首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Stereocontrolled homologation of 1,2 : 3,4-di-O-isopropylidene-alpha;-D-galacto-hexodialdo-1,5-pyranose to 7-deoxynonodialdose epimersviathiazole-aldehyde synthesis
【24h】

Stereocontrolled homologation of 1,2 : 3,4-di-O-isopropylidene-alpha;-D-galacto-hexodialdo-1,5-pyranose to 7-deoxynonodialdose epimersviathiazole-aldehyde synthesis

机译:1,2:3,4-二-O-异亚丙基-α-D-半乳糖-己二烯-1,5-吡喃糖与7-脱氧九二醛的异构体噻唑醛的立体控制同源化

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1994 Stereocontrolled Homologation of 1,2 :3,4-Di-~-isopropyiidene-a-D-ga/acto-hexodialdo-I ,5-pyranose to 7-Deoxynonodialdose Epimers via Thiazole-Aldehyde Synthesist Alessandro Dondoni,*e8 Sandra lanellLb Ladislav Kniezo,8 Pedro Merino8 and Mario Nardelli $sb a Dipartimento di Chimica, Laboratorio di Chimica Organica, Universita degli Studi di Ferrara, Via L. Borsari 46, 1-44100 Ferrara, Italy lstituto di Chimica Generale, Universita degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze 78, 1-43700 Parma, Italy The three-carbon chain elongation of the title dialdose has been carried out by two approaches employing thiazole-based reagents: (i) aldol condensation with the lithium enolate of 2-acetylthiazole; (ii) olefination with triphenyl(thiazol-2-ylcarbonylmethylene)phosphorane and 1,4-addition of benzyl oxide anion to the resultant vinyl ketone.The stereoselective reduction of the resultant (R) and (S) P-hydroxy ketones, followed by protection of the hydroxy groups as benzyl ethers, afforded four compounds consisting of the galactopyranosyl ring substituted at C-5 with stereoisomeric 1,3-bis( benzyloxy)propyl units bearing the thiazol-2-yl ring at the terminus of the chain. The unmasking of the formyl group from the thiazolyl ring to give 7-deoxynonodialdoses was carried out in two cases. The unequivocal assignment of the structures of two intermediates isolated in each route was established by X-ray room-temperature crystal-structure analyses.Recent reports from one of our laboratories have demonstrated application of the thiazole-aldehyde synthesis in carbohydrate chemistry. Based on this reaction, various methods have been developed for the chain elongation of sugar-derived aldehydes R-CHO (R = polyalkoxy chain) to give homologues bearing one, two, or three more carbon atoms. For example, 2-acetyl- thiazole (2-ATT, 1) and triphenyl(thiazo1-2-ylcarbonylmethyl-ene)phosphorane (ZTCMP, 2) have been used as three-carbon-atom units in synthetic routes to higher 3-deoxyaldos- 2-uloses and 2-ulosonic acids such as KD0,2 KDN,3and their epimers at C-4. The reagent 1acts via aldol condensation of its lithium enolate as a direct equivalent to pyruvaldehyde (route A), whereas phosphorane 2 affords, via Wittig olefination, an a,p-enone intermediate which then undergoes a Michael-type addition of an alkoxide anion (route B) (Scheme 1).These routes appeared to be complementary since they led to p-hydroxy and p-alkoxy ketones with opposite configurations at C-p. We now report application of routes A and B to 1,2: 3,4-di- 0-isopropylidene-a-D-galacto-hexodialdo-1,Spyranose 3 and show the stereoselective reduction of the resultant ketones 4 and 5 into four galactose derivates 6 bearing stereoisomeric 1,3-dialkoxy-3-(thiazol-2-yl)propylunits at C-5 (Scheme 2). The synthetic equivalence of compounds 6 to 7-deoxynono- dialdoses 7 is demonstrated by the aldehyde unmasking from the thiazole ring.The side-chain elongation of the dialdose 3 is of considerable importance4 since it provides an entry to biologically active higher sugars incorporating the 1,5-galacto- pyranosyl moiety.' Results and Discussion Homologation of the Dialdose 3.-Following route A, the generation of the lithium enolate of 2-ATT 1 in the presence of dialdose 3 at -50 "C in tetrahydrofuran (THF) using lithium t Thiazole-aldehyde synthesis: preparation of aldehydes from C-2-substituted thiazoles by thiazole-into-formyl conversion. 1Author to whom inquiries regarding the X-ray structure analysis should be addressed. 0 0 1 2 1piiz R*-nfThOHO R*-CHO + route 8 0 OR' 0 Scheme 1 3 4 R=H 6 R=Th 5 R=Bn 7 R=CHO Scheme2 (Th = thiazol-2-yl) tert-butoxide, afforded exclusively the aldol (R)-4(ds 2 95)6 which was isolated in 58 yield (Scheme 3).The R configura-tion at the newly formed stereocentre in this compound was established by X-ray crystallography of the 1,3-diol derived from it (see below). On the other hand, following route B, the dialdose 3 was initially treated with the phosphorane 2 in refluxing chloroform to give the vinyl ketone (E)-8 (85) together with a small amount of the isomer (Z)-8(not shown). The E configuration of the main olefin (E)-8 (coupling 1232 J. CHEM. soc. PERKIN TRANS. I 1994 Th4 1. 1 ii t Th S OBn Th R,OBn'r' Th S OBn Th RI.OBn GOB. T0-0E3n h0.0Bn (S,R )-6 Scheme 3 Reagents: i, 2-ATT (l),Bu'OLi; ii, DIBAL-H; iii, Me,amp; BH(OAc),; iv, 2-TCMP (2); v, BnONa constant of vinylic protons, J = 15.8 Hz) was expected on the basis of the stabilized nature of the phosphorus ylide 2 and the reaction conditions employed.' The Michael-type 1,4- addition of sodium benzyl oxide to (E)-8in THF at -50 "C was sufficiently diastereoselective to give rise to an 80:20 mixture of the epimers (29-5 and (R)-5which were individually isolated in 70 and 18 yield respectively.The X-ray structure determination of the major adduct (S)-5 demonstrated the S configuration at C-6 (see below). Hence the aldol condensation route A and the olefination-alkoxylation route B appeared quite efficient for the stereoselective installation of R p-hydroxy- and S p-benzyloxypropanoyl moieties at C-5 of the galactopyranosyl ring starting from the dialdose 3.A single transition-state model (Fig. 1) accounts for the above stereo- selective nucleophilic additions to both the aldehyde 3 and the olefin (19-8.Accordingly, attack of the nucleophile should take place on the face opposite to the plane of the pyranose ring of the aldehyde or alkene conformer as shown in Fig. 1. This model is reminiscent of the Cram open-chain model wherein the C=X double bond is flanked by the two least bulky groups attached to the adjacent centre.' Stereoselectivity according to a non-chelate model (in the Cram-Felkin sense) had been exhibited by the dialdose 3in reactions with other nucleophiles and in cycloaddition with dienes." On the other hand, the work on the internal asymmetric induction in Michael-type addition of heteronucleophiles to alkene sugars is much more scanty. 3~11 The p-hydroxy-directed diastereofacial reduction of the carbonyl group of (R)-4was then exploited to create a 1,3-diol unit with a new stereocentre in either configuration.The appropriate metal hydride reducing agent was easily chosen on the basis of previous work with this methodology.12 Thus, the reduction of aldol (R)-4 with diisobutylaluminium hydride DIBAL-H and tetramethylammonium triacetoxyborohydride Me,NBH(OAc), produced (ds 2 95 in both cases) syn-. Nu,' 3 X = 0: (euro;)a,X = CH-C(0)-Th Fig. 1 U A B Fig. 2 and anti-1,3-diol epimers, respectively, which were isolated as the 0-benzyl ethers (S,R)-6 (90) and (R,R)-6 (96).The structure of compound (R,R)-6 was established by X-ray crystallography (see below). The anti 1,3-diol unit in this compound was expected on the basis of a stereochemical model,I2 suggesting that the reduction of (R)-4 with the borohydride reducing agent l3 Me,NBH(OAc), should occur via intramolecular-hydride delivery in the chair-like chelate structure A involving an oxygen-boron bond (Fig. 2). On the other hand the syn-selectivity for the reduction of aldol (R)-4 with DIBAL-H is consistent with an external hydride attack on the half-chair chelate structure B involving an oxygen- J. CHEM. soc. PERKIN TRANS. 1 1994 aluminium bond. l4 It is worth mentioning that we have already exploited these hydroxy-directed stereocontrolled reductions of P-hydroxy ketones for the construction of I ,3-polyol chains.'' The P-benzyloxy group affected only rather weakly the asymmetric reduction of the carbonyl group of compound (S)-5. With either LiAlH, or DIBAL-H in the presence of lithium iodide (THF at -78 "C), the reaction was moderately selective (ds 7678 by 'H NMR spectroscopy) and gave rise to a mixture of syn and anti alcohols which were isolated as the 0-benzyl ethers (R,S)-6 (72) and (S,S)-6 (20). The assignment of the configuration to the major isomer (R,S)-6 was based on the assumption l6 that the reduction of (S)-5 occurred with syn selectivity via an external hydride delivery on the less hindered face of the carbonyl conformer shown in Scheme 2.The stabilization of this conformer by P-chelation of the carbonyl and ether oxygens with lithium cation can be assumed. On the other hand, the reduction of (R)-5under the above conditions was essentially unselective, giving rise to a mixture of alcohols in 55 :45 ratio. After benzylation, the NMR spectrum of the mixture superimposed on that of a mixture of bis ethers (S,R)-6and (R,R)-6.This correlation confirmed that the configuration of the newly formed stereocentre of the minor product obtained from the dialdose 3 uia the Wittig-Michael route B is identical with that of the major product formed uia the aldol condensation route A. Having prepared four galactose derivatives bearing stereo- isomeric thiazol-2-yl-l,3-dibenzyloxypropylunits at C-5, their equivalence to nonodialdoses was demonstrated by the formyl group unmasking of two of them.Thus, the application of the original one-pot thiazole-to-formyl deblocking protocol ' to compounds (R,R)-6 and (R,S)-6 afforded the corresponding protected nonodialdoses (R,R )-7 and (R,S)-7 in good isolated yields (Scheme 4). It is worth pointing out that further chain OHC R.,OBn OHC R OBnb Y-s OBnbsol;I-* (R R )-7 (R, 5)-7 Scheme 4 Reagents and conditions: i, MeI, MeCN, reflux; then NaBH,, MeOH, 0 "C; then HgCl,, aq. MeCN, room temp. elongation of these compounds is feasible by either process (A and B) or any other thiazole-based methodology.' Crystal Structure of Ketone (29-5and Bis ether (R,R)-6.Fig. 3 shows the ORTEP '* drawings of the two molecules studied by X-ray diffraction, and Table 1 compares the most relevant structural parameters of these compounds. As shown in Scheme 3, both C(6) and C(4) in the side-chain of bis ether (R,R)-6 have the R configuration, while the C(6) of (S)-5 has the S configuration. In both compounds the galactopyranosyl moiety shows the R configuration at C(7), C(11) and C(13) and Sat C(8) and C(10) according to the chirality of the common precursor D-galactose used in the syntheses.The absolute configuration of these stereocentres is in agreement with the Flack's index values (see Experimental section and Table 2). The C(3) C(7) carbon-atom chain is strictly planar in compound (R,R)-6,the maximum displacement from the least- squares plane being O.OlO(5) A for C(4).On the other hand, the same chain is deformed from planarity at the thiazole end in 1233 compound (S)-5 as it appears that C(3) is 0.568(3) A out of the least-squares plane through C(4), C(5), C(6) and C(7). This deformation is very likely to arise as a consequence of the n-conjugation between the heterocyclic ring and the carbonyl, as indicated by the small value 4.2(4)0 of the S-C(3)-C(4)-0(1) torsion angle. A value as large as 57.8(7)O is observed in compound (R,R )-6 where conformational freedom exists about the C(3)-C(4) bond. In both cases the orientation of the thiazole ring places the sulfur on the same side of the carbonyl oxygen. The contact distance between these atoms is shorter when the ring is conjugated with the carbonyl S oO(1) is 2.964(2) in (9-5 and 3.151(4) A in (R,R)-6.As expected, the thiazole ring is planar; n-conjugation with the carbonyl exerts some influence on the endocyclic bond distances not involving sulfur that become significantly longer, and on the exocyclic C(3)-C(4) bond that becomes shorter for compound (29-5. Unfortunately, the degree of accuracy in the analysis of (R,R)-6is much lower than that of (S)-5, so these differences cannot be discussed in more depth, although the observed trend is quite well defined. The conformation of the pyranose ring is a twist with two local pseudo-two-fold axes, one running along the mid-points of the C(7)-0(6) and C(lO)-C(ll) bonds and the other along the C(8) C(19) direction.The puckering parameters '' of the three rings of the sugar moiety, as set out in Table 3, are in acceptable good agreement for the two compounds. All the benzyloxy substituents in both compounds show extended conformations with the C(ar)-CH, bond antiperi- planar with respect to the 0-C (side-chain) bond. The conformation about the C(6)-C(7) bond is such as to have the 0(7)-C(6) bond of the 0(7)-benzyloxy substituent, antiperi- planar to 0(6)-C(7) in (R,R)-6 0(6)-C(7)-C(6)-0(7) = 174.1(4)', and synclinal 72.4(2)" in (29-5. Experimental M.p.s were taken using a Biichi 510 apparatus and are uncorrected. The 'H and 13C NMR spectra were recorded on a 300 MHz Gemini 300 Varian spectrometer unless otherwise stated. Chemical shifts are given in parts per million downfield from SiMe, as internal standard.J Values are given in Hz. IR spectra were recorded on a Perkin-Elmer Model 297 grating spectrometer. Elemental analyses were performed on a Model 1106 microanalyser (Carlo Erba). Optical rotations were measured at -20deg;C using a Perkin-Elmer Model 214 polarimeter, and are given in units of lo-' deg cm2 g-' .TLC was carried on glass slides precoated with silica gel (Merck Kieselgel 60 F254), and preparative chromatography on columns of silica gel (Merck 70-230 mesh). All experiments were carried out with freshly distilled and dried solvents. 6,7-Dideoxy- 1,2 :3,4-di-O-isopropylidene-8-(thiazol-2-yl)-a-~-galacto-oct-6-enodialdo-1,5-pyranose (@-8.-To a well stirred solution of 1,2:3,4-di-0-isopropylidene-a-D-galacto-hexodi-aldo-l,5-pyranose 2o 3 (2.48 g, 9.6 mmol) in CHCl, (100 cm3) was added triphenyl(thiazol-2-ylcarbonylmethylene)phosphor-ane 2 (4 g, 10.3 mmol) and the reaction mixture was stirred for 24 h at 50deg;C and then for an additional 60 h at room temperature.The solvent was evaporated off under reduced pressure and the residue was chromatographed (hexane-diethyl ether 4 :1) to give the alkenes (3-8 and (9-8. 2-8: (0.2 g, 673, oil (Found: C, 55.5; H, 5.7; N, 3.6. Cl,H21N06S requires C, 55.6; H, 5.8; N, 3.8); alD -129.7 (c 1.18, CHCl,); 6,(300 MHz; CDCl,) 1.32 (3 H, s), 1.34 (3 H, s), 1.49 (3 H, s) 1.57 (3 H, s), 4.37 (1 H, dd, J2.4 and 5.1), 4.63 (1 H, dd, J 1.9 and 7.9), 4.70 (1 H, dd, J2.4 and 7.9), 5.53 (1 H, ddd, J, 1.6, 1.9 and 7.1), 5.58 (1 H, d, J5.1), 6.53 (1 H, dd, J7.1and11.9),7.49(1H,dd,J1.6and11.9),7.68(1H,d,J3.0) 1234 J.CHEM. SOC. PERKIN TRANS. 1 1994 S C Fig. 3 ORTEP drawings of the molecules of compounds (a)(R,R)-6and (b)(S)-5, showing the atom labelling assumed for the crystal structure analysis. Ellipsoids at 50 probability level. and 8.02 (1 H, d, J 3.0); 6,(75.5 MHz; CDCl,) 24.10, 24.78, 25.76, 25.82, 66.46, 70.24, 71.15, 73.17, 96.56, 109.11, 109.57, 122.32, 126.84, 145.27, 149.40, 168.82 and 182.96. E-8:(3.0 g, 85), m.p. 140-141 "C (Found: C, 55.5; H, 5.9; N, 4.0); aD -119.0 (C 0.63, CHClJ; 6,(300 MHz; CDCl,) 1.01 (3H,s), 1.09(3H,s), 1.32(3H,s), 1.36(3H,s),3.81(1H,dd7J 2.2and7.8),4.13(1 H,dd,J2.4and4.9),4.40(1 H,dd,J2.4and 7.8), 4.54 (1 H, ddd, J2.1,2.2 and 3.9), 5.53 (1 H, d, J4.9), 6.56 (1 H, d, J3.0), 7.46 (1 H, d, J3.0), 7.52 (1 H, dd, J 15.8 and 3.9) and 8.04 (1 H, dd, J 15.8 and 2.1); 6,(75.5 MHz; CDCl,) 23.91, 24.17, 25.55, 25.61, 68.13, 70.68, 71.15, 72.78, 96.71, 108.37, 109.58, 125.30, 125.94, 144.71, 145.11, 168.83 and 181.70.6-0-Benzyl-7-deoxy- 1,2 :3,4-di-O-isopropylidene-8-(thiazol-2-yl)-~-~-glycero-~-galacto-octodialdo-175-pyranose(S)-5 and a-D-glycero-epimer (R)-5.-To a well stirred suspension of NaH (0.38 g of a 60 dispersion in mineral oil, 9.5 mmol) in THF (15 cm3) at room temperature was added anhydrous benzyl alcohol (1.08 g, 10 mmol). The mixture was refluxed for 30 min, then was cooled to -50 "C and a solution of enone (E)-8 (0.95 g, 2.59 mmol) in THF (40 cm3) was added at such a rate that the temperature inside the flask remained constant at -50 "C. After being stirred for 8 h at -50 "C, the reaction mixture was partitioned between saturated aq.NH,Cl and diethyl ether. The organic layer was dried, and evaporated J. CHEM. soc. PERKIN TRANS. 1 1994 Table 1 Comparison of selected bond distances (A),bond angles (") and torsion angles ("). Esds in parentheses 1.692( 12) 1.696(4) 1.386(6) 1.21 l(3) 1.430(6) 1.423(3) 1.424(7) 1.4233) 1.419(5) 1.424(3) 1.423(8) 1.438(3) 1.428(5) 1.442(3) 1.432(5) 1.429(3) 1.343( 13) 1.380(4) 1.289(11) 1.340(6) 1.482(10) 1.509(4) 1.510(9) 1.515(3) 1.542(9) 1.534(3) 1.517(9) 1.514(4) 1.522(9) 1.529(3) 1.533(8) 1.51 l(4) 90.7(4) 89.4(2) 10934) 108.6( 2) 106.9(3) 107.2(2) 113.3(3) 114.7(2) 1 11.2(6) 110.1(3) 117.6(10) 1 1 5.1(3) 126.7(6) 124.3(2) 1 1 1.0(4) 119.6(2) 105.9(4) 122.6(2) 110.2(4) 105.1(2) 106.1(4) 110.2(2) 114.4(5) 114.2(2) 109.3(4) 1 09.0(2) 104.2(4) 104.3(2) 109.3(4) 110.7(2) 107.2(5) 109.1(2) 114.3(7) 113.1(2) 114.2(4) 115.1(2) 106.7(3) 1 07.5( 2) 104.3(4) 103.3( 2) 109.0(4) 108.9(2) 110.5(4) 1 08.5( 2) 1 1 1.8(4) 113.2(2) 1 04.8(4) 104.0(2) 106.2(4) 108.8(2) 12 1.6(6) 119.1(3) 67.2(7) 75.1(5) 79.5( 2) -165.2(4) -168.1(2) -147.2(5) 147.0(2) -62.2(7) -177.2(2) -179.1(5) 153.1 (2) under reduced pressure. Chromatography (silica gel; hexane- diethyl ether 4: 1) afforded the p-hydroxy ketones (R)-5 and (S)-5.(R)-5:(0.086 g, 18), oil (Found: C, 60.7; H, 6.3; N, 3.1. C24H29N0,S requires C, 60.6; H, 6.15; N, 2.95); alD-27.9 (C 0.38, CHCl,); 6,(300 MHz; C@6) 1.28 (3 H, s), 1.35 (3 H, s), 1.45 (3 H, s) 1.52 (3 H, s), 3.47 (1 H, dd, J7.8 and 17.0), 3.64(1 H,dd, J3.7and17.0),3.82(1 H,dd, J1.7and9.0),4.26 (1 H, dd, J2.4and 5.0), 4.41 (1 H, ddd, J3.7, 7.8 and9.0), 4.45 (1 H, dd, J 1.7 and 8.0), 4.59 (1 H, dd, J2.4 and 8.0), 4.66 (1 H, d, J 10.9), 4.67 (1 H, d, J 10.9), 5.48 (1 H, d, J 5.0), 7.18-7.28 (5 H, m), 7.63 (1 H, d, J 3.2) and 7.98 (1 H, d, J 3.2); 6,(75.5 MHz; C6D6) 24.18, 24.70, 25.79, 25.85, 41.42, 69.13, 70.48, 70.84,70.95,73.55, 74.30,96.56, 108.82, 109.28, 126.22, 127.84, 128.36, 128.54, 138.91, 145.07, 168.19 and 193.07 (S)-5: (0.86 g, 70), m.p.120-121 "C (Found: C, 60.4; H, 6.4; N, 2.9); a,, -87.5 (C 0.72, CHCl3); 6amp;00 MHz; C6D6) 1.32 (3 H, s), 1.36 (3 H, s), 1.48 (3 H, s), 1.54 (3 H, s), 3.47 (1 H, dd, J3.4 and 16.8), 3.70 (1 H, dd, J9.3 and 16.8), 4.06 (1 H, dd, J 1.8 and 7.4), 4.34 (1 H, dd, J2.4 and 5.1), 4.38 (1 H, dd, J 1.8 1.701(5) 1.707(3) 1.457( 1 1) 1.426(9) 1.425(3) 1.423(5) 1.417(3) 1.426(6) 1.428(3) 1.404(5) 1.410(3) 1.403(7) 1.399(3) 1.428(6) 1.406(3) 1.301(9) 1.294(4) 1.467( 10) 1.463(4) 1.519(8) 1.516(3) 1.50l(9) 1.526(3) 1.484( 10) 1.492(4) 1.510(6) 1.504(3) 1.50l(7) 1.5oq4) 1.528(7) 1.49 l(4) 112.4(4) 108.2(3) 106.5(2) 110.0(3) 110.8(2) 114.6(4) 1 15.2(2) 108.8(7) 110.4(3) 1 1 1.6(4) 114.9(2) 121.7(5) 120.7(2) 114.6(6) 1 17.8(2) 1 15.2(5) 112.2(2) 113.3(5) 1 12.4(2) 107.4(4) 106.9(2) 109.3(4) 1 09.0( 2) 113.9(5) 112.9(2) 103.1(5) 104.8(2) 112.0(5) 110.2(2) 110.2(5) 108.7(2) 103.1(4) 104.5(2) 108.5(3) 109.3(2) 115.8(4) 114.2(2) 104.9(5) 104.2(2) 110.9(4) 110.3(2) 109.6(4) 11 1.3(2) 114.4(5) 114.6(2) 110.5(3) 11 1.3(2) 120.3(7) 121.9(3) -179.4(5) 177.4(2) 174.5(4) -49.8(2) -44.9(6) -4332) 1 65.7(4) 169.9(2) -80.0(5) -72.9(2) and 8.0), 4.44 (1 H, ddd, J 3.4, 7.4 and 9.3), 4.63 (1 H, dd, J 2.4 and 8.0), 4.69 (1 H, d, J 11), 4.89 (1 H, d, J ll), 5.62 (1 H, d, J5.1), 7.18-7.43 (5 H, m), 7.66 (1 H, d, J3.2) and 7.99 (1 H, d, J 3.2); 6, (75.5 MHz; C6D,) 24.12, 24.76, 25.74, 25.81, 40.23, 69.24, 70.57, 70.93, 71.15, 73.97, 75.67, 96.58, 108.86, 109.63, 126.22, 127.56, 128.30, 128.36, 139.37, 145.01, 168.10 and 192.38.(6S,8S)-6,8-Di-O-benzyl-7-deoxy-1,2 :3,4-di-O-isopropylid-ene-8-(thiuzol-2-yl)-D-threo-a-D-galacto-octopyranose(S,S)-6 and Epimer (R,S)-6.-A well stirred solution of compound (S)-5 (0.2 g, 0.42 mmol) and LiI (0.064 g, 0.46 mmol) in anhydrous diethyl ether (1 5 cm3) was cooled to -78 "C and DIBAL-H (1 cm3 of a 1.5 mol dmP3 solution in toluene, 1.5 mmol) was added. After the mixture had been stirred for 1 h at -78 "C,ethyl acetate (2 cm3) was added and the reaction mixture was partitioned between saturated aq. sodium hy- drogen carbonate and diethyl ether. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure.The residue (0.2 g) was shown by 'H 1236 J. CHEM. soc. PERKIN TRANS. I 1994 Table 2 Experimental data for the X-ray analyses C31H37N07S C24H29N07SM 566.7 475.6 Space group P3J1 p212121./A 10.31O( 5) 22.453(3)blA 10.3 1 O(5) 12.151( 1) 52.101(10) 9.220(1) $$3 4796(3) 25 15.5(5) z 6 4 DJMg m-3 1.177 1.256 Reflections for lattice parameters: number 27 30 8 range/rdquo; 13/27 20138 F(ow 1806 1008 TIK 292(2) 292(2)Crystal sizelmm 0.13 x 0.37 x 0.77 0.34 x 0.39 x 0.44 p/mm-rsquo; 1.223 1.502 Scan speedldeg min-rsquo; 3-12 3-12 Scan width/rdquo; 1.2 + 0.35 tan 8 1.2 + 0.35 tan 6 8-range for intensity collection/rdquo; 4.9170.1 3.9170.2 h-range 10112 -27/27k-range -12/0 0114 I-range -63/10 -7111 Standard reflection -3 23 3 235 Intensity variation none none No.of measured reflections 9745 5307 No. of unique reflections 6102 4783 R(int) 0.0573 0.0141 No. of reflections used in the refinementrsquo; (N) 6074 4778 No. of reflections omitted (A/c 5) 28 5 No. of reflections with I 241) 2074 3040 No. of refined parameters (P) 329 307 Extinction parameter (SHELXL),bg O.O065( 8) 0.0066(2)Max. LS shift to esd ratio -0.044 -0.001 Min/max height in final Ap map e -0.1710.26 -0.13/0.14 wR2 = ~W(AF~)~/CW(F,~)~rsquo;~~ 0.1424 0.0790 wR2 for all data 0.2336 0.0892 S2 = Fw(AF2)rsquo;/(N -P)rsquo;rdquo; 1.104 0.977 R1 = Z~AFl/Z~F,~for I 20(I) 0.0621 0.0364 R1 for all data 0.1779 0.0671 Flack x parameter O.Oo(5) -0.02(2) g (w = 1/a2(F:) + (gP)rsquo; where P = (F,rsquo; 0.0871 0.0363 a Refinement on F2 for all reflections except those flagged for possible systematic errors.The observed threshold I 2a(I) is used only for calculating R(obs),etc. given here for comparison with refinements on F. lsquo;Fc* = kF, 1 + 0.001 Fc2A3/sin(2s)-rsquo;/4. Table 3 Puckering parameters for the sugar moieties Ring OW, C(7), C@),C(lO), C(1I), C(3) 92 0.607(4) A 0.625(2) A 93 -0.132(4) 8, 0.101(2) A QT 0.622(4) 8, 0.633(2) A cp -149.0(4)0 -145.8(2)rdquo; 0 102.3(4)rdquo; 99.2(2)rdquo; conformation half chair half chair Ring C(9), W), C(8), C(W, O(3) 9 0.306(5) A 0.305(2) 8( cp 16 1.8(9)rdquo; -163.2(4)rdquo; conformation half chair half chair Ring C(12), 0(4), C(l l), C(13), O(5) 4 0.282(4) A 0.300(2) A cp 29.4(8)rdquo; 9.q4)O conformation envelope-half chair half chair-envelope NMR spectroscopy to be a mixture of two diastereoisomers in a another 12 h.The reaction mixture was poured into water 78 :22 ratio. This material was dissolved in dimethylformamide (30 an3) and extracted with diethyl ether. The organic layer (6 an3),cooled to 0 ldquo;C and NaH (50 mg of a 60 dispersion in was dried over sodium sulfate, and evaporated under reduced mineral oil, 1.25 mmol) was added. After 20 min at 0 ldquo;C the pressure. Chromatography (silica gel; hexaneaiethyl ether 7 :3) (stirred) reaction mixture was treated with benzyl bromide afforded compounds (S,S)-6and (R,S)-6. (0.09 g, 0.53 mmol) and was stirred at room temperature for (S,S)-6:(0.048 g, 2073, oil (Found: C, 65.2; H, 6.6; N, 2.6.J. CHEM. soc. PERKIN TRANS. 1 1994 C,,H,,NO,S requires C, 65.5; H, 6.7; N, 2.6); alD -36.4 (C 0.45, CHCl3); dH(300 MHz; C$6) 1.28 (3 H, s), 1.31 (3 H, s), 1.45 (3 H, s), 1.50 (3 H, s), 2.05 (1 H, ddd, J2.8, 10.9 and 14.1), 2.28 (1 H, ddd, J2.7,10.3 and 14. l), 3.87 (1 H, dd, J 1.8 and 7.6), 4.08 (1 H, ddd, J2.7,7.6 and 10.9), 4.21 (1 H, dd, J 1.8 and 7.9), 4.28(1H,dd,J2.4and5.0),4.29(1H,d,J11.4),4.39(1H,d,J 11. l), 4.53 (1 H, dd, J2.4 and 7.9), 4.55 (1 H, d, J 1 1.4), 4.91 (1 H, d,J11.1),5.08(1H,dd,J2.8and10.3),5.59(1H,d,J5.0),7.19-7.37 (1 H, m) and 7.73 (I H, d, J 3.2); dc(75.5 MHz; C6D6) 24.16,24.76,25.76,25.81,38.53,70.60,70.89,71.14,71.49,72.07, 73.38,75.06,75.71,96.62,108.80,109.57,119.32,127.56,127.95, 128.19,128.31,128.47,128.61,138.36,139.64,142.88and174.66. (R,S)-6: (0.172 g, 72), oil (Found: C, 65.6; H, 6.6; N, 2.5); ff~ -38.8 (C 0.85, CHCl,); dH(300 MHz; C6D6) 1.30 (3 H, s), 1.34 (3 H, s), 1.37 (3 H, s), 1.50 (3 H, s), 2.35 (2 H, m), 3.69 (1 H, m), 4.00 (1 H, dd, J 1.9 and 7.6), 4.30 (1 H, dd, J2.4 and5.0),4.34(1H,d,Jl1.0),4.38(1H,dd,J1.9and8.0),4.53 (2 H, s), 4.57 (1 H, dd, J 2.4 and KO), 4.58 (1 H, d, J 1 1 .O), 5.19 (1 H, dd, J6.9 and 7.2), 5.59 (1 H, d, J5.0), 7.23-7.48 (11 H, m) and 7.80 (1 H, d, J 3.2); dc(75.5 MHz; Camp;) 24.17, 24.72, 25.66,25.80,38.50,65.76,70.50,70.88,71.17,71.60,71.96,73.44, 76.12, 96.50, 108.71, 109.31, 119.59, 127.53, 127.94, 128.21, 128.32, 128.42, 128.63, 138.13, 139.62, 142.68 and 174.00.(40 an3),stirred for 10 min, and then allowed to warm to room temperature. Water (20 an3)was added, and the two liquid layers were separated. The aqueous layer was extracted with diethyl ether (4 x 25 an3).The combined organic layers were dried over sodium sulfate, and the solvent was evaporated under reduced pressure. Chromatography (silica gel; hexane-diethyl ether 1: 1) yielded the aldol adduct (R)-4 (2.23 g, 58, ds 95) as an oil (Found: C, 52.9; H, 6.2; N, 3.9. C17H23- N07S requires C, 53.0; H, 6.0; N, 3.6); ffD -60.5 (c 0.39, CHCl,); dH(300 MHz; CDCl,) 1.27 (3 H, s), 1.35 (3 H, s), 1.44 (3 H, s), 1.49 (3 H, s), 3.35 (1 H, dd, J8.7 and 17.4), 3.55 (1 H, d, J 5.6), 3.62 (1 H, dd, J2.7 and 17.4), 3.73 (1 H, dd, J 1.9 and 8.7), 4.30(1 H,dd, J2.4and5.1),4.40(1 H,dddd, J2.7,5.2,8.7and 8.7), 4.51 (1 H, dd, J 1.9 and KO), 4.63 (1 H, dd, J2.4 and 8.0), 5.51 (1 H, d, J5.1), 7.69 (1 H, d, J 3.2) and 8.01 (1 H, d, J3.2); 6,(75.5 MHz; CDCl,) 24.17, 24.66, 25.70, 25.76, 42.63, 66.68, 69.39,70.56,70.74,73.62,96.58,108.83, 109.56, 126.61,145.18, 167.54 and 194.34.(6R,SS)-6,8-Di-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropyl-idene-8-( thiazol-2-yl )-a-D-erythro-D-galact o-octopyranose (S,R)-6.-The method described above for the reduction of compound (S)-5, but without LiI, was applied to compound (R)-4 (100 mg, 0.26 mmol) to give, after column chromato- 6,s-Di-0-benzyl- 1,2 :3,4-di-O-isopropylidene-P-~-erythro-~-graphy (silica gel; hexane-diethyl ether 7 :3) pure title compound galacto-nonodialdo- 1,5-pyranose (R,S)-7.-A solution of the thiazole derivative (R,S)-6 (0.15 g, 0.26 mmol) in freshly distilled acetonitrile (5 an3)was treated with methyl iodide (2.2 g, 15.5 mmol) and the reaction mixture was refluxed under nitrogen for 24 h.The solvent was evaporated under reduced pressure, and the residue was dissolved in methanol (10 cm3) and treated with NaBH, (50 mg, 1.3 mmol). After the mixture had been stirred for 15 min at room temperature it was evaporated under reduced pressure and the residue was par- titioned between CH,Cl, and saturated aq. sodium hydrogen carbonate. The organic layer was separated, dried over sodium sulfate, and the solvent was distilled under reduced pressure.The residue was dissolved in acetonitrile (2 an3)and then treated with a solution of HgCl, (90 mg, 0.33 mmol) in a 4: 1 mixture of acetonitrile-water (3 cm3). After being stirred for 15 min at room temperature the mixture was distilled to dryness under reduced pressure, the residue was treated with aq. potassium iodide (10 cm3), and the mixture was extracted with chloroform (3 x 10 cm3). The organic layers were combined, dried over sodium sulfate, and evaporated under reduced pressure. Chromatography (silica gel; hexane-diethyl ether 3 :2) yielded the aldehyde (R,S)-7(0.1 1 g, 82) as an oil (Found: C, 67.9; H, 7.2. C29H3608 requires C, 68.2; H, 7.1); alD -51.6 (c 0.79, CHCl,); dH(3O0 MHz; CDC1,) 1.24 (3 H, s), 1.26 (3 H, s), 1.37(3 H, s), 1.42 (3 H, s), 1.942.05 (1 H, m), 2.18-2.29 (1 H, m), 3.81-3.95(3H,m),4.194.26(2H,m),4.45(1H,d,J10.8),4.51 (1 H,m),4.57(2H,m),4.79(1 H,d, J10.8), 5.51 (1 H,d, J5.1), 7.14-7.35 (10 H, m) and 9.45 (1 H, d, J 0.9); dc(75.5 MHz; CDCl,) 24.23, 24.71, 25.76, 25.84, 32.04, 70.47, 70.87, 71.30, 71.84, 72.12, 73.40, 74.82, 80.32, 96.48, 108.82, 109.50, 127.66, 127.90,128.19,128.46,128.69,128.76,138.68,139.19and203.05. 7-Deoxy-1,2:3,4-di-O-isopropylidene-8-(thiazol-2-yl)-a-~-glycero-D-galacto-octodialdo-1,5-pyranose (R)-4.-To a well stirred solution of tert-butyl alcohol (0.74 g, 10 mmol) in anhydrous THF (15 cm3)was added, drop by drop, butyl- lithium (10.24 mmol, 6.4 cm3 of a 1.6 mol dm-, solution in hexane) at room temperature.The mixture was stirred for 30 min, before being cooled to -50 "C, and a solution of 1,2 :3,4-di-O-isopropylidene-a-~-gal~c~o-hexodialdo-1,5-pyranose2o 3 (2.58 g, 10 mmol) and 2-acetylthiazole 1(1.3 g, 10.24 mmol) in anhydrous THF (40 an3)was added drop by drop. After 2 h at -50 "C,the mixture was treated with saturated aq. NH,Cl (S,R)-6 (0.132 g, 90, ds 95) as an oil (Found: C, 65.3; H, 6.4; N, 2.3. C31H37N07S requires C, 65.5; H, 6.7; N, 2.6); aD -63.6 (C 0.81, CHCl,); dH(300 MHz; CDCl3) 1.28 (3 H, s), 1.32 (3 H, s), 1.40 (3 H, s), 1.47 (3 H, s), 2.28 (1 H, dt, J6.7 and 14.4), 2.40 (1 H, ddd, J4.4, 7.2 and 14.4), 3.70-3.83 (2 H, m), 4.24 (1 H, dd, J2.3 and 5.0), 4.41 (1 H, dd, J 1.8 and 8.0), 4.50-4.70 (5 H, m), 5.09 (1 H, t, J7.0), 5.47 (1 H, d, J5.0),7.2Cb7.38 (11 H, m) and 7.74 (1 H, d, J3.0); dc(75.5 MHz; CDCl,) 24.12, 24.62, 25.69, 25.72, 40.28, 66.80, 70.02, 70.52, 70.81, 71.56, 72.79, 74.15, 76.75, 96.54, 108.66, 109.02, 119.48, 127.71, 127.87, 128.32, 128.46, 128.64, 128.83, 138.32, 139.07, 142.63 and 174.43.(6R,SR)-6,8-Di-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropyl-idene-8-(thiazol-2-yl)-~-~-threo-~-galacto-octopyranose(R,R)-6.-To a solution of tetramethylammonium triacetoxyborohy- dride (1.7 g, 6.4 mmol) in acetonitrile (4 cm3) was added anhydrous acetic acid (4 cm3). The mixture was stirred at room temperature for 30 min, then cooled to -40 "C and a solution of compound (R)-4 (0.35 g, 0.91 mmol) was added.The reaction mixture was stirred at -40 "C for 24 h, then aq. 1 mol dm-, sodium potassium tartrate (5 an3)was added. The reaction mixture was allowed to warm to room temperature and partitioned between ethyl acetate and saturated aq. sodium hydrogen carbonate. The organic layer was dried over sodium sulfate and evaporated under reduced pressure to give the crude diol(0.33 g, 94) which, according to 'H NMR spectroscopy, was at least 95 diastereomerically pure. Benzylation as described above afforded, after column chromatography (silica gel; hexanediethyl ether 7 :3) pure bis ether (R,R)-6(0.41 g, 96, ds 9579, m.p. 118-120 "C (Found: C, 65.3; H, 6.6; N, 2.3) ffD +0.58 (C 1.55, CHCl,); ffD +6.35 (C 1.15, MeOH); dH(300 MHz; CDCl,) 1.24 (3 H, s), 1.32 (3 H, s), 1.41 (3 H, s), 1.45 (3 H, s), 1.90 (1 H, ddd, J2.9, 10.1 and 14.6), 2.44 (1 H, ddd, J2.5, 10.6and 14.6),3.58(1 H,dd, JlSand9.1),4.0(1 H, ddd, J2.5,9.1 and 10.1),4.22(1 H,dd, Jl.Sand4.5),4.26-4.35 (2 H, m), 4.38 (1 H, dd, J 1.5 and 7.2), 4.514.65 (3 H, m), 5.06 (1 H, dd, J2.9 and 10.6), 5.49 (1 H, d, J5.1), 7.18-7.36 (11 H, m) and 7.69 (1 H, d, J 3.2); d,(75.5 MHz; CDCl,) 24.14, 24.61, 25.77, 25.81, 42.15, 68.88, 69.90, 70.53, 70.85, 71.20, 73.57, 73.86, 75.95, 96.62, 108.57, 109.16, 119.54, 127.78, 127.98, 128.11, 128.38, 128.60, 128.79, 138.19, 139.18, 142.61 and 174.89.6,8-Di-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-P-~-threo-D-galact o-nonodialdo- 1,5-pyranose (R,R)-7.-The method described above for the conversion of compound (R,-29-6 into the nonodialdose (R, S)-7 was applied to compound (R,R)-6 (170 mg, 0.3 mmol) to give, after column chromato- graphy (silica gel; hexaneaiethyl ether 2 :3), the aldehyde (R,R)-7 (110 mg, 72) as an oil (Found: C, 68.3; H, 6.9.C29H3608 requires C, 68.2; H, 7.1); aID -0.4 (c 1.02, CHCl3); amp;(300 MHz; CDCl,) 1.28 (3 H, s), 1.33 (3 H, s), 1.45 (3 H, s), 1.47 (3 H, s), 1.81 (1 H, ddd, J4.0,9.3 and 14.7), 2.22 (1 H, ddd, J2.2, 9.4 and 14.7), 3.66 (1 H, dd, J 1.6 and 8.8), 3.88 (1 H, dt, J 2.9 and 8.8), 4.01 (1 H, ddd, J 2.2, 4.0 and 93, 4.26 (1 H, dd, J2.2 and LO), 4.40 (1 H, m), 4.35 (1 H, d, J 11.6), 4.41 (1 H, d, J 11.8), 4.59 (1 H, m), 4.61 (1 H, d, J 11.8), 4.64 (1 H, d, J 11.6), 5.50 (1 H, d, J 5.0), 7.20-7.40 (10 H, m) and 9.61 (1 H, d, J2.2);6,(75.5 MHz; CDCl,) 24.06,24.56,25.73,25.80, 33.01, 69.57, 70.48, 70.79, 71.10, 72.14, 73.22, 73.75, 80.73, 96.56, 108.60, 109.19, 127.88, 127.93, 128.27, 128.38, 128.63, 128.70, 137.84, 138.77 and 203.54.Reduction of Compound (R)-5.-The reduction of compound (R)-5 (0.12 g) as described above for diastereoisomer (S)-5 afforded a 55:45 mixture (lsquo;H NMR) of diastereoisomeric alcohols (0.12 g). Benzylation as described above gave a 56 :44 mixture of dibenzyl derivatives whose lsquo;H NMR spectrum was superposable on those bis ethers (S,R)-6and (R,R)-6. X-Ray Crystallography .-The relevant data for the crystal- structure analyses are summarized in Table 2.The lattice parameters were determined using Cu-Kal radiation (A = 1.540 562 0 A) and refined by a least-squares procedure 21 using the Nelson and Riley 22 extrapolation function. The integrated intensities were measured on a Siemens-AED diffractometer with Cu-Ka mean radiation, using the 8-28 scan mode and a modified version 23 of the Lehmann and Larsen 24 peak-profile analysis procedure. All reflections were corrected for Lorentz and polarization effects; no correction for absorption was considered. The structure of compound (S)-5 was solved by the direct methods of SHELXS-86,25 while attempts to solve the structure of compound (R,R)-6by means of the commonly used direct- method programs failed. This structure was solved by using the new version of program SIR (SIR92)26 which succeeded in giving a partially refined structure (R = 0.11) excepting the C(26) C(31) phenyl ring which, afterwards, turned out to be highly disordered.Both structures were refined by full-matrix least-squares on F using SHELX-76,27 and on F2 using SHELXL-92 28 programs. The two types of refinement gave final results not significantly differentso all the data of Table 2 and the structural parameters of Table 1 as well as those discussed in the text are from the F2 refinements. The hydrogen atoms were located in calculated positions riding on the attached carbon atoms, and the dis- ordered phenyl of compound (R,R)-6 was treated as a rigid body with calculated geometry and high isotropic displacement parameters.This disorder, giving intensity data of poor quality, is responsible for the difficulties encountered in solving the structure of compound (R, R)-6 and the relatively low accuracy of the results obtained from its refinement. No attempt was made to define the disorder, this probably being a rotational one about the C(25)--C(26) bond. The absolute configurations were assigned on the basis of Flackrsquo;s2rsquo; index and on the known chirality of the galactose ring. All calculations were carried out on the ENCORE-91 and POWERNODE-6040 computers of the lsquo;Centro di Studio per la Strutturistica Diffrattometrica del C.N.R. (Parma)rsquo;. In addition to the above programs, PARST3rsquo; was used for the J. CHEM. SOC. PERKIN TRANS. 1 1994 calculations concerning the geometrical aspects of the crystal structures.Atomic scattering factors and anomalous-scattering coeffi- cients were taken from the International Tables for X-Ray Crystallography. The final atomic coordinates, fractional coordinates for all atoms, bond lengths, bond angles, and torsional angles have been deposited at the Cambridge Crystallographic Data Centre.* Acknowledgements We thank the Progetto Finalizzato Chimica Fine e Secondaria, n. 2 (CNR, Rome) for financial support, the Ministerio de Educacion y Ciencia (Spain) for a postodoctoral fellowship to P. M., and the EEC (Bruxelles) for a Tempus grant to L. K. We are also indebted to Professor C. Giacovazzo (University of Bari) who solved the structure of compound (R,R)-6 and to Professor G.M. Sheldrick (University of Gottingen) who made available his SHELXL-92 program at the beta-test stage. *See lsquo;Instructions for Authorsrsquo;, J. Chem. SOC., Perkins Trans. 1, 1994, issue 1. References A. Dondoni, Carbohydrate Synthesis via Thiazoles, in Modern Synthetic Methoh, ed. R. Scheffold, Verlag Helvetica Chimica Acta, Basel, 1992, p. 377; Bull. SOC. Chim. Belg., 1992, 101,433. A. Dondoni and P. Merino, J. Org. Chem., 1991, 56, 5294; A. Dondoni, P. Merino and J. Orduna, Tetrahedron Lett., 1991, 32, 3247. A. Dondoni, A. Marra and P. Merino, J. Am. Chem. SOC., 1994,116, in the press. A. M. Sepulchre, A. Gateau-Olesker, G. Lukacs, G. Vass, S. D. Gero and W. Voelter, Tetrahedron Lett., 1972,3945;P. Coutrot, C.Grison, M. Tabyaoui, S. Czernecki and J.-M. Valery, J. Chem. SOC., Chem. Commun., 1988, 1515; S. Czernecki and J.-M. ValCry, J. Carbohydr. Chem., 1988, 7, 151; A. Dondoni, G. Fantin, M. Fogagnolo and P. Merino, J. Carbohydr. Chem., 1990,9,735; Ph. Maillard, C. Hue1 and M. Momenteau, Tetrahedron Lett., 1992,33,8081. S. J. Danishefsky and M. P. DeNinno, Angew. Chem., Znt. Ed. Engl., 1987, 26, 15; J. S. Brimacombe, in Studies in Natural Product Chemistry, ed. A.-ur Rahman, Elsevier, Amsterdam, 1989, vol. 4, part C, p. 157. For the convenient use of diastereoselectivity (ds) instead of diastereoisomeric excess (de), see: S. Thaisrivongs and D. Seebach, J. Am. Chem. SOC., 1983,105,7407. B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989,89,863.For reviews on the so-called Cramrsquo;s Rule see: E. L. Eliel, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1983, vol. 2, part A, p. 125; J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn and H.-U. Reissig. Organic Synthesis Highlights, VCH Verlagsgesellschaft, Weinheim, 199 1, p. 3. S. J. Danishefsky, W. H. Pearson, D. F. Harvey, C. J. Maring and J. P. Springer, J.Am. Chem. SOC., 1985,107,1256; S. J. Danishefsky, M. P. DeNinno, G. B. Phillips, R. E. Zelle and P. A. Lartey, Tetrahedron, 1986,42,2809; A. Dondoni, G. Fantin, M. Fogagnolo and A. Medici, Tetrahedron, 1987,43,3533; A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, J. Org. Chem., 1989, 54,693. 10 S. J. Danishefsky, C. J. Maring, M.R. Barbachyn and B. E. Segmuller, J. Org. Chem., 1984,49,4564. 11 A. Dondoni, A. Boscarato and A. Marra, Synlett, 1993,256. 12 For recent articles with leading references on the reduction of p-hydroxy ketones to either syn or anti 1,3-diols see: D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. SOC.,1988,110, 3560; D. A. Evans and A. H. Hoveyda, J. Org. Chem., 1990, 55, 5190; D. A. Evans, J. A. Gauchet-Prunet, E. M. Carreira and A. B. Charette, J. Org. Chem., 1991,56,741. 13 For a review of the uses of acyloxyborohydrides in synthesis see: G. W. Gribble and C. F. Nutaitis, Org. Prep. Proced. Znt., 1985, 17, 317. 14 S. Kiyooka, H. Kuroda and Y. Shimasaki, Tetrahedron Lett., 1986, 27,3009. J. CHEM. SOC. PERKJN TRANS.1 1994 15 A. Dondoni and P. Merino, Synthesis, 1993,903. 16 Y. Mori, M. Kuhara, A. Takeuchi and M. Suzuki, Tetrahedron Lett., 1988,29,5419. 17 For an improved procedure see: A. Dondoni, A. Marra and D. Perrone, J. Org. Chem., 1993,58,275. 18 C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1965. 19 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975,97, 1354. 20 R. F. Butterworth and S. Hanessian, Synthesis, 1971,70. 21 M. Nardelli and A. Mangia, Ann. Chim. (Rome), 1984,74, 163. 22 J. B. Nelson and D. P. Riley, Proc. Phys. SOC.London, 1945, 57, 160,477. 23 D. Belletti, F. Ugozzoli, A. Cantoni and G. Pasquinelli, Internal Report, March 1, 1979, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Parma, Italy, 1979. 24 M. S. Lehmann and F. K. Larsen, Acta Crystallogr., Sect. A, 1974, 30, 580. 25 G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, University of Gottingen, Germany, 1986. 26 G. Giacovazzo, private communication. 27 G. M. Sheldrick SHELXL-76, Program for Crystal Structure Determination, University of Gottingen, Germany, 1976. 28 G. M. Sheldrick, SHELXS-92, Program for Crystal Structure Refinement, University of Cambridge, England, 1992. 29 H. D. Flack, Acta Crystallogr., Sect. A, 1983,39, 876. 30 M. Nardelli, Comput. Chem., 1983,7,95. 31 International Tables for X-ray Crystallography, Kynoch Press (Present Distributor Kluver Academic Publishers, Dordrecht), 1974, vol. 4, pp. 99 and 149. Paper 3/06 1545 Received 14th October 1993 Accepted 23rd December 1993
机译:J. CHEM. SOC. PERKIN TRANS. 1 1994 1,2 :3,4-二-~-异丙基二烯-a-D-ga/acto-己二醛-I ,5-吡喃糖到7-脱氧壬二烯二醛剂量差向异构体的立体控制,通过噻唑-醛合成剂 Alessandro Dondoni,*e8 Sandra lanellLb Ladislav Kniezo,8 Pedro Merino8 和 Mario Nardelli $sb a Dipartimento di Chimica, Laboratorio di Chimica Organica, Universita degli Studi di Ferrara, Via L. Borsari 46, 1-44100 Ferrara, 意大利 lstituto di Chimica Generale, Universita degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze 78, 1-43700 Parma, Italy 标题拨号的三碳链伸长是通过使用噻唑类试剂的两种方法进行的:(i)醛醇缩合与2-乙酰基噻唑的烯醇酸锂;(ii)用三苯基(噻唑-2-基羰基亚甲基)磷烷和1,4-环氧苄阴离子加成乙烯基酮进行烯烃化。对所得的(R)和(S)对羟基酮进行立体选择性还原,然后将羟基保护为苄基醚,得到四种化合物,这些化合物由在C-5处取代的吡喃半乳糖基环和立体异构体1,3-双(苄氧基)丙基单元组成,在链的末端带有噻唑-2-基环。在两种情况下,从噻唑基环上揭开甲酰基以产生7-脱氧壬二醛剂量。通过X射线室温晶体结构分析,确定了在每条路线中分离出的两种中间体结构的明确分配。我们一个实验室最近的报告证明了噻唑醛合成在碳水化合物化学中的应用。基于该反应,已经开发了各种方法用于糖衍生醛R-CHO(R=聚烷氧基链)的链伸长,以产生带有一个、两个或三个以上碳原子的同系物。例如,2-乙酰基噻唑(2-ATT,1)和三苯基(噻唑1-2-基羰基甲基-烯)磷烷(ZTCMP,2)已被用作合成更高浓度的3-脱氧醛糖-2-脲糖和2-噻酸(如KD0,2 KDN,3)及其在C-4位的差向异构体的三碳原子单元。试剂 1 通过烯醇酸锂的醇醛缩合作用,直接等同于丙酮甲醛(路线 A),而磷烷 2 通过 Wittig 烯化提供 a,p-烯酮中间体,然后进行醇盐阴离子的迈克尔型添加(路线 B)(方案 1)。这些途径似乎是互补的,因为它们导致对羟基和对烷氧基酮在C-p处具有相反的构型。现在,我们报告了路线A和B对1,2:3,4-二-0-异亚丙基-a-D-半乳糖-己二度-1,Spyranose 3的应用,并显示了所得酮4和5的立体选择性还原为四个半乳糖衍生物6,在C-5处带有立体异构体1,3-二烷氧基-3-(噻唑-2-基)丙基(方案2)。化合物 6 至 7-脱氧壬酮 7 的合成等效性通过噻唑环的醛解脱得到证明。dialdose 3 的侧链伸长率非常重要4,因为它为含有 1,5-吡喃半乳糖基团的生物活性高级糖提供了入口。结果与讨论 Dialdose 3.-遵循路线 A,在 -50“C 的 dialdose 3 存在下,使用锂 t 噻唑醛合成生成 2-ATT 1 的烯醇酸锂:通过噻唑转化为甲酰基从 C-2-取代的噻唑制备醛。1有关X射线结构分析的咨询应向其提出。0 0 1 2 1piiz R*-nfThOHO R*-CHO + 路线 8 0 OR' 0 方案 1 3 4 R=H 6 R=Th 5 R=Bn 7 R=CHO 方案2(Th=噻唑-2-基)叔丁醇,仅提供醛醇(R)-4(ds 2 95%)6,其分离收率为58%(方案3)。该化合物中新形成的立构中心的R构型是通过对其衍生的1,3-二醇的X射线晶体学确定的(见下文)。另一方面,按照路线B,最初用回流氯仿中的磷烷2处理拨号剂量3,得到乙烯基酮(E)-8(85%)和少量异构体(Z)-8(未显示)。主烯烃(E)-8(偶联1232 J. CHEM. soc. PERKIN TRANS.I 1994 Th4 1.1 ii t Th S OBn th R,OBn'r' Th S OBn th RI.OBn GOB.T0-0E3n h0.0Bn (S,R )-6 方案 3 试剂: i, 2-ATT (l),Bu'OLi;ii, DIBAL-H;iii, Me,& BH(OAc),;iv, 2-TCMP (2);v, 乙烯基质子的 BnONa 常数, J = 15.8 Hz) 是根据酰化磷 2 的稳定性质和所采用的反应条件预期的。在-50“C下,将Michael型1,4-苄氧烷加成到(E)-8in THF中,具有足够的非对映选择性,以产生80:20的差向异构体混合物(29-5和(R)-5)分别以70%和18%的收率单独分离。主加合物 (S)-5 的 X 射线结构测定表明了 C-6 处的 S 构型(见下文)。因此,醛醇缩合路线A和烯烃化-烷氧基化路线B对于从拨号剂量3开始在吡喃半乳糖基环的C-5处立体选择性安装R p-羟基和S对苄氧基丙酰基部分显得相当有效。 亲核试剂的攻击应发生在与醛或烯烃构象物的吡喃糖环平面相反的面上,如图1所示。该模型让人想起 Cram 开链模型,其中 C=X 双键的两侧是连接到相邻中心的两个体积最小的基团。'根据非螯合模型(在Cram-Felkin意义上)的立体选择性已通过与其他亲核试剂的dialdose 3in反应以及与二烯的环加成反应表现出来。另一方面,关于迈克尔型异核亲试剂添加到烯烃糖中的内部不对称诱导的工作要少得多。3~11 然后利用(R)-4羰基的p-羟基定向非对映面还原来创建一个具有新立构心的1,3-二醇单元。12因此,用二异丁基氢化铝DIBAL-H和四甲基三乙酰氧基硼氢化铵[Me,NBH(OAc),]还原醛醇(R)-4产生(两种情况下ds 2 95%)syn-。Nu,' 3 X = 0: (€)a,X = CH-C(0)-th 图 1 U A B 图 2 和抗 1,3-二醇差向异构体,分别分离为 0-苄基醚 (S,R)-6 (90%) 和 (R,R)-6 (96%)。通过X射线晶体学建立了化合物(R,R)-6的结构(见下文)。该化合物中的抗1,3-二醇单元是基于立体化学模型I2的预期,该模型表明,硼氢化物还原剂l3 Me,NBH(OAc)的(R)-4应通过涉及氧-硼键的椅子状螯合物结构A中的分子内氢化物递送发生(图2)。另一方面,用 DIBAL-H 还原醛醇 (R)-4 的同位选择性与对半椅子螯合结构 B 的外部氢化物攻击一致,该结构涉及氧 - J. CHEM. soc. PERKIN TRANS. 1 1994 铝键。l4 值得一提的是,我们已经利用了这些对羟基酮的羟基定向立体控制还原来构建 I ,3-多元醇链。对苄氧基对化合物(S)-5羰基的不对称还原的影响相当微弱。在碘化锂存在下(THF在-78“C)下,LiAlH或DIBAL-H反应具有中等选择性(通过'H NMR波谱为ds 7678%),并产生合成醇和反醇的混合物,这些混合物被分离为0-苄基醚(R,S)-6(72%)和(S,S)-6(20%)。将构型分配给主要异构体(R,S)-6是基于假设l6,即(S)-5的还原通过外部氢化物递送在方案2所示的羰基构象物的受阻较小的表面上以合成选择性发生。另一方面,在上述条件下,(R)-5的还原基本上是非选择性的,以55:45的比例产生醇类混合物。苄基化后,混合物的NMR谱图叠加在双醚(S,R)-6和(R,R)-6的混合物上。这种相关性证实了从Wittig-Michael路线B中获得的次要产物新形成的立构中心的构型与形成的主要产物的构型相同,即醛醇缩合途径A。制备了四种半乳糖衍生物,在C-5处含有立体异构噻唑-2-基-l,3-二苄氧基丙基,其中两种的甲酰基被揭开,证明了它们与非二烯醛剂量的等效性。因此,将原始的一锅噻唑-甲酰基解封协议应用于化合物(R,R)-6和(R,S)-6,以良好的分离收率提供了相应的保护性非二烯醛剂量(R,R )-7和(R,S)-7(方案4)。值得指出的是,进一步链OHC R.,OBn OHC R OBnb Y-s OBn\I-* (R R )-7 (R, 5)-7 方案4试剂及条件:i、MeI、MeCN、回流;则NaBH,,MeOH,0“C;然后是 HgCl,, aq.MeCN,这些化合物的室温延伸率可以通过工艺(A和B)或任何其他基于噻唑的方法进行。酮(29-5和双醚(R,R)-6的晶体结构.图3显示了通过X射线衍射研究的两种分子的ORTEP '*图,表1比较了这些化合物最相关的结构参数。如图3所示,双醚(R,R)-6侧链中的C(6)和C(4)均具有R构型,而(S)-5的C(6)具有S构型。在这两种化合物中,根据合成中使用的常见前体 D-半乳糖的手性,吡喃半乳糖基部分在 C(7)、C(11) 和 C(13) 以及 Sat C(8) 和 C(10) 处显示出 R 构型。这些立体中心的绝对配置与Flack的指数值一致(参见实验部分和表2)。化合物(R,R)-6中的C(3)C(7)碳原子链是严格平面的,C(4)与最小二乘平面的最大位移为O.OlO(5)A。另一方面,在 1233 化合物 (S)-5 中,同一条链在噻唑端的平面度变形,因为 C(3) 通过 C(4)、C(5)、C(6) 和 C(7) 的最小二乘平面外,C(3) 似乎是 0.568(3) A。这种变形很可能是由于杂环和羰基之间的n共轭而产生的,如S-C(3)-C(4)-0(1)扭转角的小值[4.2(4)0]所示。在化合物 (R,R)-6 中观察到高达 57.8(7)O 的值,其中 C(3)-C(4) 键存在构象自由度。在这两种情况下,噻唑环的方向都将硫置于羰基氧的同一侧。当环与羰基共轭时,这些原子之间的接触距离较短[S oO(1)在(9-5)中为2.964(2)和(R,R)-6中的3.151(4)A]。不出所料,噻唑环是平面的;与羰基的n-共轭对不涉及硫的内环键距离明显变长,以及化合物的外环C(3)-C(4)键变短(29-5.不幸的是,(R,R)-6 分析的准确度远低于 (S)-5,因此无法更深入地讨论这些差异,尽管观察到的趋势非常明确。吡喃糖环的构象是具有两个局部赝两折轴的扭曲,一个沿 C(7)-0(6) 和 C(lO)-C(ll) 键的中点延伸,另一个沿 C(8) C(19) 方向延伸。如表3所示,糖部分的三个环的起皱参数''对于两种化合物来说是可接受的良好一致性。两种化合物中的所有苄氧基取代基都显示出与 C(ar)-CH 的扩展构象,相对于 0-C(侧链)键,键是反近面的。关于C(6)-C(7)键的构象是具有0(7)-苄氧基取代基的0(7)-C(6)键,在(R,R)-6 [0(6)-C(7)-C(6)-0(7) = 174.1(4)']中与0(6)-C(7)逆面,在(29-5.实验 MP 是使用 Biichi 510 装置拍摄的,并且未经校正。除非另有说明,否则 'H 和 13C NMR 波谱均记录在 300 MHz Gemini 300 瓦里安波谱仪上。作为内部标准,SiMe的化学位移以百万分之一的下场给出。J 值以 Hz 为单位,红外光谱记录在 Perkin-Elmer 297 型光栅光谱仪上。在 1106 型微量分析仪 (Carlo Erba) 上进行元素分析。在 -20°C 下使用 Perkin-Elmer 214 型旋光仪测量旋光度,并以 lo-' deg cm2 g-' 为单位给出。TLC在预涂有硅胶(Merck Kieselgel 60 F254)的载玻片上进行,并在硅胶柱(Merck 70-230目)上进行制备色谱。所有实验均使用新鲜蒸馏和干燥的溶剂进行。6,7-二脱氧-1,2:3,4-二-O-异亚丙基-8-(噻唑-2-基)-a-~-半乳糖-辛-6-烯二二基-1,5-吡喃糖(@-8.-向充分搅拌的溶液中加入1,2:3,4-二-0-异亚丙基-a-D-半乳糖-己二醛-l,5-吡喃糖2O-l,5-吡喃糖2O-l,2.48g,9.6mmol)CHCl溶液,(100cm3)加入三苯基(噻唑-2-基羰基亚甲基)磷烷2(4g,10.3mmol),反应混合物在50°C下搅拌24小时,然后在室温下再搅拌60小时。减压除去溶剂,残余物进行色谱(己烷-乙醚4:1)得到烯烃(3-8和(9-8. 2-8:(0.2克,673,油(发现:C,55.5;H, 5.7;N, 3.6.Cl,H21N06S需要C,55.6;H, 5.8;N, 3.8%);[alD -129.7 (c 1.18, CHCl,); 6,(300 MHz;CDCl,) 1.32 (3 H, s), 1.34 (3 H, s), 1.49 (3 H, s) 1.57 (3 H, s), 4.37 (1 H, dd, J2.4 和 5.1), 4.63 (1 H, dd, J 1.9 和 7.9), 4.70 (1 H, dd, J2.4 和 7.9), 5.53 (1 H, ddd, J, 1.6, 1.9 和 7.1), 5.58 (1 H, d, J5.1), 6.53 (1 H, dd, J7.1and11.9),7.49(1H,dd,J1.6and11.9),7.68(1H,d,J3.0) 1234 J.CHEM. SOC. PERKIN TRANS. 1 1994 S C 图 3 化合物 (a)(R,R)-6 和 (b)(S)-5 分子的 ORTEP 图,显示了晶体结构分析假设的原子标记。50% 概率水平的椭球体。和 8.02 (1 H, d, J 3.0);6,(75.5兆赫;CDCl,)24.10、24.78、25.76、25.82、66.46、70.24、71.15、73.17、96.56、109.11、109.57、122.32、126.84、145.27、149.40、168.82和182.96。E-8:(3.0 g, 85%), m.p. 140-141 “C (发现: C, 55.5;H, 5.9;N, 4.0%);[一]D -119.0 (C 0.63, CHClJ; 6,(300 MHz;CDCl,) 1.01 (3H,s), 1.09(3H,s), 1.32(3H,s), 1.36(3H,s),3.81(1H,dd7J 2.2和7.8),4.13(1 H,dd,J2.4和4.9),4.40(1 H,dd,J2.4和7.8),4.54(1 H,dd,J2.1,2.2和3.9),5.53(1 H,d,J4.9),6.56(1 H,d,J3.0),7.46(1 H,d,J3.0),7.52(1 H,dd,J 15.8和3.9)和8.04(1 H, dd, J 15.8 和 2.1);6,(75.5兆赫;CDCl,) 23.91, 24.17, 25.55, 25.61,68.13,70.68,71.15,72.78,96.71,108.37,109.58,125.30,125.94,144.71,145.11,168.83和181.70.6-0-苄基-7-脱氧-1,2:3,4-二-O-异亚丙基-8-(噻唑-2-基)-~-~-甘油-~-半乳糖-辛二度-175-吡喃糖(S)-5和a-D-甘油差向(R)-5.-在充分搅拌的NaH悬浮液(0.38克60%矿物油分散体,9.5毫摩尔)在THF(15cm3)中的悬浮液在室温下加入无水苯甲醇(1.08克, 10毫摩尔)。将混合物回流30分钟,然后冷却至-50“C和烯酮(E)-8(0.95克,2.59 mmol)在THF(40 cm 3)中以这样的速率加入,使烧瓶内的温度保持在-50“C恒定。在-50“C下搅拌8小时后,将反应混合物在饱和水溶液之间分配。NH、Cl和乙醚。将有机层干燥,蒸发 J. CHEM. soc. PERKIN TRANS. 1 1994 表 1 所选键距 (A)、键角 (“) 和扭转角 (”) 的比较。括号内的ESDS 1.692( 12) 1.696(4) 1.386(6) 1.21 l(3) 1.430(6) 1.1. 423(3) 1.424(7) 1.4233) 1.419(5) 1.424(3) 1.423(8) 1.438(3) 1.428(5) 1.442(3) 1.432(5) 1.429(3) 1.343(13) 1.380(4) 1.289(11) 1.340(6) 1.482(10) 1.509(4) 1.510(9) 1.515(3) 1.542(9) 1.534(3) 1.517(9) 1.514(4) 1.522(9) 1.529(3) 1.533(8) 1.51 升(4) 90.7(4) 89.4(2) 10934) 108.6(2)106.9(3) 107.2(2) 113.3(3) 114.7(2) 1 11.2(6) 110.1(3) 117.6(10) 1 1 5.1(3) 126.7(6) 124.3(2) 1 1 1.0(4) 119.6(2) 105.9(4) 122.6(2) 110.2(4) 105.1(2) 106.1(4) 110.2(2) 114.4(5) 114.2(2) 109.3(4) 1 09.0(2) 104.2(4) 104.3(2) 109.3(4) 110.7(2) 107.2(5) 109.1(2) 114.3(7) 113.1(2) 114.2(4) 115.1(2) 106.7(3) 1 07.5( 2)104.3(4) 103.3( 2) 109.0(4) 108.9(2) 110.5(4) 1 08.5( 2) 1 1 1.8(4) 113.2(2) 1 04.8(4) 104.0(2) 106.2(4) 108.8(2) 12 1.6(6) 119.1(3) 67.2(7) 75.1(5) 79.5( 2) -165.2(4) -168.1(2) -147.2(5) 147.0(2) -62.2(7) -177.2(2) -179.1(5) 153.1 (2) 减压。色谱法(硅胶;己烷-二乙醚4:1)得到对羟基酮(R)-5和(S)-5。(R)-5:(0.086 g, 18%)、油(发现:C, 60.7;H, 6.3;N, 3.1.C24H29N0,S 需要 C,60.6;H, 6.15;N, 2.95%);[alD-27.9 (C 0.38, CHCl,); 6,(300 MHz;C@6) 1.28 (3 H, s), 1.35 (3 H, s), 1.45 (3 H, s) 1.52 (3 H, s), 3.47 (1 H, dd, J7.8 and 17.0), 3.64(1 H,dd, J3.7 and 17.0), 3.82(1 H,dd, J1.7and9.0), 4.26 (1 H, dd, J2.4 and 5.0), 4.41 (1 H, dd, J3.7, 7.8 and 9.0), 4.45 (1 H, dd, J 1.7 and 8.0), 4.59 (1 H, dd, J2.4 和 8.0), 4.66 (1 H, d, J 10.9), 4.67 (1 H, d, J 10.9), 5.48 (1 H, d, J 5.0), 7.18-7.28 (5 H, m), 7.63 (1 H, d, J 3.2) 和 7.98 (1 H, d, J 3.2);6,(75.5兆赫;C6D6)24.18、24.70、25.79、25.85、41.42、69.13、70.48、70.84、70.95、73.55、74.30、96.56、108.82、109.28、126.22、127.84、128.36、128.54、138.91、145.07、168.19和193.07(S)-5:(0.86g,70%),m.p.120-121“C(发现:C,60.4;H, 6.4;N, 2.9%);[a],, -87.5 (C 0.72, CHCl3);6&00兆赫;C6D6) 1.32 (3 H, s), 1.36 (3 H, s), 1.48 (3 H, s), 1.54 (3 H, s), 3.47 (1 H, dd, J3.4 和 16.8), 3.70 (1 H, dd, J9.3 和 16.8), 4.06 (1 H, dd, J 1.8 和 7.4), 4.34 (1 H, dd, J2.4 和 5.1), 4.38 (1 H, dd, J 1.8 1.701(5) 1.707(3) 1.457( 1 1) 1.426(9) 1.425(3) 1.423(5) 1.417(3) 1.426(6) 1.428(3) 1.404(5) 1.410(3)1.403(7) 1.399(3) 1.428(6) 1.406(3) 1.301(9) 1.403(7) 1.399(3) 1.406(3) 1.301(9) 1.403(7) 1.399(3) 1.428(6) 1.406(3) 1.301(9) 1.403(7) 1.399(3) 294(4) 1.467(10) 1.463(4) 1.519(8) 1.516(3) 1.50升(9) 1.526(3) 1.484(10) 1.492(4) 1.510(6) 1.504(3) 1.50升(7) 1.5oq4) 1.528(7) 1.49升(4) 112.4(4) 108.2(3) 106.5(2) 110.0(3) 110.8(2) 114.6(4) 1 15.2(2) 108.8(7) 110.4(3) 1 1 1.6(4) 114.9(2) 121.7(5) 120.7(2) 114.6(6) 1 17.8(2) 115.2(5) 112.2(2) 113.3(5) 1 12.4(2) 107.4(4) 106.9(2) 109.3(4) 1 09.0( 2) 113.9(5) 112.9(2) 103.1(5) 104.8(2) 112.0(5) 110.2(2) 110.2(5) 108.7(2) 103.1(4) 104.5(2) 108.5(3) 109.3(2) 115.8(4) 114.2(2) 104.9(5) 104.2(2) 110.9(4) 110.3(2) 109.6(4) 11 1.3(2) 114.4(5) 114.6(2) 110.5(3) 11 1.3(2) 120.3(7) 121.9(3) -179.4(5) 177.4(2) 174.5(4) -49.8(2) -44.9(6) -4332) 1 65.7(4) 169.9(2) -80.0(5) -72.9(2)和8.0)、4.44(1 H,ddd,J 3.4,7.4和9.3),4.63(1 H,dd,J 2.4和8.0),4.69(1 H,d,J 11),4.89(1 H,d,J ll),5.62(1 H,d,J5.1),7.18-7.43(5 H,m),7.66(1 H,d,J3.2)和7.99(1 H,d,J 3.2);6、(75.5 MHz;C6D,) 24.12、24.76、25.74、25.81、40.23、69.24、70.57、70.93、71.15、73.97、75.67、96.58、108.86、109.63、126.22、127.56、128.30、128.36、139.37、145.01、168.10 和 192.38。(6S,8S)-6,8-二-O-苄基-7-脱氧-1,2:3,4-二-O-异亚丙基-烯-8-(噻唑-2-基)-D-苏式-α-D-半乳糖-辛吡喃糖(S,S)-6和差向异构体(R,S)-6.-化合物(S)-5(0.2 g,0.42 mmol)和LiI(0.064 g,0.46 mmol)在无水乙醚(1 5 cm3)中的充分搅拌溶液冷却至-78“C和DIBAL-H(1 cm3的1.5 mol dmP3甲苯溶液, 1.5 mmol)加入。将混合物在-78“C下搅拌1小时后,加入乙酸乙酯(2cm3),并将反应混合物分配在饱和水溶液碳酸钠和乙醚之间。有机层用硫酸钠干燥,溶剂减压蒸发。残留物(0.2g)由'H 1236 J. CHEM. soc. PERKIN TRANS.I 1994 表 2 X 射线分析的实验数据 C31H37N07S C24H29N07SM 566.7 475.6 空间群 P3J1 p212121./A 10.31O( 5) 22.453(3)blA 10.3 1 O(5) 12.151( 1) 52.101(10) 9.220(1) $$3 4796(3) 25 15.5(5) z 6 4 DJMg m-3 1.177 1.256 晶格参数的反射: 数字 27 30 8 范围/“ 13/27 20138 F(ow 1806 1008 TIK 292(2) 292(2)晶体尺寸lmm 0.13 x 0.37 x 0.77 0.34x 0.39 x 0.44 p/mm-' 1.223 1.502 扫描速度最小值-' 3-12 3-12 扫描宽度/“ 1.2 + 0.35 tan 8 1.2 + 0.35 tan 6 8-强度收集范围/” 4.9170.1 3.9170.2 h 范围 10112 -27/27k 范围 -12/0 0114 I 范围 -63/10 -7111 标准反射 -3 23 3 235 强度变化 无 无 测量反射数 9745 5307 否独特反射 6102 4783 R(int) 0.0573 0.0141 No.细化中使用的反射“(N) 6074 4778 No.省略的反思数(A/c > 5) 28 5 No.与 I 的反思 > 241) 2074 3040 号精制参数数 (P) 329 307 消光参数 (SHELXL),bg O.O065( 8) 0.0066(2)最大 LS 位移与 ESD 比值 -0.044 -0.001 最终 Ap 映射 e 中的最小/最大高度 e -0.1710.26 -0.13/0.14 wR2 = ~W(AF~)~/CW(F,~)~]'~~ 0.1424 0.0790 wR2 所有数据 0.2336 0.0892 S2 = Fw(AF2)'/(N -P)]'“ 1.104 0.977 R1 = Z~AFl/Z~F,~for I > 20(I) 0.0621 0.0364 R1 对于所有数据 0.1779 0.0671 Flack x 参数 O.Oo(5) -0.02(2) g (w = 1/[a2(F:) + (gP)'] 其中 P = (F,' 0.0871 0.0363 a 对 F2 的细化,用于所有反射,但标记为可能系统误差的反射除外。观测到的阈值 I > 2a(I) 仅用于计算 R(obs) 等,此处给出用于与 F 的细化进行比较。 'Fc* = kF,[ 1 + 0.001 Fc2A3/sin(2s)]-'/4.表3 糖部分的起皱参数 环 OW, C(7), C@),C(lO), C(1I), C(3) 92 0.607(4) A 0.625(2) A 93 -0.132(4) 8, 0.101(2) A QT 0.622(4) 8, 0.633(2) A cp -149.0(4)0 -145.8(2)“ 0 102.3(4)” 99.2(2)“ 构象 半椅 半椅 环 C(9), W), C(8), C(W, O(3) 9 0.306(5) A 0.305(2) 8(cp 16 1.8(9)“ -163.2(4)” 构象半椅半椅环 C(12), 0(4), C(l l), C(13), O(5) 4 0.282(4) A 0.300(2) A cp 29.4(8)“ 9.q4)O构象包络半椅半椅包络核磁共振波谱是两种非对映异构体的混合物,再过12 h,将反应混合物以78:22的比例倒入水中。将该材料溶于二甲基甲酰胺(30 an3)中,并用乙醚萃取。将有机层(6 an3)冷却至0“C,加入NaH(50毫克60%分散液中的硫酸钠干燥,并在还原矿物油下蒸发,1.25毫摩尔)。20分钟后,在0“C的压力下。色谱法(硅胶;己乙醚7:3)(搅拌)反应混合物用溴苄得到的化合物(S,S)-6和(R,S)-6处理。(0.09 g,0.53 mmol)并在室温下搅拌(S,S)-6:(0.048 g,2073,油(Found:C,65.2;H, 6.6;N, 2.6.J. CHEM. soc. PERKIN TRANS. 1 1994 C,,H,,NO,S requires C, 65.5;H, 6.7;N, 2.6%);[alD -36.4 (C 0.45, CHCl3); dH(300 MHz;C$6) 1.28 (3 H, s), 1.31 (3 H, s), 1.45 (3 H, s), 1.50 (3 H, s), 2.05 (1 H, ddd, J2.8, 10.9 和 14.1), 2.28 (1 H, ddd, J2.7,10.3 和 14. l), 3.87 (1 H, dd, J 1.8 和 7.6), 4.08 (1 H, ddd, J2.7,7.6 和 10.9), 4.21 (1 H, dd, J 1.8 和 7.9), 4.28(1H,dd,J2.4和5.0),4.29(1H,d,J11.4),4.39(1H,d,J 11. l),4.53(1 H,dd,J2.4和7.9),4.55(1 H,d,J 1 1.4),4.91(1 H,d,J11.1),5.08(1H,dd,J2.8和10.3),5.59(1H,d,J5.0),7.19-7.37(1 H,m)和7.73(I H,d,J 3.2);直流(75.5 MHz;C6D6)24.16,24.76,25.76,25.81,38.53,70.60,70.89,71.14,71.49,72.07,73.38,75.06,75.71,96.62,108.80,109.57,119.32,127.56,127.95,128.19,128.31,128.47,128.61,138.36,139.64,142.88和174.66。(R,S)-6:(0.172 g,72%),油(发现:C,65.6;H, 6.6;N, 2.5%);[ff]~ -38.8 (C 0.85, CHCl,);dH(300 MHz;C6D6) 1.30 (3 H, s), 1.34 (3 H, s), 1.37 (3 H, s), 1.50 (3 H, s), 2.35 (2 H, m), 3.69 (1 H, m), 4.00 (1 H, dd, J 1.9 和 7.6), 4.30 (1 H, dd, J2.4 和 5.0),4.34(1H,d,Jl1.0),4.38(1H,dd,J1.9 和 8.0),4.53 (2 H, s), 4.57 (1 H, dd, J 2.4 和 KO), 4.58 (1 H, d, J 1 1 .O)、5.19(1 H、dd、J6.9 和 7.2)、5.59(1 H、d、J5.0)、7.23-7.48(11 H、m)和 7.80(1 H、d、J 3.2);直流(75.5 MHz;C&) 24.17、24.72、25.66、25.80、38.50、65.76、70.50、70.88、71.17、71.60、71.96、73.44、76.12、96.50、108.71、109.31、119.59、127.53、127.94、128.21、128.32、128.42、128.63、138.13、139.62、142.68 和 174.00。(40 an3),搅拌10 min,然后升温至室温。加入水(20 an3),分离两层液层。水层用乙醚(4×25an3)萃取。将合并的有机层用硫酸钠干燥,减压蒸发溶剂。色谱法(硅胶;己烷-二乙醚1:1)得到醛醇加合物(R)-4(2.23 g,58%,ds>95%)为油(Found: C, 52.9;H, 6.2;N,3.9。C17H23- N07S 需要 C, 53.0;H, 6.0;N, 3.6%);[ff]D -60.5 (c 0.39, CHCl,);dH(300 MHz;CDCl,) 1.27 (3 H, s), 1.35 (3 H, s), 1.44 (3 H, s), 1.49 (3 H, s), 3.35 (1 H, dd, J8.7 和 17.4), 3.55 (1 H, d, J 5.6), 3.62 (1 H, dd, J2.7 和 17.4), 3.73 (1 H, dd, J 1.9 和 8.7), 4.30(1 H,dd, J2.4 和 5.1),4.40(1 H,dddd, J2.7,5.2,8.7 和 8.7), 4.51 (1 H, dd, J 1.9 and KO), 4.63 (1 H, dd, J2.4 and 8.0), 5.51 (1 H, d, J5.1), 7.69 (1 H, d, J 3.2) 和 8.01 (1 H, d, J3.2);6,(75.5兆赫;CDCl,)24.17、24.66、25.70、25.76、42.63、66.68、69.39、70.56、70.74、73.62、96.58、108.83、109.56、126.61、145.18、167.54和194.34。(6R,SS)-6,8-二-O-苄基-7-脱氧-1,2:3,4-二-O-异丙基亚基-8-(噻唑-2-基)-a-D-赤式-D-半乳糖邻吡喃辛糖 (S,R)-6.-将上述方法用于还原化合物(S)-5,但不含LiI,应用于化合物(R)-4(100mg,0.26mmol)后,在色素-6,S-二-0-苄基-1,2:3,4-二-O-异亚丙基-P-~-赤式-~-graphy(硅胶;己烷-二乙醚7:3)纯标题化合物半乳糖-壬二醇-1,5-吡喃糖(R,S)-7.-噻唑衍生物(R,S)-6的溶液(0.15克,0.用碘甲烷(2.2 g,15.5 mmol)处理26 mmol)在新鲜蒸馏的乙腈(5 an3)中,将反应混合物在氮气下回流24 h,减压蒸发溶剂,将残留物溶于甲醇(10 cm3)中,并用NaBH(50 mg,1.3 mmol)处理。将混合物在室温下搅拌15分钟后,减压蒸发,残留物在CH、Cl和饱和水溶液碳酸氢钠之间分离。分离有机层,用硫酸钠干燥,减压蒸馏溶剂。将残留物溶于乙腈(2 an3)中,然后用HgCl(90 mg,0.33 mmol)的乙腈-水(3 cm3)混合物中的溶液处理。在室温下搅拌15分钟后,将混合物在减压下蒸馏至干,残余物用碘化钾水溶液(10 cm3)处理,并用氯仿(3 x 10 cm3)萃取混合物。将有机层合并,用硫酸钠干燥,减压蒸发。色谱法(硅胶;己烷-二乙醚3:2)得到醛(R,S)-7(0.1 1 g,82%)作为油(Found: C, 67.9;H,7.2。C29H3608需要 C, 68.2;H, 7.1%);[alD -51.6 (c 0.79, CHCl,); dH(3O0 MHz;CDC1,) 1.24 (3 H, s), 1.26 (3 H, s), 1.37 (3 H, s), 1.42 (3 H, s), 1.942.05 (1 H, m), 2.18-2.29 (1 H, m), 3.81-3.95(3H,m),4.194.26(2H,m),4.45(1H,d,J10.8),4.51 (1 H,m),4.57(2H,m),4.79(1 H,d,J10.8),5.51(1 H,d,J5.1),7.14-7.35(10 H,m)和9.45(1 H,d,J 0.9);直流(75.5 MHz;CDCl,) 24.23、24.71、25.76、25.84、32.04、70.47、70.87、71.30、71.84、72.12、73.40、74.82、80.32、96.48、108.82、109.50、127.66、127.90、128.19、128.46、128.69、128.76、138.68、139.19和203.05。7-脱氧-1,2:3,4-二-O-异亚丙基-8-(噻唑-2-基)-a-~-甘油-D-半乳糖-辛二度-1,5-吡喃糖(R)-4.-在充分搅拌的叔丁醇(0.74g,10mmol)在无水THF(15cm3)中的溶液中,在室温下逐滴加入丁基-锂(10.24mmol,6.4cm3的1.6mol dm-,己烷溶液)。将混合物搅拌30 min,然后冷却至-50“C,逐滴加入1,2 :3,4-二O-异亚丙基-a-~-gal~c~o-己二醛-1,5-吡喃糖2o 3(2.58 g,10 mmol)和2-乙酰噻唑1(1.3 g,10.24 mmol)的无水THF(40 an3)溶液。在-50“C下2小时后,用饱和水溶液处理混合物。 NH,Cl(S,R)-6(0.132 g,90%,ds > 95%)作为油(Found: C, 65.3;H, 6.4;N,2.3。C31H37N07S需要 C,65.5;H, 6.7;N, 2.6%);[一]D -63.6 (C 0.81, CHCl,);dH(300 MHz;CDCl3) 1.28 (3 H, s), 1.32 (3 H, s), 1.40 (3 H, s), 1.47 (3 H, s), 2.28 (1 H, dt, J6.7 和 14.4), 2.40 (1 H, ddd, J4.4, 7.2 和 14.4), 3.70-3.83 (2 H, m), 4.24 (1 H, dd, J2.3 和 5.0), 4.41 (1 H, dd, J 1.8 和 8.0), 4.50-4.70 (5 H, m), 5.09 (1 H, t, J7.0), 5.47 (1 H, d, J5.0), 7.2Cb7.38 (11 H, m) 和 7.74 (1 H, d, J3.0);直流(75.5 MHz;CDCl,) 24.12, 24.62, 25.69, 25.72, 40.28, 66.80, 70.02, 70.52, 70.81、71.56、72.79、74.15、76.75、96.54、108.66、109.02、119.48、127.71、127.87、128.32、128.46、128.64、128.83、138.32、139.07、142.63和174.43。(6R,SR)-6,8-二-O-苄基-7-脱氧-1,2:3,4-二-O-异丙基亚基-8-(噻唑-2-基)-~-~-苏式-~-吡喃半乳糖(R,R)-6.-向四甲基三乙酰氧基硼氢化铵(1.7g,6.4mmol)的乙腈溶液(4cm3)中加入无水乙酸(4cm3)。将混合物在室温下搅拌30分钟,然后冷却至-40“C,并加入化合物(R)-4(0.35克,0.91毫摩尔)的溶液。将反应混合物在-40“C下搅拌24小时,然后加入1mol dm-水溶液,加入酒石酸钾钠(5an3)。将反应混合物加热至室温,并在乙酸乙酯和饱和水溶液碳酸氢钠之间分配。将有机层用硫酸钠干燥,减压蒸发,得到粗二醇(0.33 g,94%),根据'H NMR波谱,其非对映异构体纯度至少为95%。如上所述,在柱层析(硅胶;己二乙醚7:3)纯双乙醚(R,R)-6(0.41克,96%,ds >9579,熔点118-120“C(发现:C,65.3;H, 6.6;N, 2.3%) [ff]D +0.58 (C 1.55, CHCl,);[ff]D +6.35 (C 1.15, 甲醇);dH(300 MHz;CDCl,) 1.24 (3 H, s), 1.32 (3 H, s), 1.41 (3 H, s), 1.45 (3 H, s), 1.90 (1 H, ddd, J2.9, 10.1 和 14.6), 2.44 (1 H, ddd, J2.5, 10.6 和 14.6), 3.58(1 H,dd, JlSand9.1),4.0(1 H, ddd, J2.5, 9.1 和 10.1),4.22(1 H,dd,Jl.Sand4.5),4.26-4.35(2 H,m),4.38(1 H,dd,J 1.5和7.2),4.514.65(3 H,m),5.06(1 H,dd,J2.9和10.6),5.49(1 H,d,J5.1),7.18-7.36(11 H,m)和7.69(1 H,d,J 3.2);d,(75.5 兆赫;CDCl,) 24.14, 24.61, 25.77, 25.81, 42.15, 68.. 88、69.90、70.53、70.85、71.20、73.57、73.86、75.95、96.62、108.57、109.16、119.54、127.78、127.98、128.11、128.38、128.60、128.79、138.19、139.18、142.61和174.89.6,8-二-O-苄基-7-脱氧-1,2:3,4-二-O-异亚丙基-P-~-苏式-D-半乳不羚基邻十九吡喃糖(R,R)-7。R)-6(170毫克,0.3毫摩尔)柱色谱后(硅胶;己乙醚2:3),得到醛(R,R)-7(110毫克,72%)作为油(发现:C,68.3;H, 6.9.C29H3608 需要 C, 68.2;H, 7.1%);[aID -0.4 (c 1.02, CHCl3); &(300 MHz;CDCl,) 1.28 (3 H, s), 1.33 (3 H, s), 1.45 (3 H, s), 1.47 (3 H, s), 1.81 (1 H, ddd, J4.0,9.3 和 14.7), 2.22 (1 H, ddd, J2.2, 9.4 和 14.7), 3.66 (1 H, dd, J 1.6 和 8.8), 3.88 (1 H, dt, J 2.9 和 8.8), 4.01 (1 H, dddd, J 2.2, 4.0 和 93, 4.26 (1 H, dd, J2.2 and LO), 4.40 (1 H, m), 4.35 (1 H, d, J 11.6), 4.41 (1 H, d, J 11.8), 4.59 (1 H, m), 4.61 (1 H, d, J 11.8), 4.64 (1 H, d, J 11.6), 5.50 (1 H, d, J 5.0), 7.20-7.40 (10 H, m) 和 9.61 (1 H, d, J2.2);6,(75.5兆赫;CDCl,) 24.06、24.56、25.73、25.80、33.01、69.57、70.48、70.79、71.10、72.14、73.22、73.75、80.73、96.56、108.60、109.19、127.88、127.93、128。27、128.38、128.63、128.70、137.84、138.77和203.54.化合物(R)-5的还原-如上所述,非对映异构体(S)-5的化合物(R)-5(0.12 g)的还原得到55:45的非对映异构醇(0.12 g)混合物('H NMR)。如上所述的苄基化反应得到56:44的二苄基衍生物混合物,其'H NMR谱图可在双醚(S,R)-6和(R,R)-6上叠加。X射线晶体学 .-晶体结构分析的相关数据总结于表2.晶格参数使用Cu-Kal辐射(A = 1.540 562 0 A)确定,并使用Nelson和Riley 22外推函数通过最小二乘法21进行细化。使用8-28扫描模式和Lehmann和Larsen 24峰分布分析程序的修改版本23,在具有Cu-Ka平均辐射的Siemens-AED衍射仪上测量积分强度。所有反射都针对洛伦兹效应和偏振效应进行了校正;没有考虑对吸收进行校正。化合物(S)-5的结构采用SHELXS-86,25的直接方法求解,而尝试用常用的直接方法程序求解化合物(R,R)-6的结构均失败。该结构通过使用新版本的程序 SIR (SIR92)26 来解决,该程序成功地给出了部分精炼的结构 (R = 0.11),但 C(26) C(31) 苯基环后来被证明是高度无序的。在F上使用SHELX-76,27和在F2上使用SHELXL-92 28程序对两种结构进行全矩阵最小二乘法细化。两种类型的细化给出的最终结果没有显着差异,因此表2的所有数据和表1的结构参数以及文中讨论的数据均来自F2细化。氢原子位于附着碳原子的计算位置,将化合物(R,R)-6的无序苯基视为刚体,具有计算的几何形状和高各向同性位移参数。这种无序给出的强度数据质量较差,是解决化合物(R,R)-6结构遇到的困难以及从其细化中获得的结果的准确性相对较低的原因。没有试图定义这种紊乱,这可能是关于C(25)--C(26)键的旋转紊序。绝对构型是根据Flack's2'指数和半乳糖环的已知手性分配的。所有计算均在“Centro di Studio per la Strutturistica Diffrattometrica del C.N.R. (Parma)”的 ENCORE-91 和 POWERNODE-6040 计算机上进行。除上述程序外,PARST3'还用于J. CHEM. SOC. PERKIN TRANS. 1 1994关于晶体结构几何方面的计算。原子散射因子和异常散射系数取自国际X射线晶体学表。最终的原子坐标、所有原子的分数坐标、键长、键角和扭转角已存放在剑桥晶体学数据中心。 致谢 我们感谢 Progetto Finalizzato Chimica Fine e Secondaria, n. 2(CNR,罗马)的财政支持,感谢 Ministerio de Educacion y Ciencia(西班牙)向 P. M. 提供博士后奖学金。 以及 EEC(布鲁塞尔)向 L. K. 提供 Tempus 赠款。我们还要感谢 C. Giacovazzo 教授(巴里大学)解决了化合物 (R,R)-6 的结构,并感谢 G.M. Sheldrick 教授(哥廷根大学)在 beta 测试阶段提供了他的 SHELXL-92 程序。*参见“作者须知”,J. Chem. SOC.,Perkins Trans. 1,1994 年,第 1 期。参考文献 A. Dondoni, Carbohydrate Synthesis via Thiazoles, in Modern Synthetic Methoh, ed. R. Scheffold, Verlag Helvetica Chimica Acta, Basel, 1992, p. 377;牛。SOC. Chim.比利时,1992年,101,433。A. Dondoni 和 P. Merino, J. Org. Chem., 1991, 56, 5294;A. Dondoni、P. Merino 和 J. Orduna,Tetrahedron Lett.,1991 年,32 页,3247 页。A. Dondoni、A. Marra 和 P. Merino, J. Am. Chem. SOC.,1994,116,在新闻中。A. M. Sepulchre, A. Gateau-Olesker, G. Lukacs, G. Vass, S. D. Gero and W. Voelter, Tetrahedron Lett., 1972,3945;P. Coutrot, C.Grison, M. Tabyaoui, S. Czernecki and J.-M.Valery, J. Chem. SOC., Chem. Commun., 1988, 1515;S. Czernecki 和 J.-M.瓦尔克里,J. Carbohydr。化学, 1988, 7, 151;A. Dondoni、G. Fantin、M. Fogagnolo 和 P.美利奴,J. Carbohydr。化学, 1990,9,735;Ph. Maillard, C. Hue1 和 M. Momenteau, Tetrahedron Lett., 1992,33,8081.SJ Danishefsky 和 MP DeNinno,Angew。Chem., Znt. Ed. Engl., 1987, 26, 15;J. S. Brimacombe, in Studies in Natural Product Chemistry, ed. A.-ur Rahman, Elsevier, Amsterdam, 1989, vol. 4, part C, p. 157.为了方便使用%非对映选择性(ds)而不是%非对映异构体过量(de),参见:S. Thaisrivongs和D. Seebach,J. Am. Chem. SOC.,1983,105,7407。B. E. Maryanoff 和 A. B. Reitz, Chem. Rev., 1989,89,863.关于所谓的克拉姆法则的评论,见:E. L. Eliel, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1983, vol. 2, part A, p. 125;J.穆尔泽,H.-J.阿尔滕巴赫、M. Braun、K. Krohn 和 H.-U.赖西格。有机合成亮点,VCH Verlagsgesellschaft,Weinheim,199 1,第 3 页。S. J. Danishefsky, W. H. Pearson, D. F. Harvey, C. J. Maring 和 J. P. Springer, J.Am. Chem. SOC., 1985,107,1256;S. J. Danishefsky, M. P. DeNinno, G. B. Phillips, R. E. Zelle 和 P. A. Lartey, 四面体, 1986,42,2809;A. Dondoni、G. Fantin、M. Fogagnolo 和 A. Medici,四面体,1987,43,3533;A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici 和 P. Pedrini, J. Org. Chem., 1989, 54,693.10 S. J. Danishefsky、C. J. Maring、M.R. Barbachyn 和 B. E. Segmuller, J. Org. Chem., 1984,49,4564.11 A. Dondoni、A. Boscarato和A. Marra, Synlett, 1993,256。12 关于将对羟基酮还原为合成或抗1,3-二醇的最新文章,见:D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. SOC.,1988,110, 3560;D. A. Evans 和 A. H. Hoveyda, J. Org. Chem., 1990, 55, 5190;D. A. Evans, J. A. Gauchet-Prunet, EM Carreira 和 AB Charette, J. Org. Chem., 1991,56,741.13 关于酰氧基硼氢化物在合成中的用途的综述,见:G. W. Gribble 和 C. F. Nutaitis, Org. Prep. Proced.Znt., 1985, 17, 317.14 S. Kiyooka、H. Kuroda 和 Y. Shimasaki,Tetrahedron Lett.,1986 年,27,3009。J. CHEM. SOC. PERKJN TRANS.1 1994 15 A. Dondoni 和 P. Merino, Synthesis, 1993,903.16 Y. Mori, M. Kuhara, A. Takeuchi and M. Suzuki, Tetrahedron Lett., 1988,29,5419.17 关于改进的程序,见:A. Dondoni, A. Marra and D. Perrone, J. Org. Chem., 1993,58,275。18 C. K. Johnson,ORTEP,报告ORNL-3794,田纳西州橡树岭国家实验室,1965年。19 D. Cremer 和 J. A. Pople, J. Am. Chem. Soc., 1975,97, 1354.20 R. F. Butterworth 和 S. Hanessian,《综合》,1971 年,70 页。21 M. Nardelli 和 A. Mangia, Ann. Chim.(罗马), 1984,74, 163.22 J. B. Nelson 和 D. P. Riley, Proc. Phys. SOC.伦敦, 1945, 57, 160,477.23 D.Belletti、F.Ugozzoli、A.Cantoni和G.Pasquinelli,《内部报告》,1979年3月1日,意大利帕尔马,1979年。24 M. S. Lehmann 和 F. K. Larsen,《晶体学报》,第 24 章。答,1974,30,580。25 克Sheldrick,SHELXS-86,晶体结构解决方案程序,哥廷根大学,德国,1986 年。26 G. Giacovazzo,私人通信。27 G. M. Sheldrick SHELXL-76,晶体结构测定程序,德国哥廷根大学,1976年。28 G. M. Sheldrick,SHELXS-92,晶体结构细化计划,剑桥大学,英国,1992年。29 H. D. Flack, Acta Crystallogr., Sect.答, 1983,39, 876.30 M. Nardelli,计算。化学, 1983,7,95.31 International Tables for X-ray Crystallography,Kynoch Press(现发行商 Kluver Academic Publishers,多德雷赫特),1974 年,第 4 卷,第 99 和 149 页。论文 3/06 1545 收稿日期: 1993年10月14日 录用日期: 1993年12月23日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号