):437.2197。 计算 C,,H,,NSn; m/z 437.21041。三甲基cl-(2,6-木酰亚氨基)丙基]锡:67%;b.p. 135 “C ( lo4 Torr);6,(250 兆赫;CDCl,) -0.13 (9 H, s, ,JSn,, 53, 1.17 (3 H, t), 1.96 (6 H, s), 2.63 (2 H, q, ,JSn,, 24) 和 6.8-7.0 (3 H, m); 直流(62.9 MHz;CDCl,) -8.4 ('Jsn,c312), 10.8, 18.0, 38.0 (,JSn,c 123), 123.1, 126.0,127.9, 151.9 (3Jsn,c49) 和 195.0 ('JSn,,-302);6sn(74.5 MHz;C6D6)-81.3;[发现值 (HRMS):325.0858.C,,H,,NSn:m/z 325.08521。[2,2-二甲基-l-(2,6-木構1亚氨基)乙基三甲基锡烷:69%; b.p. 140“C (1OP4 Torr);6,(250 兆赫;CDC1,) 0.03 (9 H, s, 2JSn,H56), 1.33 (9 H, s), 2.07 (6 H, s) 和 6.8-7.0 (3 H, m);6,(62.9兆赫;CDCl,) 6 -5.1 ('Jsn,,304), 18.2,28.1,45.0(2Js,,,117), 123.0,125.6,128.0, 150.7 (,JSn,c59) 和 197.9 ('Jsn,c301);6,,(74.5 MHZ;C6D6)-89.0;[已找到 (HRMS): 353.1 154. C,,H,,NSn 的计算值: m/z 353.1 1651.Keto 1mine.s的制备程序-在室温下在含有亚胺基锡烷(10mmol)的乙醚(10cm3)溶液的舒伦克管中,滴加酰氯(10mmol)。将混合物搅拌15分钟后,蒸发残余物在硅胶上色谱(洗脱液为轻石油-乙醚95:5)。用甲苯-轻质石油重结晶而得结晶酮亚胺(50:50)。1,2-二苯乙烯1(2,6-木基亚氨基)-乙酮: 80%;m.p. 108“C(发现:C,84.7;H, 5.7;N,4.15。C,,H,,NO: C 的计算值, 84.32;H, 6.1 1;N, 4.47%);6,(250 兆赫;CDC1,) 2.12 (6 H, s) 和 6.7-8.0 (12 H, m);6,(62.9 MHz;mol dm-,;10 cm3)在室温下搅拌15 h。用乙醚(2 x 30 cm3)萃取混合物,将合并的提取物干燥、过滤和蒸发。然后通过二氧化硅(洗脱液:轻石油4乙醚,90:10)的柱层析纯化产物。苯甲酰, 76%;熔点 95“C. 2-(4-甲氧基苯基)-l-苯基乙二酮:73%;m.p. 53 “C(lit.,35 52 ”C);6,(250 兆赫;CDCl,) 3.1 (3 H, s) 和 7.0- 7.9 (9 H, m);6,(62.9兆赫;CDCl,)54.6、113.8、126.5、128.0、128.4、131.9、136.7、192.9和193.6。2-(3-甲氧基苯基)-l-苯基乙二酮: 69%;m.p. 92 “C;6,(250 兆赫;CDCl,) 3.61 (3 H, s) 和 7.0-7.8 (9 H, m);6,-(62.9 兆赫;CDCl,) 55.4、113.1、121.7、123.1、129.1、129.8、130.1、132.9、134.2、134.9、160.1、193.9 和 194.6(发现:C、74.4;H,5.4。Cl,Hl2O3的计算值: C, 74.99;H, 5.03%)。2-(4-胆苯基)-1-苯基乙二酮:68%,熔点76“C(lit.,35 75 “C);6,(250 兆赫;CDCI,) 7.1-7.9 (9 H, m);6,-(62.9 兆赫;CDCl,) 129.1、129.4、129.9、131.2、131.3、132.8、135.1、141.5、193.0 和 193.8.2-(4-硝基苯基)-l-苯基乙二酮:40%;m.p. 138 “C (lit.,36, 139 ”C);6,(250 兆赫;CDCl,) 7.0-8.2 (8 h, m);6,-(62.9 兆赫;CDCl,)118.2、124.6、129.0、132.1、134.2、139.6、146.1、150.2、192.8和193.3。2-(1-萘1)-1-苯基乙二酮: 67%;m.p. 97 “C (lit.,,, 97 ”C);6,(250 兆赫;CDCl,) 6.8-8.0 (1 1 H, m) 和 9.55 (1 H, d);6,(62.9兆赫;CDCl,)124.6、127.2、127.7、128.1、128.4、129.0、129.2、129.6、130.1、134.5、135.2、135.8、194.6和197.5。1-(4-氯苯基)-2-(4-甲氧基苯基)乙二酮: 68%;m.p. 127 “C (lit.,36, 128 ”C);6,(250 兆赫;CDCl,) 4.1 (3 H, s) 和 6.9-8.0 (8 H, m);6,-(62.9 兆赫;CDCl,) 61.0、120.0、130.2、134.8、136.4、136.5、137.4、145.6、170.2、197.7和198.9.CDCl,) 18.8,124.1,127.7,128.1,128.3,128.5,128.8,129.0,129.2,亚胺基1锡的金属转移反应-在-78“C下,131.9,133.9,135.2,135.7,167.3和197.1.1-(4-甲氧基苯基)-亚胺基锡烷(10mmol)在THF(20cm3)中的溶液为79%;熔点132“C(发现:在乙醚中滴加甲基锂(1.6 mol dm-,;10,2-苯基-2-(2,6-木基亚氨基)乙酮:mmol)。15分钟后,亲电试剂(1 1 mmol)在THF(10 C,80.2;H,5.75;N,3.8.Calc.forC,3H,,NO,:C,80.44;H,6.16;N, 4.08%);6,(250 兆赫;CDCl,)2.22(6 H,s)、3.05 (3 H, s)和cm3)也加入到混合物中,然后在室温下搅拌1 h。在此之后,它被水解6.3-8。1(12H,m);6c(62.9兆赫;CDC1,)18.9,54.9,114.0,123.9,并用乙醚(2×50cm3)萃取。溶剂126.6,127.7,128.0,128.1,128.3,128.4,128.8,129.1,131.8,136.0,167.4和194.9.1-(3-甲氧基苯基)-2-苯基-2-(2,6-二甲苯基亚氨基)乙酮:78%(实测值:C,80.05;H, 5.7;N, 3.8.计算 C,,H,,NO,: C, 80.44;H, 6.16;N, 4.08%);6,(250 兆赫;CDCl,) 2.09 (6 H, s), 2.94 (3 H, s) 和 6.8-7.9 (12 H, m);直流电阻(62.9 MHz;CDCl,) 18.8、54.7、112.1、121.2、122.6、124.1、127.7、128.2、128.3、129.2、129.6、131.9、135.8、136.4、147.8、160.2、167.2 和 196.9。1-(4-氯苯基)-2-苯基-2-(2,6-木基亚氨基)乙酮:77%;蒸发,产物通过蒸馏(Kugelrohr装置)纯化。N-亚苄基-2,6-木糖胺:91%;b.p. 100“C (0.05 Torr) (发现: C, 85.4;H, 7.6;N, 6.3.C,,H,,N: C, 86.08;H,7.22;N, 6.69%);6,(250 兆赫;CDCl,) 2.14 (6 H, s), 6.9-7.8 (8 H, m) 和 8.15 (1 H, s);6,-(62.9 兆赫;CDCI,)18.3,124.3,127.6,128.6,129.0,129.3,132.0,136.6,151.7和162.6.N-([2H]亚苄基)-2,6-木糖胺:93%;B.P. J. CHEM. SOC. PERKIN, TRANS. 1, 1994, 100 “C (0.05 Torr);6,(250 兆赫;CDCI,) 2.14 (6 H, s) 和 6.9-7.9(8H,m);6,(62.9兆赫;CDC13)18.7,124.1,127.3,128.5,128.8,129.1,131.8,136.4,151.7和162.8(t,'JC,,24)。N-(l-苯亚乙基)-2,6-~yIylamine:85%;b.p. 120 “C (0.05 Torr) (发现: C, 85.4;H, 8.1;N,5.8。C,,H,,N: C, 86.06;H, 7.67;N, 6.27%);6,(250 兆赫;CDCI,) 2.1 (6 小时, 秒), 2.2 (3 小时, 秒), 7.1-8.3 (8 小时, m);6,(62.9兆赫;CDCI,) 17.6、18.2、123.0、125.8、127。3、128.1、128.6、129.0、130.5、139.3和162.7.N-(l-苯亚丙基)-2,6-~基苯胺:86%;b.p. 130“C (0.05 Torr) (发现: C, 85.5;H, 7.8;N,5.5。C1,H19N的计算值: C, 86.03;H, 8.07;N, 5.90%);6,(250 兆赫;CDC1,) 1.03 (3 H, t), 2.17 (6 H, s), 2.56 (2 H, q) 和 7.0-8.1 (8 H, m);6,(62.9兆赫;CDCl,) 11.7、18.5、24.1、123.0、125.8、127.9、128.2、128.8、130.6、138.2、149.1 和 170.5。N-[ 1-(4-氯苯基)亚丙基]-2,6-二甲苯胺: 82%;b.p. 140 OC (0.05)(发现: C, 75.7;H, 6.35;N,4.8。C, 7H1 ,ClN: C, 75.17;H, 6.68;N, 5.15%);6,(250 兆赫;CDC13)1.08(2H,t),2.21(6H,s),2.59(3H,q)和7.0-8.1(7H,m);6,(62.9兆赫;CDCl,)11.6、18.4、23.8、123.1、125.5、128.2、128.9、129.2、136.3、136.6、148.8和169.1。三甲基[(2,6-二甲苯基亚氨基)苄基]硅烷:82%;b.p. 130“C (0.05 Torr) (发现: C, 76.2;H, 7.7;N, 5.2.C,,H,,NSi的计算值: C, 76.81;H,8.24;N, 4.98%);6,(250 兆赫;CDCI,) 0.40 (9 H, s), 2.03 (6 H, s) 和 6.8-7.9 (8 H, m);6,(62.9兆赫;CDC1,) -0.9、18.6、122.9、125.7、127.8、128.3、129.1、129.9、130.3 和 131.6。叔丁基(dimet h yl)[a-(2,6-xylylimino)benzy1)silane:8 8%;b.p. 145“C (0.05 Torr) (发现: C, 78.4;H, 8.7;N,4.8。C,,H,,NSi的计算值: C, 77.96;H, 9.03;N, 4.33%);6,(250 兆赫;CDCI,) 0.44 (6 H, s), 1.20 (9 H, s), 2.17 (6 H, s) 和 6.9-7.2 (8 H, m);直流(62.9 MHz;CDCl,) -4.7、19.0、27.2、122.2、124.7、125.6、127.7、127.9、128.0、141.8、150.9 和 188.3。1,2-二苯基-2-(2,6-木槟1亚氨基)乙醇:87%;b.p. 180“C (0.01 Torr) (发现: C, 83.5;H, 6.6;N,4.75。C,,H,,NO: C 的计算值, 83.78;H, 6.71;N, 4.44%);6,(250 兆赫;CDCl,) 2.26 (6 H, s), 4.92 (1 H, s), 5.93 (1 H, s) 和 6.8-7.9 (13 H, m);6,(62.9兆赫;CDCI,)19.4、65.7、122.1、127.9、128.1、128.8、128.9、129.0、129.1、129.4、133.6、135.4、138.6、144.2和198.7.2-苯基-2-(2,6-xy1yl亚氨基)乙酸异丁酯:65%;b.p. 150“C (0.05 Torr) (发现: C, 78.1;H, 7.0;N,4.8。C,,H,,NO,的计算值: C, 77.64;H,7.49;N, 4.53%);6,(250 兆赫;CDCl,) 0.97 (6 H, d), 2.00 (1 H, m), 2.12 (6 H, s), 4.15 (2 H, d) 和 6.9-8.0 (8 H, m);6,(62.9兆赫;CDCI,)19.0、27.7、71.9、124.3、127.8、128.6、129.3、128.9、129.9、132.5、134.9、164.1和170.0。亚胺的水解-亚胺(5mmol)在THF(20cm3)和HCl(10cm3;3mol drn-,)的混合物中的溶液在室温下搅拌15小时,然后用乙醚(2×30cm3)萃取。将合并的提取物干燥、过滤和蒸发。然后通过二氧化硅柱层析法纯化产物(洗脱液:石油-乙醚,90:10)。它们的特性被发现与真实材料的特征相同。致谢 感谢澳大利亚研究委员会对晶体学设施的支持。我们感谢先灵法国公司赠送的有机锡。参考文献 1 有关综合评论,请参阅:0.W. Lever,Tetrahedron,1976,32,1943。D. J. Ager, in Umpoled Synthons: A Survey of Sources and Use in Synthesis, ed. T. A. Hase, Wiley, New York, 1987.2 V. Jager 和 HGViehe, Methoden der Organischen Chemie, 第 4 版, vol.V/2a,1977年。3 S. F. Martin,《综合》,1979年,第633页。4 B. T. Grobel 和 D. Seebach,《综合》,1977,357。5 J.E.鲍德温,0。W. Lever 和 N. R. Izodikov,J. Org. Chem.,1976,41,2312。6 D. Seyferth, R. M. Weinstein, R. C. Hui, W. L. Wang 和 C. M. Archer, J. Org. Chem., 1992,57,5620;J. Org. Chem., 1991,56,5768.C.J. Rao 和 P. Knochel, J. Org. Chem., 1991,56,4593;G. A. Olah 和 A. Wu, J. Org. Chem., 1991,56,902;A. R. Katritzky, Z. Yang 和 J. N. Lam, J. Org. Chem., 1991,56,6917;H. C. Cheng 和 T. H. Yan, Tetrahedron Lett., 1990, 673;M. Nemoto, Y. Kubota 和 Y. Yamamoto, Org. Chem., 1990,55,4515;J. Ichihawa、T. Sonoda 和 H. Kobayashi,Tetrahedron Lett.,1989 年,5437 页;A. B. Smith、J. R. Empfield 和 H. A. Vaccaro,Tetrahedron Lett.,1989 年,7325;K.Tamao, Y. Nakagawa, M. Arai, N. Miguchi and Y. Ito, J. Am. Chem. Soc., 1988,110,3712;S. W. McCombie, B. B. Shankar, A. K. Ganguly, A. Padwa, W. H. Bullock 和 A. D. Dyszlewski, Tetrahedron Lett., 1987,412;P. G. McDougal 和 J. G. Rico, J. Org. Chem., 1987,52,4817;A. B. Smith 和 M. J. Fukui, J. Am. Chem. Soc., 1987,109,1269.7 M. Pereyre、J. P. Quintard 和 A. Rahm,《有机合成中的锡》,Butterworths,伦敦,1987 年。8 D. Seyferth 和 M. A. Weiner, J. Am. Chem. Soc., 1961, 83, 3583.9 D. Seyferth 和 M. A. Weiner, J. Org. Chem., 1959,24, 1395.10 D.塞弗斯,R.铃木,C.J.墨菲和C。R.萨贝特,J.有机金属。化学, 1964,2,431.11 D.塞弗斯,FM阿姆布雷希特,RLLambert 和 W. Tronich,J. 有机金属。化学, 1972,44,299.12 J. K. Stille, Angew.Chem., Int. Ed. Engl., 1986,25,508;T. N. Mitchell, Synthesis, 1992, 803.13 J. B. Verlhac、E. Chanson、B. Jousseaume 和 J. P. Quintard,Tetrahedron Lett.,1985 年,第 6075 页。14 J. Jappy 和 P. N. Preston,Inorg。核。化学学报, 1971, 7, 181.15 B. Jousseaume, M. Pereyre, N. Petit, J. B. Verlhac 和 A. Ricci, J. 有机金属。化学, 1993,441, C 1.16 A. Degl'Innocenti, S. Pike, D. R. M. Walton, G. Seconi, A. Ricci and M. Fiorenza, J. Chem. Soc., Chem. Commun., 1980,1201;G. Seconi, G. Pirazzini, A. Ricci, M. Fiorenza and C. Eaborn, J. Chem. Soc., Perkin Trans. 2, 1981, 1043.17 Y. Ito, T. Bando, T. Matsuura and M. Ishikawa, J. Chem. Soc., Chem. Commun., 1986,980.18 Y. Ito, T. Matsuura and M. Murakami, J.Am. Chem. Soc., 1987,109, 7888;M. Murakami, T. Matsuura 和 Y. Ito, Tetrahedron Lett., 1988, 355.Y. Ito 和 M. Murakami,综合,1990,245。19 G. E. Nisnik, W. H. Morrison 和 H. M. Walborsky, J. Org. Chem., 1974,39,600.20 A. Capperucci, A. Degl'Innocenti, C. Faggi, G. Reginato and A. Ricci, J. Org. Chem., 1989, 54, 2966;G.佩德尔,J.有机金属。化学,1968,14,139.E. Lindner 和 U. Kunze,J. Organomet。化学, 1970, 21, p19.21 J. K. Kochi, Organometallic Mechanisms and Catalysis, Academic Press, New York, 1978.22 0.Exner,《双键官能团的化学》,S. Patai编,Wiley,纽约,1977年,第22页。23 B.J.韦克菲尔德,《有机锂化合物的化学》,佩加蒙出版社,牛津,1974年。24 H. Ahlbrecht 和 V.Baumann,《综合》,1993,981。25 B.Jousseaume、P.维伦纽夫、M.Draeger、S.Roller和J.M.Chezeau、J.Organomet。化学, 1988,349, C1.26 T.W.Greene和P.G.M.Wuts,《有机合成中的保护基团》,Wiley,纽约,1992年。27 D.Armesto、M.G.Gallego、W.M.H.Horspooi、M.J.Ortiz和R.Perez-Ossorio,《综合》,1987年,第657页;B. Alcaide, G. Escobar, R. Perez-Ossorio, J. Plumet 和 I. M. Rodriguez, An. Quim., 1985, 81C, 190;B. Alcaide, G. Escobar, R. Perez-Ossorio, J. Plumet 和 D. Sanz, J. Chem. Res., 1984, (M), 1466.28 M. Murakami, T. Kawano 和 Y. Ito, J. Org. Chem., 1993, 58, 1458.29 B.C.Challis和J.A.Challis,《酰胺的化学》,S.Patai编,Wiley,纽约,1970年,第809页。30 W. C. Still, J. Am. Chem. Soc., 1978,100, 1481.31 C. Tamborski, F. E. Ford 和 E. J. Soloski, J. Org. Chem., 1963,28, 237.32 teXsan,结构分析Sofrtware,分子结构公司,美国德克萨斯州,1992年。33 N. Walker 和 D. Stuart,《晶体学报》,第 33 节。答, 1983, 39, 158.34 G. M. Sheldrick,SHELXS 86,晶体结构自动求解程序,德国哥廷根大学,1986年。2288 J. CHEM. SOC. PERKIN TRANS. 1 1994 35 H. Kwart and M. M. Baevsky, J. Am. Chem. Soc., 1958, 80, 38 C. K. Johnson, Report ORNL-5138, Oak Ridge National 580.实验室,田纳西州橡树岭,1976 年。36 M.L.布莱克和H.A.史密斯,J.Org.化学,1952,17,1315。论文 4/0 1508H 37 E. Anders, T. Clark and T. Gassner, Chem. Ber., 1986, 119, 收到 14th March 19941350.接受日期: 20th 四月 1994

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号